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Abstract: Unconventional fertilizers can act as elicitors to encourage the synthesis of
phyto-pharmaceuticals in aromatic plants. In the present research, the effects of factorial combination
between two red basil cultivars, ‘Opal’ and ‘De Buzau’, and four fertilization types, biosolids,
organic, microorganisms and chemical, plus an unfertilized control, were assessed on fresh and dry
yield, biometrical parameters, soil plant analysis development (SPAD) and antioxidant compounds
and activity. Chemical fertilization increased fresh yield compared with the control, with no
difference in organic and microorganism fertilization regarding dry weight. ‘De Buzau’ enhanced
the number of lateral stems and plant height, the latter being better affected by chemical and
microorganisms compared to the control. Chemical fertilization showed the highest leaf dry matter,
nitrate content and SPAD, whereas the control showed the lowest. Compared to the unfertilized
control, biosolids increased total phenolics in ‘Opal’; microorganisms, organic and biosolids enhanced
total flavonoids in ‘Opal’, with the same effect under microorganisms and organic treatments in
‘De Buzau’. Total anthocyanins showed the highest content in ‘Opal’ under organic fertilization.
The highest antioxidant activity in the basil extracts was detected under microorganisms and organic
applications in ‘Opal’. The present investigation results demonstrate that unconventional fertilizers
increase the synthesis of antioxidants and represent a sustainable alternative to chemical fertilization
for growing red basil.

Keywords: Ocimum basilicum L.; unconventional fertilizers; production; SPAD; nitrate; antioxidant
compounds and activity

1. Introduction

Sustainable crop systems have been increasingly spreading as a consequence of the growing
demand for healthy food produced by environmentally friendly practices [1–3]. Indeed, the area
cultivated worldwide under low impact management has been expanding and, for example, the extreme
form, represented by organic farming, has increased by 20% from 2016 to 2017, reaching 69.8 million
hectares with a market value of about 90 billion euros [4].

Basil is a very popular medicinal plant, being cultivated in many geographical areas due to its
bioactive principles, such as volatile oils, ascorbic acid and phenolic compounds [5–7]. It is a widely
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used species in cosmetics, perfumery and in the preparation of foods, including pesto sauce and soft
drinks [8,9]. Due to the several existing varieties, differing in leaf shape, color and flavor, basil has an
ornamental value and is also connected to local tradition [10]. Recently, this species has been used as
a companion plant in organic farming to prevent pathogen attacks [11,12].

Fertilization is a very important component of plant system management, particularly under
sustainable farming [2], which implies the use of unconventional fertilizers, such as manure, compost,
biosolids, microorganisms [13]. Indeed, the application of organic fertilizers may enhance soil organic
matter, thus improving its physiological and chemical properties. [14] However, the latter conditions
may lead to increased crop productivity, as previously reported in peas, oats and basil [15], or to
temporary N-immobilization and yield reduction due to manure decomposition [16,17]. The N-form
may affect plant photosynthesis and growth [18] and, in this respect, organic manures can provide
essential plant nutrients and enhance crop productivity [19], but also leave a beneficial residual effect
on succeeding crops [20]. In addition to yield effects, the application of unconventional fertilizers on
basil crops can promote the synthesis of biological active constituents such as total phenolics [21,22].

Aromatic and medicinal plants have been increasingly spreading under sustainable farming [3],
as they contain bioactive compounds that show remarkable culinary and therapeutic properties [23,24].
Notably, in addition to the beneficial impact on human health, the aforementioned bioactive substances
provide plant pigmentation, pollination and protection from diverse stressors; for instance, ultraviolet
radiation and herbivore attacks [25,26].

Several studies have showed that the synthesis of bioactive compounds (ascorbic acid,
carotenoids, phenols, flavonoids, anthocyanins) in plants can be stimulated by external factors
such as temperature [27], light [28,29], humidity, fertilization [30,31] and microorganisms [32], as these
substances are produced in the secondary metabolism [25,26]. In this respect, Lobiuc et al. [29] reported
that the synthesis of rosmarinic acid, one of the main phenolic acids produced in basil, increased as
a result of light supply. The increased synthesis of bioactive compounds in plants is related to the
physiological role of these molecules in protecting plants against ultraviolet radiation and herbivorous
organisms [33].

