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Abstract: Endophytes are isolated from every plant species investigated to date, so the metabolome
coevolution has been affecting the plants’ (microbiota) ethnobotanic, especially therapeutic, usage.
Asteraceae fulfill the rationale for plant selection to isolate endophytes since most of the species
of this family have a long tradition of healing usage, confirmed by modern pharmacognosy.
The present review compiles recent references on the endophyte−Asteraceae spp. interactions,
targeting the secondary metabolites profile as created by both members of this biological system.
Endophyte fungi associated with Asteraceae have been collected globally, however, dominant taxa
that produce bioactive compounds were specific for the plant populations of different geographic
origins. Endophytic fungi richness within the host plant and the biological activity were positively
associated. Moreover, the pharmacological action was linked to the plant part, so differential forms
of biological interactions in roots, stem, leaves, inflorescences were developed between endophytic
fungi and host plants. The comparative analysis of the Asteraceae host and/or fungal endophyte
therapeutic activity showed similarities that need a future explanation on the metabolome level.
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1. Introduction

Each plant coexists with microorganisms residing within tissues and producing their metabolites,
which are defined as endophytes if their occurrence does not cause apparent injuries [1,2]. Wilson [3]
defined “endophytes” (from Greek endon—within; and phyton—plant) as microorganisms, commonly
fungi and bacteria, spending their life cycle inter- and/or intra-cell space of the tissues of host plants,
which do not show any symptoms of disease. Endophytes were isolated from plants belonging to
all taxa investigated to date, occurring in all the world’s ecosystems. In recent years, there has been
an increased interest in explaining the endophytes/host plant cross-talk because the effects of these
relationships could be beneficial to humans [1,4–6]. Host plants abide endophytes due to symbiotic
relationships, profitable for microbes due to the availability of habitat and nutrients in the plant,
while plants acquire a wide spectrum of microbial metabolites, including vitamins, hormones, and
antibiotics [7,8]. Endophyte−host relationships can be so close, that microbes can even biosynthesize
the same chemical compounds as the host, as myrtucommulones from Myrtus communis, camptothecin
from Camptotheca acuminata, paclitaxel from Taxus brevifolia, or deoxypodophyllotoxin from Juniperus
communis for better adaptation to the microenvironment of plant tissues [7,9–13]. It is an unresolved
hypothesis that the production of secondary metabolites in plants is not achieved only by endophytes
but arises from concomitant plant and fungal biosynthesis [13]. Endophytes occupy a unique ecological
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niche, their relationship with a host plant a balance between mutualistic, parasitic, or commensal
symbiosis, which is largely controlled via chemicals. That is the reason why endophytes produce
highly specific metabolites [14]. Indeed, these microorganisms are being increasingly investigated as
they play an important role in natural product discovery, especially when the source plant is used
for medicinal purposes. In the latter respect, the healing action can be the result not only of the host
plant metabolome but also the microorganism-derived active compounds and their interactions [4].
Moreover, organic extracts obtained from isolated endophytes show a wide spectrum of biological
action and may be applied as antidiabetic, antimicrobial, antiviral, larvicidal, antimalarial, cytotoxic,
and plant growth promoters [15,16]. The problem is that some endophyte genes responsible for
secondary metabolite biosynthesis were found to be significantly expressed in planta but silent in vitro
cultures. Plant and coexisting microbial signal molecules are required to induce particular pathways of
endophyte metabolism leading to a balance of sexual to asexual reproduction and biochemical profile
modification as well [17–20]. Moreover, the secondary metabolites are energy-consuming compounds,
so endophytes can increase/decrease their production depending on specific needs, like competition
with the other microorganisms or host plant communication and protection [9,21–23]. However, some
fungal endophytes were shown to produce the desired compounds without a host plant association.
Sustainable synthesis of tanshinone IIA and taxol by the axenic culture of endophytic fungi have been
reported by Ma et al. [24] and Zhao et al. [25]. Karuppusamy [26] presented the possible origin of
secondary metabolites in plant-endophyte systems, namely (i) parallel coevolution of plants and their
microbiota possessing pathways to produce bioactive compounds; (ii) horizontal gene transfer between
plants and microbes during their coevolution; (iii) plants or endophytic fungi synthesize and transfer
metabolites to each other. Recent studies provided strong indications that endophytic fungi dispose
host-independent machinery for secondary metabolite production [27–29]. Metabolites of fungal
endophytes which were isolated from medicinal plants possess diverse and unique structural groups.
That is the reason why they are good sources of novel secondary metabolic products contributing to
the therapeutic activity [30–32]. Among medicinal plants, the members of Asteraceae family have been
reported to be a source of natural remedies in all traditional medicine systems since their secondary
metabolites exhibit strong antioxidant, antibacterial or anti-inflammatory activities [33].

The production of bioactive secondary metabolites by endophytic fungi colonizing medicinal
plants has been largely ignored. The main idea of this review is that the Asteraceae evolutionary
success is the effect of interaction between the host plant and fungal endophytic microbiota. We focused
on determining the possible contribution of fungal biosynthesis to the secondary metabolome of
Asteraceae, as a leading family of medicinal plants, to present the additional explanation for the
distribution of bioactive compounds, including alkaloids, cardiac glycosides, and anthraquinones in
the plant kingdom. We reviewed the available literature to assess therapeutic activity that had been
reported previously from medicinal plants of the Asteraceae family that may likewise originate from
endophytic fungi that coexist with these plants. We tried to estimate if the plants’ taxonomic affinity
affects the endophytic microbiome biodiversity and metabolic pathways.

