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Abstract: In the area of plant protection and precision farming, timely detection and classification of
plant diseases and crop pests play crucial roles in the management and decision-making. Recently,
there have been many artificial neural network (ANN) methods used in agricultural classification
tasks, which are task specific and require big datasets. These two characteristics are quite different
from how humans learn intelligently. Undoubtedly, it would be exciting if the models can accumulate
knowledge to handle continual tasks. Towards this goal, we propose an ANN-based continual
classification method via memory storage and retrieval, with two clear advantages: Few data and high
flexibility. This proposed ANN-based model combines a convolutional neural network (CNN) and
generative adversarial network (GAN). Through learning of the similarity between input paired data,
the CNN part only requires few raw data to achieve a good performance, suitable for a classification
task. The GAN part is used to extract important information from old tasks and generate abstracted
images as memory for the future task. Experimental results show that the regular CNN model
performs poorly on the continual tasks (pest and plant classification), due to the forgetting problem.
However, our proposed method can distinguish all the categories from new and old tasks with good
performance, owing to its ability of accumulating knowledge and alleviating forgetting. There are
so many possible applications of this proposed approach in the agricultural field, for instance,
the intelligent fruit picking robots, which can recognize and pick different kinds of fruits; the plant
protection is achieved by automatic identification of diseases and pests, which can continuously
improve the detection range. Thus, this work also provides a reference for other studies towards
more intelligent and flexible applications in agriculture.
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1. Introduction

In the field of intelligent agriculture, for instance, plant protection and precision farming,
there are incremental progresses in agricultural image processing, e.g., classification of crop pests,
and harvest yield forecast. Step advances are catalyzed by the developed various computerized
models, which have covered a wide range of technologies, such as machine learning, deep learning,
transfer learning, few-shot learning, and so on. For instance, several machine learning methods were
adopted in crop pest classification [1,2]. The convolutional neural networks were used to diagnose
and identify the plant diseases from leaf images [3,4]. The deep learning neural networks showed a
powerful and excellent performance on several agricultural applications, such as plant identification [5],
crop classification [6,7], fruit classification [8], weed classification [9], animal classification [10],
quality evaluation [11], and field pest classification [12,13]. The transfer learning technology helped
fine-tune the pre-trained models to reduce the difficulty of model training [14,15]. The few-shot
learning method reduced the requirements for the scale of the training dataset [16]. There were also
some related agricultural research surveys [17–19], providing more comprehensive views.
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Although the abovementioned methods achieved good performance on some special tasks,
they are still far away from the true intelligence in this area. Specifically, one deep neural network is
designed for a special task with a static evaluation protocol. The entire dataset will be split in two
parts: A training set used for learning and a testing set used for accuracy evaluation. Once the training
period completes, the structure and parameters of this model are fixed, and any new knowledge cannot
be learned again. This is quite different from how humans learn.

Biological learning is to continually learn new skills (tasks) and accumulate knowledge throughout
the lifetime [20]. We can also incorporate new information to expand our cognitive abilities without
seriously breaking past memories, which results from the good balance between synaptic plasticity and
stability [21,22]. As known, the basic principle of deep learning networks is the back-propagation error
and gradient descent. However, from the perspective of biological cognition, our learning process is
more likely through similarity matching, rather than back-propagation error or gradient descent in
the brain [23]. So, the bio-inspired work in this article will be around metric learning and continual
learning. The metric learning aims to learn the internal similarity between input paired data [24],
which is suitable for classification and pattern recognition in agriculture. Continual learning requires
the designed model to continuously learn new tasks without forgetting old ones, that is, keeping good
performance on both new and old tasks.

Continual learning is an approach inspired from the biological factors of the mammalian brain.
In this topic, the most important thing is the stability–plasticity dilemma. In detail, plasticity means
to integrate novel information to incrementally refine and transfer knowledge, and stability aims
not to catastrophically interfere with consolidated knowledge. For a stable continual learning
process, two types of plasticity are required: Hebbian plasticity for positive feedback instability and
compensatory homeostatic plasticity, which stabilizes neural activity [25]. So far, the main methods to
realize continual learning can be divided into three categories: (1) Store and replay, including previous
data or memory. The limitation is that the storage of old information will lead to large working memory
requirements; (2) regularization approaches, such as learning without forgetting (LWF), elastic weight
consolidation (EWC), etc. They alleviate catastrophic forgetting by imposing constraints on the update
of the neural weights. However, the additional loss terms for protecting consolidated knowledge
will lead to a trade-off on the performance of old and novel tasks; and (3) dynamic architectures,
which change the structure of networks in response to new information, e.g., re-training with an
increased number of neurons or network layers. Obviously, the limitation is the continuously growing
complexity of the architecture with the increasing number of learnt tasks.

