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Abstract: Many species of insect pests can be detected and monitored automatically. Several systems
have been designed in order to improve integrated pest management (IPM) in the context of precision
agriculture. Automatic detection traps have been developed for many important pests. These
techniques and new technologies are very promising for the early detection and monitoring of
aggressive and quarantine pests. The aim of the present paper is to review the techniques and
scientific state of the art of the use of sensors for automatic detection and monitoring of insect pests.
The paper focuses on the methods for identification of pests based in infrared sensors, audio sensors
and image-based classification, presenting the different systems available, examples of applications
and recent developments, including machine learning and Internet of Things. Future trends of
automatic traps and decision support systems are also discussed.
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1. Introduction

Environmental concerns about the use of pesticides, overexploitation of natural resources,
expansion of global trade, increasing human population, changes in consumption patterns, and
advances in technology are thriving, leading to a new revolution in agriculture. This revolution
consists of the use of digital tools to increase productivity, optimizing the management of natural
resources and agricultural inputs concurrently [1]. Precision agriculture tools enable farmers to
analyze the spatial-temporal variability of several key factors that affect plant health and productivity.
Obtained through sensors, these data are stored and combined in digital platforms in order to guide
the decision-making process [2]. Integrated pest management (IPM) systems are being developed in
order to improve the management of insect pests, reducing the overall use of pesticides and focusing
on more precise applications. However, the efficiency of these systems depends on the accuracy of
the chosen pest population monitoring method. In addition, it is essential to gather information
of population dynamics and their associated ecological factors in order to develop an appropriate
pest control strategy [3]. Recently, modern technologies started to be applied in field surveys of
several pests, such as radar technologies monitoring pest migration, video equipment to observe
flying insects, thermal infrared imaging and chemiluminescent tags for tracking insect movement in
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the darkness, Global Navigation Satellite System(GNSS )for wildlife telemetry, habitat mapping and
echo-sounding detection of larvae movement [3]. Nevertheless, these techniques are usually high-cost
and not affordable for farmers. More recently, advances in miniaturized sensors, microprocessors,
telecommunications engineering and digital processing techniques allowed the reduction in costs in
novel insect automatic detection and monitoring systems. These new devices can be easily connected to
the internet, allowing real-time surveillance on the field level. Some of these devices can be connected
to wireless sensors networks (Internet of Things) for monitoring field areas and/or use cloud-computing
services to help in the decision-making process. This paper covers an in-depth review on recent
publications in the field of insect automatic detection and monitoring. Furthermore, this review intends
to highlight the methods used for different orders of insects, including Lepidoptera, Diptera (fruit
flies), Coleoptera (weevil in palm trees) and sucking insects belonging to different orders of insects,
considering that the majority of relevant publications were focused on them.

2. Automatic Monitoring of Lepidoptera Pest Species

A wide range of moth and butterfly species, such as gypsy moth Lymantria dispar, codling moth
Cydia pomonella, diamondback moth Plutella xylostella, are known to cause significant yield losses in
many crops worldwide [4,5]. These insects are able to oviposit a large amount of eggs, and the larval
stages feed voraciously, causing direct defoliation, thus leading to huge losses when populations are
well developed. Currently, the usual surveillance method is based on delta traps with pheromone
lures. However, due to the multiple poses that these insects can display when attached to sticky traps,
the development of automatic detection and identification models is quite challenging [6,7].

Silveira and Monteiro [8] developed a tool to automatically identify eyespot patterns of the
nymphalid butterfly Bicyclus anynana, using a machine learning algorithm with features based on
circularity and symmetry to detect eyespots on the images. The software was also able to successfully
recognize patterns of other butterfly species.

For the identification of species based on images, Wen et al. [6] used a suitable combination
of shape, color, texture and numerical features extracted for moth description. Later, a pyramidal
stacked de-noising auto-encoder (IpSDAE) was proposed to generate a deep neural network for
moth identification regardless of the pose of insects. This model reached a level of 98.13% of moth
identification at genus level without classifying the species. Guarnieri et al. [9] created an automatic
model for codling moth Cydia pomonella monitoring. Using a modified trap at field level using mobile
phone cameras of different resolutions for remote visual inspection, they reached up to 100% efficacy
when compared to local visual inspection.

Many models were developed using artificial neural networks (ANNs) for species identification.
ANNs are computational models inspired in biological neural networks that can be trained to perform
different tasks, such as identifying patterns in images. Kaya et al. [10] combined ANNs with binary
patterns to identify five butterfly species of the family Papilinidae, whilst Wang et al. [11] combined
ANNs with a series of morphological features and a support vector machine (SVM) to develop a high
efficacy system (93%) for the identification of over 200 species from 64 families of different insect orders
including Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Megaloptera, Neuroptera, Odonata and
Orthoptera. Kang et al. [7] developed a model for butterfly identification based on their shapes from
different angles, having efficacy ranging between 89% and 100% for 15 species of different families,
and Kaya and Kayci [12] proposed a method using color and texture features.

The use of texture descriptors, especially the gray level co-occurrence matrix (GLCM) in the
context of machine learning showed to be useful in the identification and monitoring of Lepidoptera
species. Kayci and Kaya [12] reached 96.3% accuracy in the identification of 19 species belonging to the
family Pieridae.