2. Asteraceae Ecology and Biochemistry

The family Asteraceae (Compositae) is the largest and most cosmopolitan group of angiosperms
covering 32,913 accepted species, grouped in 1911 genera and 13 subfamilies [34]. Asteraceae comprise
more than 40 economically important crops, including food crops (Lactuca sativa, Cichorium spp., Cynara
scolymus, Smallanthus sonchifolius, and Helianthus tuberosus), oil crops (Helianthus annuus, Carthamus
tinctorius), medicinal and aromatic plants (Matricaria chamomilla, Chamaemelum nobile, Calendula spp.,
Echinacea spp., and Artemisia spp.), ornamentals (Chrysanthemum spp., Gerbera spp., Dendranthema spp.,
Argyranthemum spp., Dahlia spp., Tagetes spp., and Zinnia spp.), and nectar producers (Centaurea spp.,
H. annuus, and Solidago spp.) [35]. Species of this family represent a great variation regarding the habit:
annual, perennial, herbs, shrubs, vines, trees, epiphytes; with the inflorescence composed of one to more
than a thousand florets; and chromosome numbers range from n = 2 to n = 114 [36]. The Asteraceae
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store energy in the form of inulin [37], they can produce acetylenes, alcohols, alkaloids, organic acids,
pentacyclic triterpenes, sesquiterpene lactones, and tannins [38–40]. They are globally distributed
although most are native to temperate climatic zones, the Mediterranean zone, or higher-elevation,
cooler regions of the tropics [41]. The unique success of Asteraceae in worldwide distribution has
been attributed to many factors, including diversity of secondary metabolites that improve overall
fitness, a highly specialized inflorescence that maximizes fertilization, and a morphology promoting
outcrossing [42]. Many species of the Asteraceae family have been used as medicinal plants, although
the secondary metabolites responsible for the pharmacological efficiency were not always defined.
The chemical diversity of bioactive compounds and pathways of their biosynthesis is dependent
on a broad spectrum of biotic and abiotic factors and their interactions. Sometimes the benefits of
plant-derived pharmacological products are controversial despite standard chemical composition with
the use of commonly accepted pharmacopeia’s methods [43]. Numerous papers have described the
pharmacological activity and chemical constituents isolated from plants of the Asteraceae, covering
polyphenols, sesquiterpenes, organic and fatty acids which have been associated with the successful
treatment of cardiovascular diseases, cancer, microbial and viral infections, inflammation, and other
diseases [43]. Most of the Asteraceae taxa, like Artemisia, are well known for their resistance to
herbivores, bacterial and fungal pathogens [44]. Secondary metabolites are chemicals of a very
diversified structure, not fundamental in the plant metabolism, but crucial for protection against
pathogens and herbivores [45]. With the use of principal component analysis, Alvarenga et al. [46]
showed the relationships between chemical composition and botanical classification of Asteraceae
family, based on a huge group of 4000 species and 11 main chemical classes of secondary metabolites.
Barnadesieae tribe revealed an anomalous position owing to the poor diversity of its secondary
metabolites, particularly flavonoids. Liabeae and Vernonieae tribes were localized closely because of
similar lactone composition, while Asteridae was separated because of monoterpenes, diterpenes,
sesquiterpenes content. Moreover, the correlation matrix of Asteraceae secondary metabolites showed
that benzofuranes and acetophenones, as well as diterpenes and phenylpropanoids, were highly
correlated with each other [46]. The role of fungal endophytes in Asteraceae’s evolutionary success
has been recently recognized by the scientific community, although there is still a need for complex
investigations in this area. The multifarious metabolome of Asteraceae is a dynamic patchwork of
chemicals synthesized solely by the plant, by the microbial inhibiting the host species, or by both
elements of this ecological system.

3. Fungal Endophytes Associated with Asteraceae—Biodiversity, and Ecology

The high diversity of endophytes indicates their multiple and variable relations with the host plants
and ecological functions. The widest research program to find endophytes in medicinal Asteraceae
has been performed in countries which are localized in the most important biodiversity hotspots, like
Brazil, China, the Mediterranean region, Iran, or Thailand [47]. In Brazil, like the other South American
countries, medicinal plants have been used as a traditional, cheap, and easily available alternative to
drugs. Only a few tropical herbs were investigated with respect to endophytic fungal communities
with bioactivity [48–50]. Another region of Asteraceae collection as host plants for fungal endophytes
is the Panxi plateau in China [51] with xerothermic climate, diversified soil, and landscape conditions
contributing to the high biodiversity in the area, concerning also medicinal plants having a long history
of application by local communities [52]. The global screening reflected in the present review showed
minimal knowledge on Asteraceae in this respect (Figure 1).
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Figure 1. The Asteraceae hosts and endophyte fungi isolated from them in chosen countries (based on
the references cited in this review).

Despite the high diversity and abundance of the Asteraceae worldwide, fungal endophytes
associated with the plants of this family represented common or cosmopolitan species [53]. In light of
the present review, about 23% of fungi taxa isolated from Asteraceae were associated with one host
(Figure 2). They were mentioned in the footnote of Figure 2 as “The others”. The most abundant
fungi genera, Colletotrichum, Alternaria, Penicillium, etc., were ubiquitous and isolated from most plant
species and environments [10].
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Figure 2. The frequency of isolation of endophytes (%) from Asteraceae host plants. The others:
Acremonium, Ampelomyces, Bipolaris, Botryosphaeria, Botrytis, Calonectria, Cercospora, Coniochaeta,
Cylindrocarpon, Epicoccum, Exserohilum, Memnoniella, Paecilomyces, Periconia, Podospora, Pezicula,
Pyrenophora, Scopulariopsis, Seiridium, Trichoderma, Xylaria (based on references cited in this review).