In this study, in order to imitate human learning and memory patterns to maintain a good
performance on both new and old tasks, we propose an artificial neural network (ANN)-based
continual classification method via memory storage and retrieval, including the convolutional neural
network (CNN) and generative adversarial network (GAN). Looking at ourselves, how do we remember
past events? We only keep the most important information in our brain, throwing out the details and
abstracting the inner relationships. These life experiences inspire us to find a way to abstract and
preserve prior knowledge in memory. The memory only records the most important information from
prior events, automatically ignoring the details. Inspired by this, we used the GAN to extract central
information from old tasks and generate abstracted images as memory. For the similarity matching
tasks in agriculture, it has a good effect on both new and old tasks, alleviating the forgetting problem.
The main contributions of this work are as follows:

(1) The CNN model only requires few raw data, which is helpful for practical applications, such as
classification and pattern recognition.

(2) The proposed method based on memory storage and retrieval can deal with the sequential tasks
and maintain a good performance on both new and old tasks, without forgetting.

(3) This work has two important advantages: Few data and high flexibility. It provides a foundation
for other relevant studies toward more flexible applications in agriculture.
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Clearly, there are so many possible applications of this proposed approach in the field of agriculture,
for instance, intelligent fruit picking robots, which can recognize and pick different kinds of fruits,
and plant protection through automatic identification of diseases and pests, which can continuously
improve the detection range to show the ability to upgrade the developed model.

2. Materials and Methods

2.1. Crop Pest and Plant Leaf Datasets

The typical deep neural networks require amounts of data to train the model, while the metric
learning method only needs few raw data. In this research work, we collected two common cross-domain
agricultural datasets: Crop pests and plant leaves. The crop pest dataset was collected from the
open dataset [26], which provides images of important insects in agriculture with natural scenes and
complex backgrounds, close to the real world. The plant leaf dataset was collected from the famous
open dataset (PlantVillage). Generally, the image preprocessing for deep neural networks includes the
target cropping, background operation, gray transform, etc. Here, we used the raw images to make
this study closer to the practical application.

In the crop pest dataset, there are 10 categories and the number of samples in each class is 20.
The total number of samples is 200, which is a small dataset compared to that required for the traditional
deep learning models based on back-propagation error. Some samples of the crop pest dataset are
shown in Figure 1.

Agriculture 2020, 10, x FOR PEER REVIEW 3 of 15 

 

Clearly, there are so many possible applications of this proposed approach in the field of 

agriculture, for instance, intelligent fruit picking robots, which can recognize and pick different kinds 

of fruits, and plant protection through automatic identification of diseases and pests, which can 

continuously improve the detection range to show the ability to upgrade the developed model. 

2. Materials and Methods 

2.1. Crop Pest and Plant Leaf Datasets 

The typical deep neural networks require amounts of data to train the model, while the metric 

learning method only needs few raw data. In this research work, we collected two common cross-

domain agricultural datasets: Crop pests and plant leaves. The crop pest dataset was collected from 

the open dataset [26], which provides images of important insects in agriculture with natural scenes 

and complex backgrounds, close to the real world. The plant leaf dataset was collected from the 

famous open dataset (PlantVillage). Generally, the image preprocessing for deep neural networks 

includes the target cropping, background operation, gray transform, etc. Here, we used the raw 

images to make this study closer to the practical application. 

In the crop pest dataset, there are 10 categories and the number of samples in each class is 20. 

The total number of samples is 200, which is a small dataset compared to that required for the 

traditional deep learning models based on back-propagation error. Some samples of the crop pest 

dataset are shown in Figure 1. 

 

Figure 1. Samples of the crop pest dataset (from [26]). 

The plant leaf dataset also includes 10 classes, and the number of samples in each class is 20. The 

parameter sizes of these two databases are the same. Some samples of the plant leaf dataset are shown 

in Figure 2. 

Figure 1. Samples of the crop pest dataset (from [26]).