Kaya et al. [13] applied a texture gabor filter-based and extreme machine learning model for
butterfly identification of five species with an accuracy of 97%.
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Applying deep convolutional neural networks and deep learning techniques on three publicly
available insect datasets, Thenmozhi and Reddy [14] were able to identify several species of Lepidoptera,
as well many Coleoptera and Orthoptera with accuracy varying from 95% to 97%.

Using histograms of multi-scale curvature (HoMSC), gray-level co-occurrence matrix of image
blocks (GLCMoIB) and weight-based k-nearest neighbor classifier, Li and Yin [15] reached 98% efficacy
in the identification of 50 lepidopteran species.

Different approaches were conducted by two studies [16,17] that developed a mobile robot car
with camera for real-time identification of Pyralidae species on field level. Applying the Gaussian
Mixture Model (GMM), Aggregation Dispersion Variance (ADV) and Distance Regularization Level
Set Evolution (DRLSE), Zhao et al. [17] were able to identify the target species with an accuracy of 95%.
Liu and colleagues [16] designed a two-step recognition, using first a colour space (HSV) in which
candidates were evaluated by applying Otsu segmentation thresholds, and secondly an object contour
recognition procedure was performed based on Hu moments; the model was able to detect Pyralidae
species with 94.3% accuracy, superior to the support vector machine method.

Commercial solutions are produced by EFOS (Figure 1) based on cloud computing image
processing. The model integrating bucket/funnel type of trap is especially suitable for larger moth
species that come in high numbers. It can remotely identify Helicoverpa armigera, Autographa gamma
and Spodoptera spp. (Figure 1a).
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3. Automatic Monitoring of Sucking Insects

Sucking pests are among the critical factors causing losses in greenhouse environments. Thrips,
aphids, and whiteflies are recognized as some of the most problematic pests when crops are cultivated
in congested conditions in closed areas. Usually in greenhouses, sticky traps are placed in order
to monitor the populations of these pests. This method can be considered a difficult task for not
specialized professionals regarding their size, the complex morphology and the low efficiency score of
fatigued or unskilled human observers [18].

Several studies were conducted for automatic identification of greenhouse sucking pests. For the
identification of the greenhouse whitefly Trialeurodes vaporariorum at the mature stage, models applying
computer vision techniques were proposed by a few authors [19,20]. Using threshold algorithms,
Bodhe and Mukherji [21] developed a system to detect and count whiteflies using image analysis.
Applying texture and shape analysis, Ghods and Shojaeddini [22] created an algorithm that could
identify whiteflies in plant leaves with 85% accuracy. Blasco et al. [23] developed a prototype to
monitor insect traps placed in the field by capturing and sending images of the trapped insects to a
remote server. The device was created on the basis of a Raspberry Pi platform and incorporates a
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camera to capture the images, a control board to program the image capture intervals and a modem to
send the images and additional information to a remote media server.

Applying noise removal, contrast enhancement techniques and k-means, Dey et al. [24] used
statistical feature extraction methods such as GLCM and gray level run length matrix (GLRLM) before
the use of classifiers like support vector machine, Bayesian classifier, artificial neural network, binary
decision tree classifier and k-nearest neighbor to distinguish white fly pest infested from healthy leaf
images. All these classifiers present a high accuracy (90–98%) and high sensitivity (93.9–98.8%).

Using a support vector machine, Ebrahimi et al. [25] developed a model to detect and classify
multiple stages of whitefly. Automatic models based on color transformations were proposed for
counting and measuring whiteflies in soybean leaves [26], in different leaves [27], and in yellow sticky
traps [28,29].

With a more practical IPM-based approach, multiple techniques were developed. Using samples
of yellow sticky traps from greenhouses, Qiao et al. [30] proposed a model for density estimation of the
silverleaf whitefly Bemisia tabaci based on image processing system. In this work, the system proved to
be more efficient with medium and high densities of the pest.

For score and identification of Bemisia tabaci in yellow sticky traps and the western flower thrips
Frankinella occidentalis on blue sticky traps, Sun et al. [31] applied a novel smart vision algorithm using
two-dimensional Fourier transformed spectra, finding high correlation with human vision accuracy.
Similar results were obtained by Solis-Sanchez [32].

Combining image processing (segmentation, morphological and color property estimation) and
ANN, Espinoza et al. [33] proposed a model for the identification and monitoring of Frankinella
occidentalis and Bemisia tabaci with high precision (96%). Bauch and Rath [34] used shape and colour
properties for the identification of Bemisia tabaci and Trialeurodes vaporarium, achieving 85% efficacy.

Furthermore, Lu et al. [35] proposed a convolutional network (CNN) classifier model in
combination with a generative adversarial network (GAN) image augmentation. For this method, a
Raspberry Pi v2 camera was used, both whiteflies and thrips were analyzed, and synthetic images
were created through the GAN-based data augmentation method, in order to enhance CNN classifier
with limited image data. This method resulted in a precision of a range between 85% and 95%.