To date, most of the research was focused on the overall spectrum of endophytes of the particular
host plant or the particular endophyte taxon isolated from a wide range of host plants. To validate,
Rodríguez−Rodríguez et al. [49] compared microorganism diversity and abundance in Aster grisebachii
(synonym of Neja marginata), Erigeron bellidiastroides, Erigeron cuneifolius, Pectis juniperina, and Sachsia
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polycephala (Asteraceae), native to Cuba, collected in an area with a low-in-nutrients, acid, sandy
soil with alternating dry, and rainy seasons. The colonization rate was higher than 50% in both the
dry and rainy period for all species which is typical for changing and stressful ecosystems, with
strong competition for soil resources. Pestalotiopsis spp. were isolated as dominant from the different
medicinal plants originated to tropical and subtropical climatic zones [54]. Preussia spp. isolated from
leaves of medicinal plants Baccharis trimera (Asteraceae) and Stryphnodendron adstringens (Fabaceae) are
native to Brazilian savannah [55]. A study performed by Hatamzadeh et al. [56], on native Asteraceae
medicinal plants of Iran, allowed to isolate 241 endophyte species from Cota segetalis (syn. Anthemis
altissima), 163 from Achillea millefolium, 121 from Anthemis triumfettii (synonym of Cota triumfettii subsp.
triumfettii), 132 from Cichorium intybus, 90 from Achillea filipendulina, and 59 from M. chamomilla. A few
endophytic fungi such as Acremonium sclerotigenum, Alternaria burnsii, Bjerkandera adusta, Colletotrichum
tanaceti, Epicoccum nigrum, Fusarium acuminatum, Paraphoma chrysanthemicola, Plectosphaerella cucumerina,
and Stemphylium amaranthi were isolated from all host species [56], most of them colonizing the stem
of the plant. Although Cheng et al. [57] concluded that the structure of the endophytic communities
differed within plant tissues and habitats, similarities in the taxa of the endophytic fungi were rarely
observed at the phylum order or even the host plant family level. Endophyte communities were
characterized by ecological variation, different host preference, tissue specificity, spatial heterogeneity,
and seasonal changes in terms of composition and quantity of fungal endophytic strains which can affect
medicinal plant biochemical composition [58]. Investigations of endophytes coexisting with Ageratina
altissima showed that the fungal microbiome was driven by host individual and geographic location.
Moreover, the endophyte community of a single host collected in the urban zone was less abundant
compared to the forest probably due to human disturbance and spatial isolation [59]. The expansion of
the invasive species Ageratina adenophora was studied concerning the distribution of endophytes in
tissues in surrounding environments [60–62]. The enrichment of A. adenophora endophytes was root
tissue-specific, moreover, fungi rarely grew systemically within the plant. The roots were the habitat of
Fusarium, the stems of Allophoma, the mature leaves of Colletotrichum, and Diaporthe. Additionally, some
fungi might migrate tissue-to-tissue via the vascular system of the shoot, and this was the way airborne
fungi infected roots, and soilborne fungi, shoots, and leaves. Leaf endophytes showed more fluctuations
in the number of taxa than those in roots and stems, because of the stronger pressure of environmental
factors [62]. Presented studies indicated that fungal endophyte communities varied based on host
genotype or even specimen, plant tissue, growth stage, and growth conditions. The research referenced
in this review were focused on the taxonomical analysis of endophytes collected in a particular area
from different Asteraceae taxa, or one species, or from different tissues of that species. Another main
field of investigation were secondary metabolites produced by endophytes in situ or in vitro. Table 1
summarizes the biological action of Asteraceae plant extracts and endophytes isolated from them.
The evident similarities indicate that the therapeutic activity of Asteraceae plants used traditionally as
herbal remedies can also be referred to associated fungal endophytes. Almost all internal symbiotic
fungi showed in vitro similar activity to those of their host plant extract. However, the present review
of the literature published during the last twenty years showed insufficient experimental evidence to
describe the endophyte/host plant interactions on the metabolome level, so the biosynthetic pathway
might be differently regulated in the fungus and the host plant.
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Table 1. Endophytes isolated from Asteraceae species with a therapeutic activity referred to host and/or endophyte taxon.

Asteraceae Species and the
Tissue of Endophytes Isolation

Main Therapeutic acTivities of the
Host

Dominating Endophyte
Genera

Main Activities of the
Endophyte

Main Metabolites/Enzymes Linked to Endophyte
Bioactivities

Achillea millefolium
(stem, leaf, root)

Antioxidant, anti-inflammatory,
antimicrobial, antitumor [63]

Didymella, Septoria, Stemphylium,
Cladosporium, Fusarium,

Alternaria, Nemania

Antitumor against
lymphoblastic leukemia L-asparaginase [56] *

Achillea filipendulina
(stem, leaf)

Antioxidant, antidiabetic,
anti-inflammatory, antimicrobial,
antitumor, lubricant, antiparasitic

[64,65]

Plectosphaerella, Fusarium Antitumor against
lymphoblastic leukemia L-asparaginase [56]

Anthemis segetali (synonym of
Cota segetalis)

(stem, leaf, root, inflorescence)

Antioxidant anti-inflammatory,
antitumor, antimicrobial,

hepatoprotective [66]