Considering the above mentioned challenges, the main targets of this study were to assess (i) the
chance of using unconventional fertilizers (biosolids, organic and microorganisms) as a sustainable
alternative to chemical fertilization for the production of red basil enriched with antioxidant compounds
(phenols, flavonoids, anthocyanins) and (ii) the effect of different fertilizers on fresh and dry yield,
as well as biometrical and physiological characteristics.

2. Materials and Methods

2.1. Biological Material and Experimental Site

The research was carried out on basil (Ocimum basilicum L.) grown in an open field in 2016 and
2017, at the experimental farm ”V. Adamachi” of the University of Agricultural Sciences and Veterinary
Medicine (UASVM) of Iasi, Romania (47◦11′76” N, 27◦33′71” E, 150 m a.s.l.), on anthropic chambic
chernozem soil with the following characteristics: 62% sand, 6% silt, 32% clay; pH 7.2; EC 478 µS·cm−1;
2.86% organic matter; 2.8 g·kg−1 N, 32 mg·kg−1 available P (Olsen method), 218 mg·kg−1 available K
(ammonium acetate method), 4.1 g·kg−1 CaCO3; C/N 5.91. The meteorological conditions during the
experiments are presented in Table 1.
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Table 1. Mean monthly values of rainfall and temperatures at the experimental site (2016–2017).

Month
Rainfall (mm) Average Temperature (◦C) PAR (MJ·m−2·d−1)

2016 2017 2016 2017 2016 2017

May 72.0 71.0 15.4 16.5 9.8 10.0
June 111.0 47.0 21.2 21.7 10.8 10.8
July 12.0 48.0 23.1 22.0 11.0 10.8

August 52.3 39.0 21.3 22.2 9.7 9.9

The sowing was carried out in mid-April in alveolar cell trays with alveoli of 31.3 cm3.
Plantlets were transplanted in the field on 25 May, spaced 15 cm along the rows, which were
45 cm apart (14.8 plants per m2). The plants were harvested at the flowering stage, on 10 August.

In both research years, during the growing period, the irrigation was performed by drip method
when the available water in the soil dropped to 80%. No treatments for plant protection were carried
out; weed control was manually done twice.

2.2. Experimental Design

The experimental protocol was based on the factorial combination between two cultivars (Opal,
(Op) and De Buzau (Bz)) and four fertilization types (biosolids, organic, microorganisms, chemical)
plus an unfertilized control. a split plot design with three replicates was arranged for treatment
distribution in the field and each experimental unit covered a 4.05 m2 surface area including 60 plants.

The red basil cultivar ‘De Buzau’ was created at Buzau Research and Development Station for
Vegetables (Romania), whereas ‘Opal’ originated from the Republic of Moldova.

The organic fertilizers were ploughed into the soil three weeks earlier than the transplantation,
so as to prevent the accumulation of the ammonium that is initially released, whereas the chemical
fertilizer and microorganisms were formulated just prior to transplanting; the aim was to supply the
crops with 40 kg·ha−1 N, based on basil nutrient requirements of 5.0 kg N, 1.7 P2O5 and 7.2 K2O per
ton of produce yield [34] with a projected production of 8 t·ha−1, with the following details:

1. Biosolids (B): 1000 kg·ha−1 were applied; it was produced at the municipal waste water treatment
plant in Iasi, Romania, and had pH 6.96, 26.6% OM, 4.83% total N, 2.43% P2O5, 0.51% K2O, 0.3%
MgO, 0.01% Fe, 0.004% Mn, 0.002 Zn, 0.001% Cu.

2. Organic (O): 1200 kg·ha−1 of the chicken manure formulate Orgevit® were supplied; it has 65%
OM, 90% dry matter, pH 7, 4% N, 3% P2O5, 2.5% K2O, 1% MgO, 0.02% Fe, 0.01% Mn, 0.01% B,
0.01% Zn, 0.001% Cu, 0.001% Mo.