Seeking out a way to process images with a low computational cost, a model fitting embedded
system for the detection of aphids, whiteflies and thrips was proposed by Xia et al. [18], whilst
Xuesong et al. [36] developed a model for the counting and identification of aphids based on machine
learning and an adapted smartphone. In yellow sticky traps placed in greenhouse conditions, this
method showed 95% accuracy and 92.5% when placed outside. Liu et al. [37] developed a model that
uses a maximally stable extremal region descriptor, and then used histograms of oriented gradient
features and a support vector machine for identification of wheat aphids in field conditions. This new
method provides an 86.81% identification rate. In addition, Li et al. [38] developed a convolutional
neural network (CNN) of Zeiler and Fergus model and a region proposal network (RPN) with
non-maximum suppression (NMS), achieving a precision of over 88.5%.

Using leaf samples, Maharlooei et al. [39] designed a model for identification of soybean aphid
(Aphis glycines) based on image processing techniques with different types of cameras and two
illumination conditions and compared results with human counting. The best results were obtained
with low illumination and Sony camera with 96% accuracy. Also using leaf samples (of pakchoi),
Chen et al. [40] proposed a model for the segmentation and counting of aphid nymphs. This system
showed a high accuracy (99%) when compared to human counting, but it is not selective and can be
used for other pests. As a limitation, this and some of the systems described appear just to count and
not distinguish between the whiteflies or aphid species.

Using sticky traps, a camera, a temperature sensor and an ambient light sensor, Rustia et al. [41]
developed a RGB to LUV color model conversion in order to extract the V-channel color component,
achieving an accuracy of between 90% and 96%.
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Furthermore, Gutierrez et al. [42] conducted a study for monitoring and identifying whiteflies.
For this purpose, two cameras, a dataset generator and two microcontrollers were used in combination
with a K-nearest neighbor (KNN) and multilayer perceptron (MLP), resulting in an accuracy of between
66% and 81%.

4. Automatic Identification and Monitoring of Fruit Flies

One of the biggest challenges of horticultural and fruit production in the Mediterranean, tropical,
and subtropical areas of the world is the frugivorous fruit flies (Diptera: Tephritidae) [43]. This group
of pest causes crop losses amounting to billions of dollars each year worldwide, totaling USD 242
million/year in Brazil alone [44]. Depending on the crop and on the lack of control methods, fruit fly
damages can lead to from 80% to 100% of crop losses [45]. The fruit fly belongs to the tribe Dacini and
have 932 recognized species, in which about 10% are currently recognized as pests of commercial fruit
and vegetable production, causing quarantine issues and trade embargos [46]. Females of Ceratitis
capitata (Widemann), Bactrocera Dorsalis (Hendel) and Bactrocera oleae (Gmelin), among other species,
exhibit high reproductive rates. These insects lay eggs below the fruit surface and when they hatch,
the larvae feed inside the fruit. For this reason, the fruit drops or loses quality [45].

The global fruit fly issue is intensified by a small group of highly polyphagous and highly invasive
pest species that competitively dominate the local fauna if they enter and establish in a region [47–49].
These pests can be controlled with pesticide sprays, mass trapping containing pheromone lures [50],
and by the release of sterile males [51]. The efficiency of the control method depends on the time of
application, being more effective when the pest is detected early. Due to a low threshold of control of
these pests, an automatic detection system will be useful to prevent and monitoring the infestation of
these quarantine pests in a faster way.

In order to improve the operation of a low-cost McPhail trap, Potamitis et al. [47] inserted
optoelectronics sensors to monitor the entrance of the pests and identify the species of incoming
insects from the optoacoustic spectrum analysis of their wingbeat. With this system, it was possible
to distinguish fruit flies from other insects with 91% accuracy, but not between fruit fly species.
Improving this system, Potamitis et al. [52] presented a novel bimodal optoelectronic sensor based on
a stereo-recording device that records the wingbeat of an insect in flight and Fresnel lens. This system
was able to distinguish between Ceratitis capitata and Bactrocera oleae with 98.99% accuracy (Figures 2
and 3).
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trees (IOSTrees, Spain) (b).

Another system was developed to identify different species of the Anastrepha group based
on image datasets of wings and aculeus, a specialized ovipositor structure. Faria et al. [53] used a
multimodal fusion classifier approach to distinguish images of three species: Anastrepha fraterculus,
Anastrepha obliqua, Anastrepha sororcula. In these experiments, the fuzzy support vector machines
(FSVM) multimodal approach could account for 98.8% of classification accuracy in the laboratory
conditions. In a more applied study, Doitsidis et al. [54] modified a McPhail trap with a camera
connected to a Web system that automatically counts the Bactrocera oleae and provides the images to
expert entomologists that can remotely assess the potential threat at any time and rate, reducing the
need for visiting and collect data on site. Okuyama et al. [55] applied an automatic count system to
monitor the dynamics of Bactrocera dorsalis at the field level using an automatic fly census developed
by Jiang et al. [3]. This automatic fly census system reports the environmental conditions and the pests
in real time. It is composed of an infrared device counting the insects that enter the trap and recording
environmental data (remote monitoring platform—RMP) (Figure 2). The device also has an external
host control platform that receives data from the RMP through a short cell phone message (GSM).