Alternaria, Aspergillus,
Bjerkandera, Schizophyllum,

Fusarium, Plenodomus,
Cladosporium, Didymella,

Stemphylium, Nemania, Phoma,
Plectosphaerella, Sarocladium

Antitumor against
lymphoblastic leukemia L-asparaginase [56]

Anthemis triumfettii (synonym of
Cota triumfettii subsp. Triumfettii

(stem, leaf)

Antioxidant anti-inflammatory,
antitumor, antimicrobial,

hepatoprotective [66]

Chaetosphaeronema, Stemphylium,
Alternaria

Antitumor against
lymphoblastic leukemia L-asparaginase [56]

Artemisia annuua
(stem)

Anti-inflammatory, antipyretic,
antitumor, antifungal, antiparasitic,
antiulcerogenic, cytotoxic [67–69]

Colletotrichum

Antibacterial against Bacillus
subtilis, Staphylococcus aureus,

Sarcina lutea, and Pseudomonas
sp., and antifungal against

Candida albicans and Aspergillus
niger

3β,5α-dihydroxy-6β-acetoxy-ergosta-7,22-diene;
3β,5α-dihydroxy-6β-phenylacetyloxy-ergosta-7,22-diene;

3β-hydroxy-ergosta-5-ene;
3-oxo-ergosta-4,6,8(14),22-tetraene;

3β-hydroxy-5α,8α-epidioxy-ergosta-6,22-diene [70]

Artemisia vulgaris

Antimalarial, anti-inflammatory,
antihypertensive, antioxidant,

antitumor, immunomodulatory,
hepatoprotective, antispasmodic,

antiseptic [71]

Chalara
Antibacterial against B. subtilis

and antifungal against C.
albicans

Isofusidienol A, B, C, and D [72]

Artemisia mongolica
(stem)

Antimicrobial, insecticidal, antioxidant
[73] Colletotrichum

Antibacterial against B. subtilis,
S. aureus, and S. lutea; antifungal

against Bipolaris sorokiniana
Colletotric acid [44]

Atractylodes lancea Anti-inflammatory, hepatoprotective
[74] Gilmaniella Antimicrobial Jasmonic acid [75]

Ayapana triplinervis Antimicrobial, anti-inflammatory [76]
Paecilomyces, Aspergillus,
Fusarium, Trichoderma,
Penicillium, Curvularia

Not investigated Not investigated [77]
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Table 1. Cont.

Asteraceae Species and the
Tissue of Endophytes Isolation

Main Therapeutic acTivities of the
Host

Dominating Endophyte
Genera

Main Activities of the
Endophyte

Main Metabolites/Enzymes Linked to Endophyte
Bioactivities

Baccharis dracunculifolia
Immunostimulatory, anti-inflammatory,
cytotoxic, antitumor, hepatoprotective

[78]

Penicillium, Aspergillus,
Fusarium, Colletotrichum Not investigated Not investigated [79]

Baccharis dracunculifolia
(leaf)

Antioxidant, anti-inflammatory,
antiviral, antimicrobial, antiparasitic

[80]

Epicoccum, Pestalotiopsis,
Cochliobolus, Nigrospora Antimicrobial Not investigated [53]

Bidens pilosa

Antimalarial, anti-allergic,
antihypertensive, antitumor,

antidiabetic, anti-inflammatory,
antimicrobial, antioxidant [81]

Botryosphaeria
Antifungal, cytotoxic,

antiproliferative against
carcinoma cell lines

Botryorhodine A and B [82]

Cichorium intybus (stem, leaf,
root)

Antioxidant, anti-inflammatory,
cardiovascular, hypolipidemic,

antitumor, antidiabetic, antimicrobial,
antiparasitic [83]

Cladosporium, Epicoccum,
Septoria, Plectosphaerella,

Alternaria

Antitumor against
lymphoblastic leukemia L-asparaginase [56]

Gynura hispida Anti-inflammatory, antiviral,
hepatotoxic [84] Bipolaris

Antifungal against Cladosporium
cladosporioides, C. cucumerinum,

Saccharomyces cerevisiae,
Aspergillus niger, and Rhisopus

oryzae

Bipolamide B [85]

Helianthus annuus
(root)

Antibacterial, antioxidant, hepato-,
nephro- and cardioprotective [86,87] Penicillium, Aspergillus Antifungal against Sclerotium

rolfsii

Gibberellins (GA1, GA3, GA4, GA9, GA12, andGA20);
organic acids (jasmonic, malic, quinic, salicylic, and

succinic acid); siderophores [88,89]

Laggera alata Anti-inflammatory, antioxidative,
antibacterial, larvicidal [90] Podospora Larvicidal against Anopheles

gambiae Sterigmatocystin; 13-hydroxyversicolorin B [91]

Matricaria chamomilla
(stem, leaf)

Anti-inflammatory, analgesic,
antimicrobial, antispasmodic, sedative

[92]
Epicoccum, Didymella, Phoma Against lymphoblastic leukemia L-asparaginase [56]

Mikania glomerata
(leaf)

Anti-inflammatory, antispasmodic,
anti-hemorrhagic, antiophidic, antiviral,

antimicrobial [93]
Diaporthe

Antifungal against Fusarium
solani and Didymella bryoniae;

antimicrobial against
Staphylococcus aureus

Not investigated [94]

Mikania laevigata
(leaf)

Anti-inflammatory, antispasmodic,
antihemorrhagic, antiophidic, antiviral,

antimicrobial [93]
Hypoxylon Not investigated Not investigated [50]
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Table 1. Cont.