3. Microorganisms (M): Rizotech Plus powder was placed in the soil holes made for seedling
transplant (60 kg·ha−1), predominantly containing the arbuscular mycorrhizal fungi (AMF) spores
of Claroideoglomus etunicatum, Funneliformis mosseae, Glomus aggregatum, Rhizophagus intraradices
and, in addition, fungi and bacteria species belonging to genera Trichoderma, Streptomyces,
Bacillus, Pseudomonas.

4. Chemical (Ch): 350 kg·ha−1 of Nutrispore® were provided. This fertilizer contains 20% of N
(urea form), 20% water soluble P2O5, 20% water soluble K2O, 2% water soluble MgO, 0.01%
B, 0.02% Fe, 0.01% Mn and 0.003% Zn, and the same microorganisms as reported in the above
microorganisms description.

Each of the two organic fertilization types (biosolids and organic) amounted to about 70% of the
rate associated with the chemical fertilization (Ch). Indeed, a higher dose of chemical fertilizer has
been supplied, taking into account that nitrate anion stemming from urea and ammonium oxidation
is not adsorbed by soil colloids surface and, consequently, a leaching loss of a N-NO3

− fraction is
expected. The beneficial microorganisms application served to assess (i) the potential of beneficial
microorganisms in promoting plant nutrient uptake in absence of fertilization and (ii) the effects of both
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the nitrogen supplied with the chemical fertilizer composed of inorganic minerals, plus microorganisms
and N applied with the organic fertilizer.

2.3. Yield and Biometrical Determinations

In order to assess basil yield, fresh plants were cut at 5 cm above the ground and weighed.
Dry yield was determined by air-drying the plants in the open field, under a shading net, for 30 days.
Both yield and dry weight were expressed as t·ha−1.

The number of lateral stems and plant height were determined, the latter measured by a ruler and
expressed in cm.

2.4. Leaf Dry Matter

Leaf dry matter was assessed by drying the leaves in an air-forced oven at 70 ◦C until they reached
a constant weight.

2.5. Nitrate Determination

Nitrate content was assessed on ground-dried basil leaves by ion chromatography (ICS-3000,
Dionex, Sunnyvale, CA, USA) coupled to a conductivity detector, using an IonPac AG11-HC guard
(4 × 50 mm) column and IonPac AS11-HC analytical column (4 × 250 mm).

2.6. SPAD Determination

Just prior to harvesting, the soil plant analysis development (SPAD) index was determined on
fifteen undamaged basil leaves per experimental unit, using a non-destructive portable chlorophyll
content meter (SPAD 502, Konica Minolta Sensing, Inc. Osaka, Japan), the readings being expressed as
SPAD units.

2.7. Biochemical Analysis

The total phenolic content was assessed as follows: 0.1 mL of leaf extracts were mixed with
Folin–Ciocalteu reagent (Merck, Kenilworth, IL, USA) and incubated for 5 min, then Na2CO3 7.5% was
added and 90 min incubation followed. The results were calculated referring to 760 nm absorbance and,
according to a calibration curve, were expressed as gallic acid equivalents per gram of dry weight [24].

The total flavonoid content was evaluated by the absorbance at 510 nm of leaf extracts reacting with
5% NaNO2 and 10% AlCl3. The results were expressed, according to a calibration curve, as quercetin
equivalents per gram of dry weight [29].

Anthocyanin content was determined, as described by Lee et al. [35], in 5 g of fresh leaf extracts in
95 mL of ethyl alcohol: distilled water: hydrochloric acid mixture (75:24:1). Results were expressed as
mg cyanidin3-glucoside/g fresh weight.

For assessing the antioxidant activity, an aliquot of 0.1 mL leaf extract was mixed with 2.9 mL
of 60 µM DPPH (2,2-diphenyl-1-picrylhydrazyl) and incubated for 180 min to allow for complete
reaction. The absorbance of mixtures was read at 515 nm and the results were calculated as absorbance
inhibition (in percentage) of a blank composed of DPPH and ethanol as extract solvent [29].