The plant leaf dataset also includes 10 classes, and the number of samples in each class is 20.
The parameter sizes of these two databases are the same. Some samples of the plant leaf dataset are
shown in Figure 2.
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Figure 2. Samples of the plant leaf dataset (from PlantVillage).

2.2. Classification with Metric Learning Based on CNN

Metric learning learns the inner similarity between input paired data using a distance metric,
which is aimed at distinguishing and classifying. The typical metric learning model is the Siamese
network [27]. The Siamese network basically consists of two symmetrical neural networks sharing
the same weights and architecture, which are joined together at the end using some energy function.
During the training period of the Siamese network, the inputs are a pair of images, and the objective is
to distinguish whether the input paired images are similar or dissimilar. The workflow of the Siamese
network is shown as Figure 3.
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Figure 3. The workflow of the Siamese network.

As shown in Figure 3, there are four blocks. Now, we considered them one by one. For block 1,
it means the input paired images, including the images X1 and X2, fed to network A and network B,
respectively. They may come from the same category or not.

For block 2, there are two convolutional neural networks (CNNs), named network A and network
B. The role of network A and network B is to generate the embeddings (feature vectors) for the input
paired images. Since the inputs of the model are images, we used a CNN to generate the embeddings.
Remember that the role of the CNNs here is only to extract features but not to classify. This differs with
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the traditional deep learning classification models. It is required that the two CNNs in the Siamese
network have shared weights and structure, which means the two CNNs, in fact, have the same
topology, as shown in Figure 4.
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Figure 4. The topology of used convolutional neural network (CNN).

Here, the shared structure and parameters of CNN are shown in Table 1. Specifically, the output
shape of the layers in CNN, and the size and number of kernels used in the convolutional layers
and max-pooling layers are included. The programming tool used was ‘Jupyter Notebook’, which is
a popular web-based interactive computing environment. We realized the functions with Python
language and the environmental backend was TensorFlow. Our programming files and used image
dataset were uploaded to the ZENODO.org, which is free and open for other researchers [28].

Table 1. The CNN structure and parameters in the Siamese network.

Layers Output Shape Kernel Size Kernel Num Stride Parameters

Input (64, 64, 3) 0
Conv2D (64, 64, 6) (3, 3) 6 1 168

MaxPooling2D (32, 32, 6) (2, 2) 0 2 0
Conv2D (32, 32, 12) (3, 3) 12 1 660

MaxPooling2D (16, 16, 12) (2, 2) 0 2 0
Conv2D (14, 14, 24) (3, 3) 24 1 2616

MaxPooling2D (7, 7, 24) (2, 2) 0 2 0
Dense (50) 58,850
Dense (2) 102

Then, for block 3, the embedding is referred to the output of the last dense layer of CNN, as shown
in Figure 4. Network A and network B generate the embeddings for the input images X1 and X2,
respectively. These embeddings are fed to block 4, the energy function, which gives the similarity
between the paired inputs. The Euclidean distance is adopted as the energy function, which is the
most common way to measure the distance between the two embeddings in the high-dimensional
space. The expression of block 4, the energy function, can be written as Equation (1):

E(X1, X2) = ‖ fNA(X1) − fNB(X2)‖2 (1)

The value of E represents the similarity between the outputs of the two networks: If X1 and X2

are similar (from the same category), the value of E will be less. Otherwise, the value of E will be large
if the inputs are dissimilar (from different categories).

To train the Siamese network well, the loss function is very important. The loss function guides
the iteration of parameters of CNNs in the Siamese network. Since the goal of the Siamese network is
to understand the similarity between the paired input images, we used the contrastive loss function,
expressed as Equation (2):

Contrastive Loss = Y × E2 + (1−Y) × [max(margin− E, 0)]2 (2)
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where E is the energy function and Y is the true label, which is 0 if the two input images are from the
same category and 1 if the two input images are from different categories. Some examples of the input
pairs are shown in Figure 5.
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Figure 5. Examples of the input pairs.

In Equation (2), the term margin is used to set the threshold, that is, when input pairs are
dissimilar, the Siamese network needs to hold their distance greater than the margin; otherwise,
there will be a loss during the training period. Here, the margin was set as 1. When the training period
is done, the distribution of embeddings will have a group effect, where different groups represent
different categories.