Asteraceae Species and the
Tissue of Endophytes Isolation

Main Therapeutic acTivities of the
Host

Dominating Endophyte
Genera

Main Activities of the
Endophyte

Main Metabolites/Enzymes Linked to Endophyte
Bioactivities

Notobasis syriaca Antioxidant, antimicrobial [95] Phomopsis Antimicrobial against Legionella
pneumophila and Escherichia coli

Phomosine K;
2-hydroxymethyl-4β,5α,6β-trihydroxycyclohex-2-en,

(-)-phyllostine; (+)-epiepoxydon; (+)-epoxydon
monoacetate [96]

Smallanthus sonchifolius
(root, stem, leaf)

Antidiabetic, nutritious,
fertility-enhancing, antioxidant,

antimicrobial [97]

Curvularia Antiparasitic against
Trypanosoma cruzi Stemphyperylenol [98]

Papulaspora

Cytotoxic against melanoma,
colon, glioblastoma, and

promyelocytic leukemia cell
lines; antimicrobial

(24R)-
stigmast-4-en-3-one; (22E,24R)-
ergosta-4,6,8(14),22-tetraen-3-

one; (22E,24R)-8,14-
epoxyergosta-4,22-diene-3,6-dione [99]

Alternaria, Nigrospora, Phoma,
Fusarium, Papulaspora Antifungal Stemphyperylenol, alterperylenol, altertoxin I,

alternariol, alternariol monomethyl ether [100]

Coniochaeta
Antifungal against

Colletotrichum acutatum, C.
fragariae and C. gloeosporioides

Fatty acids: caproic, caprylic, cis-10-pentadecenoic,
heptadecanoic, lauric, linoleic, myristic, oleic, palmitic,

palmitoleic, pentadecanoic, stearic [101]

Silybum marianum

Antidiabetic, hepatoprotective,
hypocholesterolemic, antihypertensive,

anti-inflammatory, antitumor,
antioxidant [102]

Aspergillus Hepatoprotective Silybin A, silybin B, isosilybin A [103]

Tithonia diversifolia
Anti-inflammatory, antimalarial,

cytotoxic, gastroprotective,
antimicrobial, antihyperglycemic [104]

Colletotrichum Cytotoxic against the Jurkat
tumor cell line Nectriapyrone, tyrosol [105]

Phoma Cytotoxic Anthraquinones [106]

Trixis vauthieri
(leaf) Antiparasitic [107] Alternaria

Trypanocidal compound with
inhibitory activity of

trypanothione reductase
Altenusin [108]

Urospermum picroides
(flower)

Anti-inflammatory,
immunomodulatory, antioxidant,

antimicrobial [109]
Ampelomyces

Cytotoxic against L5178Y cells;
antibacterial against

Staphylococcus aureus, S.
epidermidis and Enterococcus

faecalis

3-O-methylalaternin, altersolanol A [110]
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Table 1. Cont.

Asteraceae Species and the
Tissue of Endophytes Isolation

Main Therapeutic acTivities of the
Host

Dominating Endophyte
Genera

Main Activities of the
Endophyte

Main Metabolites/Enzymes Linked to Endophyte
Bioactivities

Viguiera arenaria (synonym of
Aldama arenaria)

Antiparasitic, analgesic,
anti-inflammatory, antitumor,

antimicrobial [111]

Phomopsis Antiparasitic against T. cruzi 3,4-dimethyl-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-5-
methoxy-tetrahydrofuran [112]

Colletotrichum Cytotoxic against leukemia
tumor cells [106] Nectriapyrone, tyrosol [105]

Viguiera robusta (synonym of
Aldama robusta)

Anti-inflammatory, analgesic,
antitumor, antiparasitic, antimicrobial

[113]
Chaetomium

Cytotoxic against the Jurkat
(leukemia) and B16F10

(melanoma) tumor cells;
antibacterial against S. aureus

and E. coli

Chaetoglobosin B [114]

* references in last column are linked to endophyte genera, activities, and metabolites.
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4. Fungal Endophytes Associated with Asteraceae—Biochemistry