In order to improve this system and develop a more accurate and precise device, Liao et al. [56]
designed a monitoring system built on two different wireless protocols: GSM and ZigBee, with
three major components: remote sensing information gateway (RSIG), a host control platform (HCP)
and wireless monitoring nodes (WMNs). The WMNs transmit the collected data (relative humidity,
illumination, temperature and the number of Oriental fruit flies captured) to the RSIG, and the RSIG
delivers the data to the database server (HCP) for storage and analysis. The server can process the data
and classify the information after analysis in three event types: a normal status event, a pest outbreak
event and a sensor fault event, which can be accessed through an online platform (Figure 4).
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Another electronic trap for the monitoring of adult fruit flies was developed by Shaked et al. [57]
and extensively tested at the field level. One of the traps was based on specific volatiles for male and
female adult Ceratitis capitata, and another on the attraction of the adults to the color yellow in order to
capture Bactrocera oleae, Dacus ciliates and Rhagoletis cerasi. These traps were image based. Real-time
images of the surface of the traps were taken automatically and sent to a server. From the office, the
entomologists could classify fruit flies from images with an accuracy superior to 88%. These traps
showed good specificity among the different fruit fly species, and do not differ from the results of
conventional traps that were operating simultaneously.

A different approach was proposed by Haff et al. [58] using hyperspectral images. It was possible
to identify spots caused by fruit fly larvae in mangoes fruits in post-harvest on line with 87.7% accuracy.
This approach used image processing parameters such as gaussian blur radius, ball radius, threshold
for binary conversion, and minimum particle size.

A commercial automatic trap with a high-resolution camera is manufactured by TrapView, EFOS,
Slovenia, for the monitoring of Mediterranean fruit fly (Ceratitis capitata) in citrus and peaches and
spotted wing drosophila (Drosophila suzukii) in fruits and grapes (Figure 1b).
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5. Automatic Monitoring of Weevil in Palm Trees and Other Borer Insects

The Rhynchophorus ferrugineus or red palm weevil (RPW) is a key pest of palm species in the
Mediterranean region, Middle East, Asia and North Africa. It is one of the most important invasive
pests worldwide, being considered the single most destructive pest in 40 species of palm trees. RPW
has an important socio-economic impact; present in more than 60 countries, this pest is reducing date
production and destroying ornamental palms, causing economic losses of millions of dollars each
year [59]. The RPW larvae are located deep inside of the palm crowns, offshoots and trunks, causing
considerable damage without being visually detected [60]. The intensive trade of palms without visual
symptoms was one of the reasons for spreading the pest worldwide. The early detection of the RPW
is the key of success to control and eradicate this pest. The difficulty in controlling with insecticides
requires an early detection method for minimizing the losses.

Currently, the use of pheromone traps and human inspection are the most widely and effectively
used techniques. Recently, the use of entomopathogenic nematodes in green areas inside Spain have
presented successful results in controlling the pest. In addition, the overall efficiency and speed of
detection can be increased by using promising technologies in automatic detection such as thermal
cameras and acoustic detectors, in order to develop an easy-to-handle, cost-effective, quick and reliable
device for early detection of RPW [59].

The acoustic activity of Rhynchophorus ferrugineus was studied in detail by several
researchers [52,61–63] that concluded that the sound produced by the pest can be isolated and
differentiated from environmental sounds and other insects. Dosunmu et al. [64] collected RPW sounds
inside the palm trees in different conditions and create a model based in the pattern and frequency
spectra of the emitted sounds. In their study, the RPW could be differentiated from Chamaemyia elegans
based on the burst duration, and the detection of the larvae in the offshoots was easier than inside the
trunk. Studying the activities of RPW in the larvae stage, Martin et al. [61] concluded that the sound
spectrum is constant during chewing and biting activities and differs during the insect movement.
Using a speech recognition technique, the presence of the RPW larvae was identified and validated by
tree dissections. For the identification of hidden RPW inside coconut trunks, Martin and Juliet [65] used
the MfCC (Mel Frequency Cepstral Coefficient) algorithm and vector quantization. Pinhas et al. [61]
developed a mathematical model based on speech recognition (Gaussian Mixture Model and Vector
Quantization) with a detection rate of 98%. Using Gaussian Mixture Models, Potamitis et al. [52] also
had detection rates above 94%. A bioacoustic sensor was developed to detect the weevil in the early
infestation stages with 90% success, despite the environmental noises. This prototype also was solar
energy based and was able to send information to a control station in schedule defined by the user via
wireless [66].

Multiple studies were conducted in order to identify the RPW using acoustic sensors [67–73].
A wireless network connected with acoustic sensors was proposed by Srinivas et al. [71] in order
to precisely monitor palm fields. Hetrzoni et al. [72] developed a ‘learning data set’ based on the
multivariate distribution of nine pre-selected frequencies to detect RPW larvae activity, using a
piezoelectric sensor. The sensitivity was low (around 30%) in early larval stages but had a significant
improvement (up to 95%) as larvae developed. Herrick and Mankin [74] developed a custom-written
insect signal analysis program: “Digitize, Analyze, View, Insect Sounds” (DAVIS), and were able to
detect larval burst in 80% of palms inoculated with neonates in the previous day.