2.8. Statistical Analysis

The data were statistically processed by ANOVA and the mean separation was performed through
Tukey’s test at 0.05 probability level, using the SPSS software version 21 (IBM Corp, Armonk, NY,
USA). The results were reported as means ± standard errors.
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3. Results

3.1. Yield, Biometrical and Physiological Determinations

The influence of cultivar and fertilization type on fresh and dry yield, lateral stems and plant
height of basil are presented in Table 2. The cultivar did not significantly affect either the fresh and dry
yield or chlorophyll content, however the number of lateral stems and plant height were significantly
higher in Bz than in Op. Regarding the influence of the fertilization type, Ch treatment significantly
increased the fresh and dry yield, plant height and chlorophyll content. The number of lateral stems
was not significantly influenced by the fertilization type.

Table 2. Fresh and dry yield, and biometrical characteristics of basil as affected by cultivar
and fertilization.

Treatment Fresh Yield (t ha−1) Dry Yield (t ha−1)
Lateral Stems (no. Per

Plant) Plant Height (cm)

Cultivar
Op 8.84 ± 0.55 2.27 ± 0.14 13.24 ± 0.25 42.87 ± 0.70
Bz 9.86 ± 0.51 2.54 ± 0.13 16.78 ± 0.32 45.00 ± 0.57

ns ns * *

Fertilization type
Ct 6.40 ± 0.41 d 1.61 ± 0.10 c 14.17 ± 0.84 41.33 ± 0.88 b
B 8.28 ± 0.46 c 2.14 ± 0.12 b 15.17 ± 0.85 42.83 ± 0.83 ab
O 10.10 ± 0.28 b 2.65 ± 0.07 a 15.94 ± 0.91 44.67 ± 0.95 ab
M 10.10 ± 0.45 b 2.64 ± 0.12 a 14.61 ± 0.93 45.17 ± 0.65 a
Ch 11.85 ± 0.32 a 2.98 ± 0.08 a 15.17 ± 0.89 45.67 ± 1.20 a

Opal (Op); De Buzau (Bz); control (Ct); biosolids (B); organic (O); microorganisms (M); chemical (Ch). Within each
column, n.s. no statistically significant difference, * significant difference, values associated with different letters are
significantly different according to Tukey’s test at p < 0.05.

The leaf dry matter content (Table 3) was not affected by cultivar; however, a significant increase
was obtained under the chemical fertilization compared to the unfertilized control.

Table 3. Dry matter, nitrate content and SPAD of basil leaves as affected by cultivar and fertilization.

Treatment Leaf Dry Matter (%) Leaf Nitrate Content
(mg kg−1 f.w.)

SPAD

Cultivar
Op 9.39 ± 0.06 294 ± 31 38.26 ± 1.27
Bz 9.37 ± 0.07 275 ± 30 36.77 ± 1.2

ns ns ns

Fertilization type
Ct 9.2 ± 0.05 b 220 ± 21 c 32.02 ± 0.57 d
B 9.32 ± 0.06 ab 313 ± 32 ab 36.23 ± 0.95 bc
O 9.47 ± 0.05 ab 278 ± 29 ac 35.18 ± 0.77 cd
M 9.37 ± 0.06 ab 254 ± 24 bc 40.27 ± 0.31 ab
Ch 9.57 ± 0.06 a 357 ± 38 a 43.87 ± 0.26 a

Opal (Op); De Buzau (Bz); control (Ct); biosolids (B); organic (O); microorganisms (M); chemical (Ch). Within each
column, n.s. no statistically significant difference, * significant difference, values associated with different letters are
significantly different according to Tukey’s test at p < 0.05.

The leaf nitrate content (Table 3) was not affected by cultivar, but showed significant changes upon
the fertilization treatments. Indeed, the chemical fertilization resulted in higher nitrate concentration
in the basil leaves compared to the untreated control and the sole beneficial microorganism inoculation;
the latter treatment, as well as the organic manure supply, did not significantly differ from the
unfertilized control.

The SPAD, reflecting the chlorophyll content, was significantly affected by the interaction between
cultivar and fertilization type (Figure 1): it was higher in plants cultivated under B, O, M, and Ch
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fertilization, with increases of 25%, 19%, 27% and 43%, respectively, in ‘Opal’. Regarding ‘De Buzau’,
significant increases were obtained under M and Ch fertilization (24% and 31%).Agriculture 2020, 10, 48 6 of 15 
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3.2. Antioxidant Compounds and Activity 
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3.30 mg g−1 Cyanidin-3-glucosid equivalent (C3G) in ‘Opal’, with O, M and Ch attaining higher 
values than Ch and the unfertilized control; from 1.97 to 3.07 mg g−1 C3G in ‘De Buzau’, with O and 
M resulting in higher contents compared to Ch and the untreated control, and B being slightly more 
than Ch. 