4.1. Plant Growth Promoting Secondary and Anti-Stress Metabolites

Asteraceae are leading examples of the synergistic effect of fungal endophytes in improving biotic
and abiotic stress resistance and promoting plant growth because numerous species of this family
possess extraordinary tolerance and competition skills. For example, Khan et al. [115] determined the
growth-promoting ability of endophytic Penicillium citrinum in helping its plant host Ixeris repens in
rapid colonization of the sand dunes. P. citrinum stimulated competition skills of the host plant through
the production of secondary metabolites promoting plant growth, like gibberellins, and protective
compounds, like mycotoxins, citrinin, and cellulose digesting enzymes [115]. P. citrinum and Aspergillus
terreus were found to stimulate H. annuus growth and improve disease resistance due to the higher
content of plant-defense hormones, salicylic, and jasmonic acids. The mentioned endophytes regulated
oxidative stress of the host plant through activation of glutathione and polyphenol oxidases, alteration
of catalase and peroxidase, as well as secretion of organic acids [88]. The individual or co-inoculation
of endophytes increased amino acid content in sunflower (H. annuus) diseased leaves, delaying cell
death, and consequently disturbing pathogen progression in plant tissues [88]. Ren et al. [75] showed
that endophyte Gilmaniella sp. induced jasmonic acid production, which was recognized to be a signal
compound promoting the accumulation of volatile oils in the Chinese medicinal plant Atractylodes
lancea. The jasmonic acid acted as a downstream signal of nitric oxide and hydrogen peroxide-mediated
production of volatile oil in the host. Various strains of Penicillium and Aspergillus species associated
with Asteraceae were reported for gibberellins production [116]. Penicillium strains, especially MH7,
produced nine gibberellins which significantly increased the growth and development of the host plant
crown daisy (Chrysanthemum coronarium, synonym of Glebionis coronaria) [117]. The reactive oxygen
species (ROS) production together with increased siderophore excretion by endophytes contributed
towards improved growth and resistance against sunflower pathogens. Endophyte-origin ROS in plant
roots are tackled by internal physiological plant apparatus resulting in an acute resistance against present
and future stresses [89]. Huang et al. [58] compared the antioxidant capacity of plants used in Chinese
traditional medicine, including mugworts: Artemisia capillaris, A. indica, and A. lactiflora (Asteraceae)
and their endophytes. A fungal endophyte strain isolated from the flower of A. capillaris showed the
strongest total antioxidant capacity. The antioxidant compounds detected in the highest amounts in both
endophytic fungus and its host A. indica were chlorogenic and di-O-caffeoylquinic acids, and the volatile
compound artemisinin. Both chlorogenic acid and artemisinin acted as antioxidant, antimutagenic,
immunomodulatory, and antiviral. The production of the same bioactive natural compounds, as well
as some of those found in A. indica and its fungal endophytes, was suggested. In general, phenolic
compounds, including phenolic acids, flavonoids, tannin constituents, hydroxyanthraquinones, and
phenolic terpenoids as well as volatile or aliphatic constituents were major substances in the fungal
endophyte cultures and host plant extracts responsible for high antioxidant activity of all investigated
Chinese medicinal plants [58]. In terms of abiotic and biotic stress, fungal endophytes conferred
resistance against drought, salinity, heat stress, and enhanced resistance against pathogens and insects.
The different mechanisms can stay behind the competitive success of invasive Asteraceae species like
crofton weed (A. adenophora). The most abundant endophytic fungus isolated from this species was
Colletotrichum sp. which has pathogenic effects on other plants. Spreading Colletotrichum spores could
be a competitive advantage for A. adenophora as it was hypothesized by Fang et al. [62]. The recognition
of endophyte roles in host plant expansion and competition mechanisms enables the application or
modification of cultivation techniques dedicated to particular medicinal Asteraceae species, especially
those with promising therapeutic and economical potential.

4.2. Antibacterial Secondary Metabolites

The best criterion for host plant selection in order to investigate the endophytes with potential
antimicrobial activity is the plant traditionally used for the treatment of infections [118]. Plant-associated
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fungi may interact using, inter alia, antibiotic molecules, so the production of antibiotics and the
parallel development of antibiotic-resistance mechanisms can spread in dynamic microbiota/plant
systems by bacterial mobilization and horizontal gene transfer [119,120]. In recent years, the number
of multidrug-resistant microorganisms have been a growing concern for public health worldwide.
The key determinants of bacteria drug resistance are inactivation of the antibiotics, changes in bacterial
targets, and restricted entry of antibiotics by less permeable drug transporters [121]. Asteraceae/fungal
endophytes consortia could be a source of active compounds targeted against many drug-resistant
microorganisms [122,123]. A fungus Colletotrichum sp. was isolated from the stems of Artemisia
annua and characterized as a source of ergosterol derivatives (Figure 3), with inhibitory potential
against both Gram-negative and -positive bacteria, such as Pseudomonas sp. and Bacillus subtilis
with minimal inhibitory concentrations (MICs) ranging from 25 to 75 g mL−1 [70]. Colletotrichum
sp. can also produce plant hormones such as indole-3-acetic acid (IAA), up-regulating host growth.
Both mechanisms of action, namely antibiosis and growth promotion, can enhance adaptability and
pathogen resistance of a host plant. At the same time, Zou et al. [44] isolated from the stem of
Artemisia mongolica an endophytic fungus Colletotrichum gloeosporioides, synthesizing colletotric acid
with antibacterial activity against B. subtilis, Staphylococcus aureus, Sarcina lutea, and Pseudomonas sp.
with MICs of 25, 50, and 50 µg mL−1, respectively, and inhibited a pathogenic fungus Helminthosporium
sativum (current name Bipolaris sorokiniana) with a MIC of 50 µg mL−1. This was the first report of
C. gloeosporioides as a fungal endophyte in the Asteraceae, although it was previously mentioned as an
endophyte of plants belonging to the other families. The isocoumarins and naphthalene derivatives
produced by Papulaspora immersa, a fungal endophyte isolated from the Andean tuber crop, the yacon
(S. sonchifolius), presented antimicrobial activities and could act synergistically [99]. Interestingly, some
fungal metabolites were identified as constituents of an extract derived from a healthy Asteraceae,
prickly goldenfleece (Urospermum picroides), indicating that the production of bactericides by the fungal
endophyte Ampelomyces sp., proceeds also in situ within the host plant [110]. Among seven phomosine
derivatives isolated from Phomopsis sp., an endophyte of the Syrian thistle (Notobasis syriaca), phomosine
K had strong antibacterial activity against Legionella pneumophila Corby, Escherichia coli K12 with MIC
25 and 100 µg mL−1, respectively [96]. Endophyte colonization offers protection from various stressors,
such as toxins which affect plant pathogens by disrupting the cellular membrane and inducing cell
death. Such ecological relationships were recorded for the mentioned Asteraceae/endophyte systems.
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4.3. Antifungal Secondary Metabolites