Makin et al. [75], using microphones and amplifiers had applied the DAVIS (digitize, analyze,
view, insect sounds), achieved 90% accuracy.

Soroker et al. [76] developed a method for identifying digital signature of larvae on trunks,
resulting in improvements in detection efficiency of weevils in palms offshoots.

Using a titanium drill bit inserted into the palm tree trunk and a sensor-preamplifier module,
Fiaboe et al. [77] could detect the activity of RPW larvae through oscillogram and spectrogram analysis.
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A portable, user-friendly acoustic sensor system enabled the identification of larvae in individual
infested trees through the use of signal processing analyses that screened out bird and wind noise.

Nowadays, automatic acoustic sensor (seismic) for early detection of RPW in ornamental and
date palm trees using wireless sensor networks is commercialized by Agrint, Rockville, USA and for
IOTrees, Spain. The platform is connected to a network of palm tree sensor devices and gives the user
treat alerts in real-time (Figure 4).

6. Conclusions

The identification and monitoring of insect pests using automatic traps brings a novel approach to
the integrated pest management. Systems that use image recognition techniques and neural networks
are the most studied ones, being reliable for the fully automatized identification of orders and counting
of insects; however, not so many proposed models are able to identify the species level. Other promising
image-based systems developed are the ones that aim to send the insect image to a specialist and
then the insects could be identified and counted remotely in real time. The infrared sensor traps were
shown to be useful for counting insects, but are limited because they cannot identify the species, which
can result to misleading data in the survey. Audio traps are another deeply studied approach for
monitoring pests. The research presented in the RPW resulted in the creation of commercial solutions.
Image-based commercial solutions can be also be found nowadays in the market.

These new systems promise to facilitate the implementation of IPM systems soon. Appendix A
summarizes the automatic detection techniques and sensors used for the different insect groups and
Appendix B brings a list of commercial providers previously discussed in this review. The record of
data will be useful for population dynamics studies and, if related with climate data, can be used in
decision support systems and provide real-time information about pest infestation risk.
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Appendix A

Table A1. Automatic Detection Techniques, Sensors and Efficacy for Different Insect Groups.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Aphids Aphis glycines SONY camera, images
of leaves

Hue, Intensity components and
similarity algorithm >90% Maharlooei et al., 2017

Aphids Myzus persicae Digital camera, images of
Pakchoi leaves Convolutional neural networks >80% Chen et al., 2018

Aphids Not specified Yellow sticky traps and
smartphone camera

GrabCut method, OTSU algorithm and
boundary extraction 92.5–95% Xuesong et al., 2017

Aphids Wheat aphids - Not
specified species

Digital camera, images at
field level

Maximally stable extremal region
descriptor to simplify the background of
field images containing aphids, and then

used histograms of oriented gradient
features and a support vector machine.

86.81% Liu et al., 2016

Borer Insects Anoplophora glabripennis

Screw with piezoelectric
sensor (Oyster 723), amplifier
(model ENC1485) and stored
on an audio recorder (model

TCD-D10 Pro II)

Custom-written insect signal analysis
program: “Digitize, Analyze, View, Insect

Sounds” (DAVIS).
79–84% Mankin et al., 2008b

Coleoptera, Hemiptera,
Hymenoptera,

Lepidoptera, Megaloptera,
Neuroptera, Odonata and

Orthoptera

64 families, 221 species
Series of morphological features, Artificial

neural networks (ANNs) and a support
vector machine (SVM)

93% Wang et al., 2012

Fruit Flies
Anastrepha fraterculus,

Anastrepha obliqua,
Anastrepha sororcula

Nikon DS-Fi1 camera
attached to a Nikon SMZ 1500

stereomicroscope

K-nearest neighbors classifier, Naive Bayes,
Naive Bayes Tree, support vector machine

and multimodal classifiers
88–96% Faria et al., 2014
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Fruit Flies Bactrocera dorsalis

Sensors for measuring wind
speed, temperature, and

humidity, microcontroller (TI
MSP430F449 chip), GSM

module, GPS receiver, PC and
Infrared counting device.

Complex system based on a remote
monitoring platform (RMP) and a host

control platform (HCP).
72–92% Jiang et al., 2008

Fruit Flies Bactrocera dorsalis

Sensors for measuring wind
speed, temperature, and

humidity, microcontroller (TI
MSP430F449 chip), GSM

module, GPS receiver, PC,
Infrared counting device and

wireless sensor network

Complex system based on a remote
monitoring platform (RMP) and a host

control platform (HCP).
- Okuyama et al., 2011

Fruit Flies Bactrocera dorsalis

GSM and ZigBee, with three
major components: remote

sensing information gateway
(RSIG), a host control
platform (HCP) and a

wireless monitoring nodes
(WMNs). The WMNs

transmits the collected data
(relative humidity,

illumination, temperature and
the number of Oriental fruit
flies captured) to the RSIG,
the RSIG deliver the data to

the database server (HCP) for
storage and analysis.