A higher antioxidant activity of leaf basil extracts was recorded under M application compared 
to the unfertilized control in ‘De Buzau’ (Figure 5). 

 

Figure 1. Chlorophyll content in basil leaves expressed as soil plant analysis development (SPAD) units,
as affected by the interaction between cultivar and fertilization. Opal (Op); De Buzau (Bz); control (Ct);
biosolids (B); organic (O); microorganisms (M); chemical (Ch). Values associated with different letters
are significantly different according to Tukey’s test at p < 0.05.

3.2. Antioxidant Compounds and Activity

The interaction between cultivar and fertilization type was significant on the three antioxidants
examined as well as on the antioxidant activity (Figures 2–5). Indeed, the total phenolics content
(Figure 2) increased in ‘Opal’ plants fertilized with B by 12% compared to the control, whereas ‘De Buzau’
was not significantly affected by fertilization.
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Figure 5. Antioxidant activity in basil leaves, as affected by the interaction between cultivar and
fertilization. Opal (Op); De Buzau (Bz); control (Ct); biosolids (B); organic (O); microorganisms (M);
chemical (Ch). Values associated with different letters are significantly different according to Tukey’s
test at p < 0.05.

The total flavonoid content (Figure 3) showed significant increases by 21%, 24% and 21% under B,
O and M treatments respectively, compared to control.

The total anthocyanin content (Figure 4) showed the following variation ranges: from 1.22 to
3.30 mg g−1 Cyanidin-3-glucosid equivalent (C3G) in ‘Opal’, with O, M and Ch attaining higher values
than Ch and the unfertilized control; from 1.97 to 3.07 mg g−1 C3G in ‘De Buzau’, with O and M
resulting in higher contents compared to Ch and the untreated control, and B being slightly more
than Ch.

A higher antioxidant activity of leaf basil extracts was recorded under M application compared to
the unfertilized control in ‘De Buzau’ (Figure 5).

The production of bioactive compounds per soil surface unit (Table 4) did not differ between the
two cultivars compared, but it was significantly affected by fertilization. In the latter respect,
all the treatments resulted in higher antioxidant synthesis compared to the untreated control.
However, organic and chemical fertilizers, as well as microorganism formulations, always showed the
best outcomes, except for total phenols, where microorganisms did not significantly differ from biosolids.
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Table 4. Antioxidant compounds in basil dry leaves per soil surface unit, as affected by cultivar
and fertilization.

Treatment
Total Phenols Flavonoids Anthocyanins

g·m−2

Cultivar
Op 3.26 0.75 0.12
Bz 3.47 0.75 0.14

ns ns ns

Fertilization
Ct 2.16 c 0.43 c 0.06 c
B 3.22 b 0.67 b 0.11 b
O 3.74 a 0.87 a 0.19 a
M 3.62 ab 0.83 a 0.16 a
Ch 4.00 a 0.95 a 0.16 a

Opal (Op); De Buzau (Bz); control (Ct); biosolids (B); organic (O); microorganisms (M); chemical (Ch). Within each
column, n.s. no statistically significant difference, values associated with different letters are significantly different
according to Tukey’s test at p < 0.05.