Colonization of the host plant by endophytes and pathogens depends on their adaptations
to the host environment but also the innate host defense mechanism and variation in virulence.
A few reports on endophytic fungi, protecting against other fungal infection, found in association
with Asteraceae species, especially Viguiera spp. (syn. Aldama spp.) were published, and several
new compounds were described but their biological action needs future research [17,22,68,75,78,101].
Ampelomyces spp. were widely studied as the first fungi used as biocontrol agents of powdery
mildews [122]. Chagas et al. [100] investigated the interactions between the fungal endophytes
that cohabit S. sonchifolius. They found that Alternaria tenuissima synthesized some polyketides,
including antifungal stemphyperylenol in the presence of endophytic Nigrospora sphaerica (Figure 4).
A. tenuissima is characterized by a slower growth rate than N. sphaerica, so specific antifungal
compounds might control the growth rate of N. sphaerica during host plant colonization, without
any damage to the host plant tissues. The competition of fungal endophytes colonizing the same
host plant stimulates the production of metabolites that could decrease the growth of particular
fungi species without damaging the host plant and maintaining the symbiosis [100]. A closer
metabolome relationship was found for S. sonchifolius and endophytic fungus Coniochaeta ligniaria.
Both symbionts produced the same antifungal fatty acids: caproic, caprylic, and palmitic acids at
high concentrations which might raise the resistance of S. sonchifolius to fungal pathogenic attacks
and C. ligniaria to fungi competing within the host tissues [101]. B. trimera is a native medicinal plant
of the Brazilian savannah. Vieira et al. [53] isolated from the leaves of this species 23 fungal taxa,
inter alia, Epicoccum sp., Pestalotiopsis sp., Cochliobolus lunatus, and Nigrospora sp., which showed
antifungal activity against Paracoccidioides brasiliensis. Additionally, the fungi isolated from different
host plants displayed distinct antimicrobial activities, so the endophytic richness and the antimicrobial
activity were closely correlated. The endophyte fungus Preussia sp. revealed strong antifungal activity,
related to the synthesis of anthraquinones, auranticins, culpin, cycloartane triterpenes diphenyl ether,
spirobisnaphthalenes, and thiopyranchromenones [53,124]. However, metabolome analysis of Preussia
sp. isolated from Asteraceae herb carqueja (B. trimera) confirmed antioxidant but not antifungal activity
of isolated compounds, namely preussidone, 1′,5-dimethoxy-3,5′-dimethyl-2,3′-oxybiphenyl-1,2′-diol,
5-methoxy-3,5′-dimethyl-2,3′-oxybiphenyl-1,1′,2′-triol, and cyperin [124]. Waqas et al. [88,89]
determined the inhibitory effect of two fungal endophytes, P. citrinum and A. terreus, against Sclerotium
rolfsii, a soilborne plant pathogen which causes root rot, stem rot, collar rot, wilt, and foot rot diseases
in H. annuus. The antifungal activity of Penicillium and Aspergillus strains was linked with synthesis
of gibberelins, organic acids, and siderophores. Two new fatty acid amides, bipolamides A and
B, were isolated from endophytic fungus Bipolaris sp., but only bipoliamide B revealed bioactivity
against Cladosporium cladosporioides, C. cucumerinum, Saccharomyces cerevisiae, Aspergillus niger, and
Rhisopus oryzae [85]. Fungal endophytes possess multiple balanced antagonisms, namely with the
other microbial inhabitants of the host plant and with the host plant itself, to support the growth
conditions enabling reproduction. Most genes involved in secondary metabolite synthesis in fungi are
activated while being co-cultured in plant and/or with other microbes, but they are generally silent in
cultures, confirming that multiple antagonisms are involved in endophytism [22]. Three strains of
endophytic fungus Diaporthe citri isolated from Brazilian medicinal vine, guaco (Mikania glomerata)
presented 60% inhibition index of mycelia growth against Fusarium solani and 66% against Didymella
bryoniae [94]. The mechanisms of inhibition were not tested in the cited reference, but the authors
stated that endophytic microorganisms with the highest inhibition indices were considered candidates
for tests involving the production of secondary metabolites with potential antimicrobial activity.
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4.4. Antiparasitic Secondary Metabolites

Cota et al. [108] isolated altenusin from an Alternaria sp. endophytic in Trixis vauthieri collected
in Brazil (Figure 5). This medicinal plant was reported as containing trypanocidal compounds of
trypanothione reductase inhibitory activity. Meanwhile, the organic extract of the culture of Alternaria sp.
inhibited trypanothione reductase by 99%, when tested at 20 mg mL−1. The mentioned report was the
first one concerning fungal metabolites with trypanothione reductase inhibitory activity, which can be
used for the development of new chemotherapeutic agents to treat trypanosomiasis and leishmaniasis.
Trypanosoma cruzi is a parasitic euglenoid causing Chagas disease in humans, and Leishmania tarentolae is
a protozoan parasite of geckos, which might also be capable of infecting mammals [125]. Verza et al. [112]
determined that endophytic fungus Phomopsis sp., obtained from Viguiera arenaria (synonym of Aldama
arenaria), led to the formation of a new compound able to transform the tetrahydrofuran lignan,
(−)-grandisin to 3,4-dimethyl-2-(4′-hydroxy-3′,5′-dimethoxy phenyl)-5-methoxy-tetrahydrofuran,
which also showed trypanocidal activity against T. cruzi. Guimarães et al. [105] isolated 30 endophytic
fungi from the leaves and four from the roots of V. arenaria and five endophytes were isolated from the
leaves of Tithonia diversifolia, collected in Brazil. The ethyl acetate extract of the Diaporthe phaseolorum
isolate’s fermentation broth showed strong inhibition of glyceraldehyde 3-phosphate dehydrogenase
of T. cruzi and adenine phosphoribosyltransferase of L. tarentolae. The mosquito Culex quinquefasciatus
acts as a vector of Wuchereria bancrofti which causes the disease lymphatic filariasis, commonly known
as elephantiasis. Belonging to the Asteraceae family, Ageratum conyzoides, native to Pakistan, has
antilarvicidal effects against the mosquito larvae of C. quinquefasciatus, Aedes aegypti, and Anopheles
stephensi. Endophytic actinomycetes, Streptomyces spp., isolated from mentioned Asteraceae species
showed strong larvicidal activity at the fourth instar stage [126]. Xanthones, sterigmatocystin, and
anthraquinone derivative, 13-hydroxyversicolorin B from the culture broth of the endophytic fungus
Podospora sp., isolated from the Kenyan medicinal plant Laggera alata, might be used as natural mosquito
larvicides [91]. The easily biodegradable endophyte metabolites could be a base for the development
of modern techniques providing efficient insect control, without negative effects on the non-target
population and environment.
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4.5. Cytotoxic Secondary Metabolites