Cloud computing image processing and
environmental data 98–100% Liao et al., 2012

Fruit Flies Bactrocera oleae
Several webcams associated
in a modified McPhail trap

connected to internet

Gaussian blur filter, OTSU algorithm
threshold and counting 75% Doitsidis et al., 2017



Agriculture 2020, 10, 161 12 of 24

Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Fruit Flies Bactrocera oleae,
Ceratitis capitata

Modified traps with Fresnel
lenses and associated

wingbeat
stereo-recording device

Linear support vector classifier, radial
basis function support vector machine,
random forests, adaboost metaclassifier,

extra randomized trees, gradient boosting
classifier, convolutional neural network.

98–99% Potamitis et al., 2018

Fruit Flies Bactrocera oleae, Ceratitis
capitata, Bactrocera Dorsalis

Modified traps with
optoelectronic sensor

Linear support vector classifier, radial
basis function support vector machine,
random forests, adaboost metaclassifier,

extra randomized trees, gradient boosting
classifier, convolutional neural network.

81–90% Potamitis et al., 2017

Fruit Flies Dacus ciliatus, Rhagoletis
cerasi, Bactrocera oleae

Digital camera inserted in a
modified trap Remote visual inspection >88% Shaked et al., 2018

Lepidoptera 19 species of the family
Pieridae Image database Texture and color filter with gray level

co-occurrence matrix (GLCM) 92.85% Kaya and Kayci 2014

Lepidoptera
Coleoptera
Orthoptera

40 species Image database Deep convolutional neural networks and
transfer learning 95–97% Thenmozhi and Reddy,

2019

Lepidoptera 5 species of the family
Papilinidae Image database Artificial neural network with

binary patterns 70–98% Kaya et al., 2015

Lepidoptera 5 species of the family
Papilinidae Nikon Professional camera Texture gabor filter-based, and extreme

machine learning 97% Kaya et al., 2013

Lepidoptera 50 species Digital camera

Histograms of multi-scale curvature
(HoMSC), gray-level co-occurrence matrix

of image blocks (GLCMoIB) and
weight-based k-nearest neighbor classifier

98% Li and Xiong 2017

Lepidoptera Bicyclus anynana

Nikon SMZ1500 dissecting
microscope at 3.8×

magnification and a
Digital Camera

Machine learning algorithm with features
based on circularity and symmetry (1D
Hough Transform which corresponds

to histogramming)

96% Silveira and
Monteiro 2009
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Lepidoptera

Celastrina argiolus, Cynthia
cardui, Dilipa fenestra,

Favonius orientalis,
Graphium sarpedon,

Libythea celtis, Luehdorfia
puziloi, Lycaena dispar,

Lycaena phlaeas, Ochlodes
subhyalina, Papilio maackii,

Papilio xuthus, Parantica
sita, Parnassius bremeri,

Sasakia charonda

Image database BLS entropy profile and artificial
neural network 89–100% Kang et al., 2014

Lepidoptera Cydia pomonella
Modified commercial trap
with mobile camera with

different resolutions
Remote visual inspection Up to 100% Guarnieri et al., 2011

Lepidoptera

Cydia pomonella,
Choristoneura rosaceana,
Argyrotaenia velutinana,

Grapholita molesta,
Platynota idaeusalis,
Spilonota ocellana

Rhagoletis pomonella,
Rhagoletis cingulata,
Grapholita prunivora

Yellow sticky traps and
webcam camera (Creative

Inc., USA)

Combination of shape, color, texture and
numerical features. Then, a pyramidal

stacked de-noising auto-encoder (IpSDAE)
was proposed to generate a deep

neural network

98.13% Wen et al., 2015

Lepidoptera
Helicoverpa armigera,

Autographa gamma and
Spodoptera spp.

Bucket/funnel trap with
Camera Cloud computing image processing - EFOS, Slovenia

Lepidoptera Pyralidae family(do not
specify species) Mobile robot car with camera

Gaussian Mixture Model (GMM),
Aggregation Dispersion Variance (ADV)

and Distance Regularization Level Set
Evolution (DRLSE)

95% Zhao et al., 2019
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Lepidoptera Pyralidae family(do not
specify species) Mobile robot car with camera

Conversion into HSV space, extraction of
the H spatial matrix, normalization of

histogram, Otsu segmentation and object
contour recognition based on Hu moments.

94.3% Liu et al., 2019

Palm Weevil Rhynchophorus cruentatus

Sensor-preamplifier module
(model SP-1L Acoustic

Emission Consulting AEC)
and an amplifier AED-2000
connected to a digital audio

recorder (model
HD-P2, Tascam)

Custom-written insect signal analysis
program: “Digitize, Analyze, View, Insect
Sounds” (DAVIS). A bird-noise profile and

a Traffic profile was created, after that a
512-point Fourier transformation

was performed

48.6–93.7% Dosunmu et al., 2014

Palm Weevil Rhynchophorus ferrugineus Piezoelectric microphone and
12v amplifier

Vector quantization, Gaussian mixture
modeling and nearest

neighborhood classifier
92–98.1% Pinhas et al., 2008

Palm Weevil Rhynchophorus ferrugineus Digital voice recorder and
soundproof chamber Analysis of frequency and decibels - Martin et al., 2015