2.3. Continual Classification with Metric Learning Based on CNN and GAN

From the bio-inspired perspective, we aimed for the model to be more flexible and able to handle
continual tasks. Continual learning, also called lifelong learning, differs from transfer learning or other
traditional networks. As known, a typical deep neural network is designed for some specific task, e.g.,
crop pest classification. After the training period, the weights and structure of the designed model are
fixed, with an excellent performance on the specific task. However, if we want the model to perform
another new task directly, e.g., plant leaf classification, it will have a very bad performance unless it
is trained again from scratch or uses transfer learning. However, if we train the model by the new
dataset, the distribution of weights will change to ensure a good performance on a new task. Since the
weights of the network are modified, the network loses the ability to recognize the old task; in other
words, it forgets the old knowledge. For transfer learning, the forgetting problem of old knowledges
still exists. Obviously, traditional learning way has very poor flexibility.

If we want a model that can continually learn new tasks without forgetting old knowledge,
it should have some bio-inspired ability, such as memory. In this study, we proposed a continual
classification method based on memory storage and retrieval to maintain a good performance on both
new and old tasks. Look at ourselves, how do we remember past events? We only keep the most
important information in our brain, throwing out the details and abstracting the inner relationships.
These life experiences inspire us to find a way to abstract and preserve prior knowledge in memory.

Here, we used the GAN to perform information abstracting and memory storage, which is a
technique to learn to generate new data with the same statistics as the raw dataset, which consisted of
two parts: Generator and discriminator. The basic workflow of GAN is shown as Figure 6.
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The generator and discriminator are both deep convolutional neural networks, and their structures
are shown in Table 2.

Table 2. The generator and discriminator in GAN.

Generator Discriminator

Layers Output Shape Layers Output Shape

Input (64) Input (64, 64, 3)
Dense (32, 32, 128) Conv2D (62, 62, 128)

Conv2D (32, 32, 256) Conv2D (30, 30, 128)
Conv2DTranspose (64, 64, 256) Conv2D (14, 14, 128)

Conv2D (64, 64, 256) Conv2D (6, 6, 128)
Conv2D (64, 64, 3) Dense (1)

The GAN chains the generator and discriminator together, expressed as Equation (3):

GAN(X) = discriminator(generator(X)) (3)

The generator and discriminator contest with each other in a game. We trained the discriminator
using samples of raw and generated images with the corresponding labels, such as any regular image
classification model. To train the generator, we started with the random noise and used the gradients of
the generator’s weights, which means, at every step, moving the weights of the generator in a direction
that will make the discriminator more likely to classify the images decoded by the generator as “real”.
In other words, we trained the generator to fool the discriminator.

Since the GAN can carry out the memory storage for old tasks, the workflow of our proposed
continual metric learning method can be shown as Figure 7, which is mainly based on memory storage
and retrieval.

When the first task comes, the task data will be organized as pairs and fed to the metric learning
model (Siamese network). The output result is the similarity between input pairs, that is to say whether
the input images are from the same category or not. Besides, the task data will also be fed to the GAN
after data augmentation, due to the small scale of the raw database. Then, the GAN generates the
abstracted images that represent the most important information of the old tasks, after the amount
of iterations. We call this process memory storage. When the second task comes, the new task data
and the data from memory will be mixed together, and fed to the metric learning model. We call this
process memory retrieval.
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3. Results

3.1. Single Task Experiment with the Basic CNN Model

In order to testify the performance of the metric learning model on similarity matching for a
single task, we carried out experiments on a crop pest dataset and plant leaf dataset, respectively.
For these two datasets, we prepared the input data as paired images. In detail, the total number of
input pairs was 10,000, which may have contained a small number of duplicates because of the random
combinations. We spilt the training set and testing set by the ratio of 8:2, that is, 2000 input pairs were
used to test the accuracy. During training, 25% of the training data were taken out for the validation
set. In summary, there were 6000 pairs for training, 2000 pairs for validation, and 2000 pairs for testing.

For the crop pest dataset, the loss and accuracy of the CNN model is shown in Figure 8.
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It is shown that the variation trend of the training loss is consistent with that of the validation
loss. The variation trend of the training accuracy is also consistent with that of the validation accuracy.
This indicates that there is no overfitting problem in the training. The testing accuracy is 100%,
which means the model can distinguish the input paired images well. The distribution of embeddings
from the crop pest dataset is shown in Figure 9.
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Figure 9. The distribution of embeddings from the crop pest dataset.