4. Discussion

In the present research, the unconventional fertilizers (organic, microorganisms and biosolids)
applied to red basil cultivars, in comparison with a chemical fertilizer, stimulated the production of
plant biomass, as well as the synthesis of assimilatory pigments and phenolic compounds, though the
chemical fertilization resulted in the highest fresh yield. In a previous study, Jakovljevic et al. [36]
reported that the application of a chemical fertilizer overdose encouraged basil plant growth, but
concurrently lowered the content of secondary compounds. Notably, the organic fertilizers (biosolids
and Orgevit) showed a slower nutrient release through mineralization and, accordingly, a smaller effect
on plant growth and biomass accumulation compared with chemical fertilization; consistently with our
results, Bergstrand et al. [30] detected a slower nitrate availability from organic fertilizer compared to
a mineral one in a pot-grown basil investigation. In particular, organic fertilizers release higher initial
concentrations of ammonium which may cause toxicity [37] and, therefore, a possible impairment of
basil plant growth under high nitrogen supply from organic sources [22]. In this respect, in the present
research, the organic fertilizers were supplied three weeks before transplanting. in order to allow
the nitrification process starting, thus preventing the initial ammonium accumulation and enhancing
the total nitrate amount released to plants over the entire crop cycle. However, the low nitrification
rate recorded by Bergstrand et al. [38] upon poultry manure application may have been caused by
the peat-based substrate, which is sometimes characterized by a faster conversion from organic to
ammonium form, compared to the subsequent nitrification [39]. In this respect, the sandy-loam soil
used in our investigation has a higher air permeability than the peat substrate, thus increasing the
nitrification rate [40]. However, in previous research, the optimal rate of inorganic nitrogen supply,
which is easily taken up by plants and quickly assimilated, depended on the crop system: Sifola and
Barbieri [41] recorded an increased production trend of basil up to 300 kg ha−1 N, but yield was also
optimally enhanced at lower N doses, such as 250 [22] or 160 kg ha−1 [42]. In the present research,
in addition to N, the fertilizers also provided the plants with necessary doses of other macroelements
(P, K) and microelements (Fe, Mn, Zn), thus contributing to their optimal growth and development by
stimulating primary metabolism [12,24,43]. In this respect, organic fertilizers usually provide lower P
and K compared to nitrogen [44]. However, though in some cases, phosphorus supply can be lower
than that which is recommended without unbalancing crop outcome [45]; in our study, P supply even
exceeded basil requirements—therefore, the fraction of this element notoriously immobilized in the
soil does not affect its necessary availability to plants. a similar situation to P regards the essential
microelements which were supplied through both chemical and organic fertilizers, thus enhancing the
content of this cations already present in the soil. As for potassium, the amount applied either with
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chemical fertilizers or with the organic ones did not match the reference basil requirements, but the
soil content of this element exceeds the middle-high threshold of a safe reservoir and, accordingly,
no issues arose with the crops grown in our research.

The increased values of biometrical indicators (the number of lateral stems and plant height) under
organic, microorganism-based or biosolids fertilization in the present investigation, may be explained
by different processes that occur in the soil: the increase of soil organic matter content, phosphorus
solubilization and gradual release of nutrients [46]. The stimulating effect of biosolids fertilization to
plants can be attributed to the high content of organic matter (26%) and, in addition, this fertilizer is
rich in microorganisms which produce enzymes such as dehydrogenase and phosphatase, contributing
to the increased solubility of plant essential elements [47,48].

Nitrate concentration in basil leaves was affected by the type of fertilization applied, but not by
the genotype. Indeed, the chemical fertilizer presumably elicited a faster NO3

− availability in the
soil solution, which enhanced the leaf accumulation of this ion compared to both the unfertilized
control and the sole microorganism inoculation The results that stem from the present research are
consistent with previous reports [49] where, compared to the unfertilized control, chemical fertilization
encouraged nitrate accumulation in perennial wall rocket, radish and zucchini in different growing
seasons. However, in contrast with the latter authors’ findings, in our investigation, the chemical
fertilizer added with beneficial microorganisms did not promote a significant nitrate increase in basil
leaves compared to the organic and biosolid fertilizers. In previous research [50], the higher the amount
of chemical fertilizer supplied to plants, the higher the nitrate content in different edible parts of the
vegetable crops. Despite this, in the present investigation, the leaf nitrate concentrations detected upon
all fertilization treatments were much lower than the thresholds recommended by the EU Regulation
1258/2011 for leafy vegetables grown in open fields, expressed in mg·kg−1 fresh weight: 3500 for
spinach; 3000 (1 April to 30 September) and 4000 (31 October to 31 March) for lettuce; 6000 (1 April to
30 September) to 7000 (31 October to 31 March) for rocket.