Palm Weevil Rhynchophorus ferrugineus Digital Voice Recorder Mel frequency coefficient characteristics
and vector quantization - Martin and Juliet, 2010

Palm Weevil Rhynchophorus ferrugineus

An MCE-100 microphone,
low-power processor, wireless
communication interface and

power supply unit

Hanning filter, decibel threshold, wavelet
packet transform and vector quantization >90% Rach et al., 2013

Palm Weevil Rhynchophorus ferrugineus

SP-1 probe with an AED-2000
amplifier and also a Sony

model TCD-D10 Pro II
recorder device

Time-frequency distribution (TFD) based
on spectrogram - Al-Manie and

Alkanhal 2007
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Palm Weevil Rhynchophorus ferrugineus

Laar ultrasound gate hard
disk recording System

(frequency range 50 Hz–250
kHz) and Laar WD 60

detector with amplifying
system and insertion sensors

of different types (contact
microphone, airborne

ultrasound microphone,
contact acceleration sensor

and a combined
contact/airborne

probe sensor)

High pass filter, several time domain
features and several frequency

domain features
>94% Hussein et al., 2010

Palm Weevil Rhynchophorus ferrugineus

POM-3542P-R acoustic
microphone coupled a

preamplifier stage based on
OP37 operational amplifier
and a 4th order pass-band,

continuous-time active filter
(MAX274) applied to the

signal in order to select the
range of frequencies

of interest.

Active filter, frequency spectra analysis 70% Gutiérrez et al., 2010

Palm Weevil Rhynchophorus ferrugineus Magnetic cartridge head

Time-frequency wavelet analysis to relate
the spectral frequencies available in the
unique acoustic signature of red palm
weevil larvae to its time of occurrence.

92–97% Siriwardena et al., 2010

Palm Weevil Rhynchophorus ferrugineus

Microphones, radio amplifier,
repeater and transmitter
connected to a wireless

sensor network

Low-pass anti-aliasing filter and Down
sampling; Butterworth IIR filter;

Threshold filter
Srinivas et al., 2013
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Palm Weevil Rhynchophorus ferrugineus

Piezo-electric microphone
with 50 mm (dia.) membrane

was connected to a 20 mm
(dia.) magnet via a hollow

metal cone. Signal was
preamplifier using model
MP13. Recordings were

performed using Raven Pro 64

‘Learning data set’ based on the
multivariate distribution of nine

pre-selected frequencies. threshold
criterion (dynamically set) and

multivariate classifier

75–95% Hetzroni et al., 2016

Palm Weevil Rhynchophorus ferrugineus

AED-2000, digital recorder,
and sensor-preamplifier

module magnetically
attached to a screw and

inserted into the base of a
pruned palm frond

Custom-written insect signal analysis
program: “Digitize, Analyze, View, Insect

Sounds” (DAVIS).
>80% Herrick and Mankin 2012

Palm Weevil Rhynchophorus ferrugineus

1.59-mm titanium drill bit
was inserted into the palm

tree trunk and a
sensor-preamplifier module
(model SP-1) was attached

magnetically, AED2000
amplifier and a digital

recorder (HD-P2)

Oscillogram and spectrogram analysis - Fiaboe et al., 2011

Palm Weevil Rhynchophorus ferrugineus Larva Lausher sensor Sampling frequences to create digital
signature - Soroker et al., 2004

Palm Weevil Rhynchophorus ferrugineus,
Orycites rhinoceros Digital recorder device

Analysis of frequency and decibels, Los
Mel Frequency Cepstral Coefficients and

Euclidean distance
- Martin and Juliet, 2013

Palm Weevil Rhynchophorus ferrugineus,
Rhynchophorus cruentatus Microphone and amplifier

Custom-written insect signal analysis
program: “Digitize, Analyze, View, Insect

Sounds” (DAVIS).
90% Mankin et al., 2008a
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Sucking pests Bemisia tabaci, Aphis
gossypii Thrips tabaci Scanned sticky traps

Convert image to YCbCr, Segmentation by
watershed, colour features and

Melanobis distance

>80%
relating to

human
counting

Xia et al., 2015

Sucking pests
Bemisia tabaci, Myzus

persicae subsp. nicotianae,
Frankliniella fusca

Scanned sticky traps
Colour transformation YUV, fixed

threshold and Prewittedge detection
method

66–100% Cho et al., 2008

Sucking pests Bemisia tabaco,
Frankliniella occidentalis

Digital camera (Nikon
Coolpix S9200) and yellow

and blue sticky traps

Two-dimensional Fourier transformation
spectrum 96% Sun et al., 2017

Sucking pests Bemisia tabaco,
Frankliniella occidentalis Digitalization of sticky traps Image-processing algorithm and artificial

neural networks 92–96% Espinoza et al., 2016

Sucking pests Whiteflies and thrips (do
not specify species)

Yellow sticky traps,
Raspberry Pi v2 cameras

Convolutional neural network (CNN)
classifier model through a generative

adversarial network (GAN) image
augmentation

85–95% Lu et al., 2019

Sucking pests
Whiteflies, aphids and
thrips (Do not Specify

Species)
Scanned yellow sticky traps Colour transformation, fixed threshold,

morphological analysis 66–100% Cho et al., 2007

Sucking pests
Whiteflies, thrips and
aphids (do not specify

species)

Sticky traps, camera,
humidity and temperature

sensor (AM2301 (Guangzhou
Aosong Electronics Co.,

Guangzhou, China). Ambient
light sensor (BH1750 (ROHM
Semiconductor, Kyoto, Japan)

RGB-to-LUV color model conversion,
Extraction of the V-channel color

component. Static thresholding for image
segmentation. Selective blob filtering.