Through the distribution of the model’s output embeddings, it can be seen that the metric learning
model has good ability for similarity matching on the single task, that is, the images from the same
category gather while those from different categories are far away from each other.

Similar experiments on the other dataset were also carried out. The loss and accuracy of the
CNN model on the plant leaf dataset is shown in Figure 10. The variation trends of the training
loss and training accuracy are consistent with those of the validation loss and validation accuracy,
which indicates that there is also no overfitting problem in the training period. The distribution of the
model’s output embeddings of images from the plant leaf dataset is shown as Figure 11, which also
shows the good ability of the similarity matching on a single task to distinguish the input paired
images well.
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3.2. Continual Tasks Experiment with the Basic CNN Model

As mentioned earlier, we hope that the model can be more flexible and able to handle continuous
tasks, accumulating knowledge like humans to perform well on both old and new tasks. So, we carried
out the experiments on sequential tasks to testify the continual performance of the CNN model, namely,
the basic metric learning model.

For these two datasets, two occurring orders exist, that is, from the crop pest task to the plant leaf
task, and the opposite one. For the first case, the testing accuracy of the two tasks is shown in Figure 12.
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At the first stage, the model has a good performance on the crop pest dataset, which was verified
in Section 3.1. However, it has a very bad performance on the other dataset. The reason is that
the other dataset is an unknown task and has never been seen before; this result is understandable
and acceptable.
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At the second stage, the model begins to learn the plant leaf task. Note that the model also
learnt the crop pest task in the past. After the training period, the testing accuracy on the plant leaf
task increases to 100% while that of the crop pest dataset decreases to nearly 50%, which is almost a
blind guess. So, the extent of catastrophic forgetting for the crop pest task is nearly 50%. The new
distribution of output embeddings from the old crop pest task is shown in Figure 13, which indicates
that the basic metric learning model has lost the ability to distinguish the similarity between input
paired images. The extracted features (embedding) of samples from different categories are mixed,
and cannot be separated. This is an undesired forgetting problem!
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For the second case, from the plant leaf task to the crop pest task, the experimental result of the
testing accuracy is shown in Figure 14. The testing accuracy on the plant leaf task decreases from 100%
to 60%, which means the extent of catastrophic forgetting for the plant leaf task is 40%. We found
that, regardless of the occurring order of sequential tasks, the basic metric learning model does have a
serious forgetting problem, as shown in Figures 12 and 14. In other words, after new learning, the basic
metric learning model can no longer do the previous task well, due to the forgetting.
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The distribution of embeddings from the old plant leaf task is shown in Figure 15, which is
very mixed and chaotic, losing the ability to distinguish and classify the similarity between input
paired images.
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3.3. Continual Tasks Experiment with Our Proposed Method

As known, due to the forgetting problem, the basic CNN model cannot balance new and old tasks.
Taking tthe sequential tasks from the crop pest dataset to the plant leaf dataset as an example, we used
the designed GAN model to abstract the most important information of the old task (crop pest) and
generated the abstracted images as memory for the future task, automatically ignoring the trivial
details. When a new task comes, the abstracted images in memory will be retrieved and mixed with
the new dataset, and then fed to the metric learning model.

Owing to this mechanism, the metric learning model can accumulate knowledge and better
understand what it has learnt. The stored memory can be expanded, as does the increased ability to
handle more continual tasks. The distribution of the model’s output embeddings, corresponding to the
testing images from both new and old tasks, is shown in Figure 16.

The results show the ability of our method to continually distinguish the similarity between input
paired images and classify the testing images. All the categories from new and old tasks are separated
clearly, which means that the metric learning model has a good performance on both new and old tasks,
alleviating the forgetting problem. Compared with Section 3.2, the alleviated extent of catastrophic
forgetting for the crop pest task and plant leaf task is 50% and 40%, respectively.

In addition, the results presented above are clear, and easily assessed. However, this is not always
the case if we want to go further, e.g., an evaluation for the grouping results. In our opinion, the sum
of the nearest distances between centers of groups will be a good choice. In detail, firstly, the center
point of each group is calculated by the mean value; then, for every group center, the nearest distance
with others is calculated; and finally, the sum of the nearest distances between the centers of groups
is calculated, which is called the score. The evaluation metric should be proportional to the score,
which means the larger the score is, the better the model’s performance is.