In the present study, Ch fertilization determined the highest SPAD value, reflecting the chlorophyll
content in basil plants, which may be due to the fact that chemical fertilizer makes nitrogen readily
available to plants and, in this respect, previous investigations highlighted the positive correlation
between soil N availability and leaf content of chlorophyll [47,51,52] which is a nitrogen-containing
molecule [40]. These results are presumably connected to the highest plant biomass recorded under
Ch fertilization, possibly eliciting a fast absorption and metabolization of macronutrients (N, P and K)
by plants [53,54].

In the present investigation, the highest concentration of total polyphenols was recorded for the
biosolid fertilization, while that of total flavonoids and total anthocyanins was better enhanced by
the organic and microorganisms treatments. However, the total amount of the mentioned bioactive
compounds recorded in dry basil leaves was highest under organic and chemical fertilization, as well as
the microorganisms application. Consistently with our findings, previous authors [55,56] reported that
the synthesis of phenolic compounds in plants depends upon environmental conditions, cultivar and
farming practices; among the latter, the application of microorganisms [30] and fertilizers [57] play
a significant role. However, the antioxidant synthesis can be encouraged by different types of
fertilization [16] and, indeed, the increased content of polyphenols, flavonoids and anthocyanins
recorded in the present study under the unconventional fertilized treatments (biosolids, organic and
microorganisms), was presumably due to their stimulation effect on secondary metabolism [58].
Moreover, previous researchers reported an increased content of phenolic compounds in basil plants
grown on a substrate with a low nitrogen content [59], as a consequence of the reallocation of nitrogen
resources for the synthesis of secondary metabolites at the expense of protein synthesis, according to
the carbon/nitrogen balance hypothesis [60]. The results of the present investigation do not diverge
from the findings obtained by Jakovljevic et al. [60], who demonstrated that the synthesis of phenolic
compounds in basil is linked to a low nutrient concentration in soil, which allowed basil to maintain
a low level of malondialdehyde and increased activity of phenylalanine ammonium lyase.
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Regarding the antioxidant activity of basil extracts detected in the current research, the best results
were obtained with the application of a chemical fertilizer containing beneficial microorganisms and of
with the sole application of microorganisms. This activity is essential in preventing cell membrane
peroxidation and even cell death caused by large concentrations of free radicals, whereas the latter
unstable compounds are beneficial in signaling biochemical processes when they are present in low
concentrations [61,62]. Previous reports showed the positive correlation between the phenol content
and the antioxidant activity [63].

5. Conclusions

The fresh and dry yield of both red basil cultivars ‘Opal’ and ‘De Buzau’ were positively affected by
all the fertilization treatments applied in comparison with the unfertilized control, though the highest
increase was achieved under the chemical treatments, which may have elicited the highest chlorophyll
synthesis. The basil extracts from cultivar ‘De Buzau’ showed higher antioxidant activity upon
fertilization in comparison with the control, as a consequence of the increased content of antioxidant
compounds (phenols, flavonoids and anthocyanin). From the outcomes of the present research, it can
be inferred that unconventional fertilization is a viable and sustainable alternative to chemical fertilizers
for enhancing the synthesis of antioxidants in red basil leaves.

Author Contributions: G.-C.T., V.S., M.B., A.L. and N.M. conceived the research idea and experimental protocol;
V.S., A.L. and N.M. coordinated the research; G.-C.T., M.B. and G.C. wrote the manuscript; V.S. and G.C. managed
writing-review and editing; V.S., N.M. and G.C. had the supervision task; G.-C.T., M.B. and L.-D.P. were involved
in crop management and performed the determinations of yield, biometrical, and physiological analyses; M.B.
and A.L. performed the biochemical analyses; M.B. and L.-D.P. managed the data statistical processing; G.-C.T.,
M.B. and L.-D.P. were involved in bibliographic search. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors acknowledge the in-kind and cash support by the University of Agricultural Sciences and
Veterinary Medicine “Ion Ionescu de la Brad”, Romania.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Caruso, G.; Villari, G.; Borrelli, C.; Russo, G. Effects of crop method and harvest seasons on yield and quality
of green asparagus under tunnel in southern Italy. Adv. Hort. Sci. 2012, 26, 51–58.

2. Stoleru, V.; Munteanu, N.; Sellitto, V.M. New Approach of Organic Vegetable Systems; Aracne Editrice: Rome,
Italy, 2014.
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