90–96% Rustia et al., 2020

Psyllids (Not Specify) Camera Raspberry Pi V2
(3280 × 2464pixels)

Insects trap and automatic image
collection and storage in a server. - Blasco, et al., 2019
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Thrips Do not Specify

Digital camera (Canon EOS
M, 18 MP, CMOS, Japan)
mounted in robot arm to

capture the flower images

Support Vector Machine classification
method with region index and intensifyas

color index
>97% Ebrahimi et al., 2017

Wheat mites Not specified Image database

Convolutional neural network (CNN) of
ZF (Zeiler and Fergus model) and a region

proposal network (RPN) with
Non-Maximum Suppression (NMS).

88.5% Li et al., 2019

Wheat mites
Rice planthopper Not specified Sony CX-10 GCD camera Deep convolutional neural networks Wang et al., 2020

Whiteflies Bemisia tabaci Camera coupled with a tube
of 10 cm in diameter

Binary masks using colour transformation
and fixed threshold 83–95% Barbedo (2013)

Whiteflies Bemisia tabaci Scanned yellow sticky traps
Image transformation 8-bit grayscale,

binarization, boundary tracking
and counting

94.1–98.1% Qiao et al., 2008

Whiteflies Bemisia tabaci Digital camera, sticky traps
and plants

Features corresponding to the eccentricity,
area and machine learning 97% Soliz-Sánchez et al., 2009

Whiteflies Do not Specify Image database Shape, Gray Scale Intensity and
Texture analysis 74–85% Ghods and Shojaeddini

2015

Whiteflies Do not Specify Image database

Gray level run length matrix (GLRLM) and
gray level co-occurrence matrix (GLCM).

Various classifiers like support vector
machine, artificial neural network,

Bayesian classifier, binary decision tree
classifier and k-nearest neighbor classifier

90–98% Dey et al., 2016
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Table A1. Cont.

Group of Insect Species Sensors Automatic Detection Technique Efficacy Authors

Whiteflies Do not specify Low resolution digital camera
Algorithm based on relative difference in

pixel intensities (RDI) using
image processing

96% Huddar et al., 2012

Whiteflies Trialeurodes vaporariorum Scanned leaves Object extraction (Gaussian blur and
Laplacian filter) and feature extraction - Bhadane et al., 2013

Whiteflies Trialeurodes vaporariorum Scanned leaves Cognitive vision with
knowledge-based systems >85% Boissard et al., 2008

Whiteflies Trialeurodes vaporariorum
and Bemisia Tabaci

Mobile aspiration mechanism
and CCD Camera Shape and colour properties 85% Bauch and Rath (2005)

Whitefly Trialeurodes vaporariorum
Bemisia tabaci

Automatic dataset generator,
which is composed by two

microcontrollers, two
cameras, two tripods, two

USB flash drives, two
artificial illumination systems,
one IP65 box and a portable

Wi-Fi 4G router

K-nearest neighbor (KNN) and multilayer
perceptron (MLP) 66–81% Gutierrez et al., 2019



Agriculture 2020, 10, 161 20 of 24

Appendix B

Table A2. List of Commercial Suppliers of Automatic Detection of Pests Devices.

Supplier Trap Type Pest Website

Agrint, USA Seismic Sensor Rhynchophorus ferrugineus in palm trees https://www.agrint.net/

IOTrees, Spain Seismic Sensor Rhynchophorus ferrugineus in palm trees https://www.iotrees.es/

TrapView, Slovenia Delta trap (Standard)

Cydia pomonella in apples and pears

https://www.trapview.com

Grapholita funebrana in plums
Tuta absoluta in tomatoes

Lobesia botrana and Eupoecilia ambiguella in wine grapes
Cydia molesta in peaches

Plutella Xylostella in plants from Cruciferae family/Brassica

TrapView, Slovenia Bucket/funnel (Self Cleaning)
Helicoverpa armigera

https://www.trapview.comAutographa gamma
Spodoptera spp.

TrapView, Slovenia Polarized UV light (Aura) Ostrinia nubilalis in corn https://www.trapview.com

TrapView, Slovenia McPhail (Fly) Ceratitis capitata in citrus and peaches https://www.trapview.com
Drosophila suzukii in grapes and other fruits

TrapView, Slovenia Support for Camera and Sticky Trap (Vertical) Flying and Sucking Pests (not selective for species) https://www.trapview.com

https://www.agrint.net/
https://www.iotrees.es/
https://www.trapview.com
https://www.trapview.com
https://www.trapview.com
https://www.trapview.com
https://www.trapview.com
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