Agriculture 2020, 10, 178 13 of 15

Agriculture 2020, 10, x FOR PEER REVIEW 12 of 15 

 

we used the designed GAN model to abstract the most important information of the old task (crop 

pest) and generated the abstracted images as memory for the future task, automatically ignoring the 

trivial details. When a new task comes, the abstracted images in memory will be retrieved and mixed 

with the new dataset, and then fed to the metric learning model. 

Owing to this mechanism, the metric learning model can accumulate knowledge and better 

understand what it has learnt. The stored memory can be expanded, as does the increased ability to 

handle more continual tasks. The distribution of the model’s output embeddings, corresponding to 

the testing images from both new and old tasks, is shown in Figure 16. 

 

Figure 16. The distribution of embeddings from new and old tasks. 

The results show the ability of our method to continually distinguish the similarity between 

input paired images and classify the testing images. All the categories from new and old tasks are 

separated clearly, which means that the metric learning model has a good performance on both new 

and old tasks, alleviating the forgetting problem. Compared with Section 3.2, the alleviated extent of 

catastrophic forgetting for the crop pest task and plant leaf task is 50% and 40%, respectively. 

In addition, the results presented above are clear, and easily assessed. However, this is not 

always the case if we want to go further, e.g., an evaluation for the grouping results. In our opinion, 

the sum of the nearest distances between centers of groups will be a good choice. In detail, firstly, the 

center point of each group is calculated by the mean value; then, for every group center, the nearest 

distance with others is calculated; and finally, the sum of the nearest distances between the centers 

of groups is calculated, which is called the score. The evaluation metric should be proportional to the 

score, which means the larger the score is, the better the model’s performance is. 

4. Discussion 

We conduct the discussion about this work from the following three aspects. 

4.1. Idea and Contents 

The existing traditional models cannot accumulate the knowledge from old tasks, which means 

that they are all task specific, only focusing on the current task while forgetting the prior ones. This 

is a lack of flexibility and is quite different from humans’ learning style. Besides, at present, there are 

mainly two basic types of neural network learning principles: Probability based on back-propagation 

error and similarity-based metric comparison. The former is more mature, but metric-based similarity 

learning is closer to biological learning. 

So, from the bio-inspired perspective, we imitated the way biology learns and remembers, and 

proposed a continual metric learning method based on memory storage and retrieval to balance old 

and new tasks. Through several comparative experiments, it was found that the basic metric learning 

model can perform a single task excellently, distinguishing different categories well. However, when 

it is faced with continual tasks, the obvious forgetting problem occurs, and its poor flexibility loses 

Figure 16. The distribution of embeddings from new and old tasks.

4. Discussion

We conduct the discussion about this work from the following three aspects.

4.1. Idea and Contents

The existing traditional models cannot accumulate the knowledge from old tasks, which means
that they are all task specific, only focusing on the current task while forgetting the prior ones. This is
a lack of flexibility and is quite different from humans’ learning style. Besides, at present, there are
mainly two basic types of neural network learning principles: Probability based on back-propagation
error and similarity-based metric comparison. The former is more mature, but metric-based similarity
learning is closer to biological learning.

So, from the bio-inspired perspective, we imitated the way biology learns and remembers,
and proposed a continual metric learning method based on memory storage and retrieval to balance
old and new tasks. Through several comparative experiments, it was found that the basic metric
learning model can perform a single task excellently, distinguishing different categories well. However,
when it is faced with continual tasks, the obvious forgetting problem occurs, and its poor flexibility
loses the ability of dealing with old tasks. However, the addition of memory storage and retrieval in
our method helps alleviate the forgetting problem, as all the categories from old and new tasks can be
separated clearly, with good performance on both old and new tasks.

4.2. Contributions to Existing Research

We proposed an ANN-based continual classification method via memory storage and retrieval,
combining the CNN and GAN technology, on the common agricultural datasets, such as the crop pest
dataset and plant leaf dataset. The key contributions are two points: Few data and high flexibility.

As known, the big scale of the dataset is the basic requirement for the existing typical deep neural
networks. However, the collection and labelling of big datasets are laborious and time consuming. So,
research based on few data is a promising way. The metric learning used in this work only requires
few raw data, because what it cares about is the paired inputs. Although the size of the raw dataset is
small, the number of combinations of pairs from the same category and different categories can be
expanded hundreds of times. Besides, the proposed continual learning method based on memory
storage and retrieval increases the flexibility of the classification model, allowing it to balance old and
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new tasks, by accumulating knowledge and alleviating forgetting. This can be regarded as another
small step towards more intelligent and flexible studies in agriculture.

4.3. Limitations and Future Works

Although the numerical solution described in this study achieved a good performance on both
new and old tasks with its continual learning ability, it still has some limitations. The key structure
consisted of CNN and GAN. The CNN is relatively easy to implement with a stable performance,
while the GAN is usually not stable and hard to train, and indeed requires experience. Besides,
the number of sequential tasks is two, namely the crop pest dataset and plant leaf dataset, hence the
work at this stage is only primary continual learning in agriculture. In future, we would like to analyze
more tasks to develop the robust continual learning model, considering the complex combination of
popular technologies in neural networks and information extraction.

5. Conclusions

In this study, we proposed an ANN-based continual classification method via memory storage
and retrieval, combining the CNN and GAN, with two clear advantages. One is few data, as the metric
learning model based on CNN works well from few data, which significantly reduces the difficulty of
image collection and annotation; the other is flexibility, as continual classification based on memory
storage and retrieval can balance old and new tasks through the accumulation of knowledge and
alleviation of forgetting. The results show that the regular CNN can deal with a single task well
and classify the categories clearly. However, when it comes to continuous tasks, there is a serious
forgetting problem. With the addition of memory storage and the retrieval mechanism, the modified
continual model can distinguish all the categories from both old and new tasks, without the forgetting
problem. There are so many possible applications of this proposed approach in the field of agriculture,
for instance, intelligent fruit picking robots, which can recognize and pick different kinds of fruits;
and plant protection by the identification of diseases and pests, which can continuously improve
the detection range. This work lays a foundation and provides a reference for other relevant studies
towards more intelligent and flexible applications in the agricultural area.
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24. Kaya, M.; Bilge, H.Ş. Deep metric learning: A survey. Symmetry 2019, 11, 1066. [CrossRef]
25. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks:

A review. Neural Netw. 2019, 113, 54–71. [CrossRef]
26. Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop pest recognition in natural scenes using

convolutional neural networks. Comput. Electron. Agric. 2020, 169, 105174. [CrossRef]
27. Berlemont, S.; Lefebvre, G.; Duffner, S.; Garcia, C. Class-balanced siamese neural networks. Neurocomputing

2018, 273, 47–56. [CrossRef]
28. Li, Y. Code and dataset for the ANN-based Continual Classification in Agriculture. Zenodo 2020. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/agronomy10010143
http://dx.doi.org/10.1016/j.compag.2019.105097
http://dx.doi.org/10.1016/j.compag.2019.105055
http://dx.doi.org/10.3390/agriculture10040112
http://dx.doi.org/10.1038/srep20410
http://www.ncbi.nlm.nih.gov/pubmed/26864172
http://dx.doi.org/10.1016/j.compag.2018.07.014
http://dx.doi.org/10.1016/j.compag.2019.105091
http://dx.doi.org/10.1016/j.compag.2019.104906
http://dx.doi.org/10.1016/j.compag.2020.105240
http://dx.doi.org/10.1016/j.compag.2018.03.032
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.3390/agriculture10050161
http://dx.doi.org/10.1073/pnas.0605184103
http://dx.doi.org/10.1038/nature01276
http://www.ncbi.nlm.nih.gov/pubmed/12490949
http://dx.doi.org/10.1016/j.tins.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15667929
http://dx.doi.org/10.1016/j.neunet.2019.09.018
http://dx.doi.org/10.3390/sym11091066
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1016/j.compag.2019.105174
http://dx.doi.org/10.1016/j.neucom.2017.07.060
http://dx.doi.org/10.5281/zenodo.3824050
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Crop Pest and Plant Leaf Datasets 
	Classification with Metric Learning Based on CNN 
	Continual Classification with Metric Learning Based on CNN and GAN 

	Results 
	Single Task Experiment with the Basic CNN Model 
	Continual Tasks Experiment with the Basic CNN Model 
	Continual Tasks Experiment with Our Proposed Method 

	Discussion 
	Idea and Contents 
	Contributions to Existing Research 
	Limitations and Future Works 

	Conclusions 
	References