The major difficulty in the treatment of cancer is the increase in drug resistance of commonly used
chemotherapeutic agents, so the crucial task is to find out the novel compounds with high efficacy and
low toxicity. The research and registration of new antitumor drugs are mostly based on the compounds
extracted from medicinal plants including those of endophyte origin [127]. Martinez−Klimova et al. [5]
found the endophytes that produce antibiotic metabolites belonging to phylum Ascomycota, which
were isolated from the Asteraceae, Fabaceae, Lamiaceae, and Araceae families. The therapeutic activity
of fungal endophytes was related to the production of compounds inhibiting the drug transporters of
tumor cells. Moreover, the use of secondary metabolites produced by endophytes could mediate drug
resistance reversal in cancer cells. A few reports are pointing out the use of endophytes isolated from
Asteraceae species as a source of antitumor compounds targeted in the most common lines of cancer cells
(Figure 6). Nectriapyrone, produced by the endophytic fungus Glomerella cingulata, a teleomorph stage
of C. gloeosporioides, isolated from V. arenaria and T. diversifolia showed relevant cytotoxic activity towards
tumor cells [105]. In the case of Chaetomium globosum, a fungal endophyte associated with Viguiera
robusta, chaetoglobosins showed inhibition of Jurkat (leukemia) and B16F10 (melanoma) tumor cells
with 89.55% and 57.1% inhibition at 0.1 mg mL−1, respectively [114]. Gallo et al. [99] isolated a fungus
P. immersa from roots and leaves of S. sonchifolius. P. immersa extracts displayed strong cytotoxicity due
to newly described secondary metabolites, i.e., 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol,
which showed highest activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8
(colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with he half maximal inhibitory
concentration (IC50) values of 3.3, 14.7, 5, and 1.6 mm, respectively. Moreover, sitostenone and tyrosol,
other P. immersa secondary metabolites, showed anticancer effects when applied with isocoumarin [99].
The fungal endophytes of Asteraceae, especially the members of genera Fusarium, Plectosphaerella,
Stemphylium, Septoria, Alternaria, Didymella, Phoma, Chaetosphaeronema, Sarocladium, Nemania, Epicoccum,
and Cladosporium can produce the anticancer enzyme L-asparaginase used in the treatment of acute
lymphoblastic leukemia. The isolates of fungi Fusarium proliferatum and Plectosphaerella tracheiphilus,
obtained from an Asteraceae host C. segetalis, exhibited a maximum enzyme activity with 0.492 and
0.481 unit mL−1, respectively [56]. The milk thistle (Silybum marianum) is known as a source of silymarin,
a mixture of flavonolignans used in cancer chemoprevention and hepatoprotection. El-Elimat et al. [103]
showed that a fungal endophyte, Aspergillus iizukae (current name Fennellia flavipes), isolated from
leaves of S. marianum can synthesize similar compounds as a host plant, namely silybin A, silybin
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B, and isosilybin, the constituent compounds of silymarin. Endophytic fungi that can produce the
same compounds of their associated host plants could be a sustainable and alternative source for
secondary metabolites.
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5. Review Methodology

The leading scientific databases dedicated to multidisciplinary as well as agricultural, biological,
biomedical, and pharmacological sciences were screened. Relevant literature dated to the period
2000–2020 was collected, analyzed, and selected considering (i) the reports on endophyte isolation
from the species of Asteraceae family, (ii) the reports on therapeutic utilization of the host plant or/and
an endophyte, (iii) the reports on in vitro and in vivo bioactivity of chemical compounds produced
by a host plant or/and an endophyte. Plant names were verified according to the Global Biodiversity
Information Facility [128] and The Plant List [34], endophyte taxa were verified according to MycoBank
database [129]. For clarity, the validated endophyte names used in the referenced literature were
implemented in the text. In the tables and figures, the current taxa classification and nomenclature
were used. Chemical structures were elaborated on the basis of referred publications, for new isolated
compounds the number of C atoms was presented.

6. Conclusions

A growing spectrum of literature indicates that endophyte fungi colonizing different species of
Asteraceae are responsible to some degree for their therapeutic potential reported in ethnobotanical
and modern literature. Endophyte fungi are elements of a complex web of interactions of the plant
host/endophyte/phytopathogen, and hence all elements of this system are expected to produce bioactive
compounds that can improve their ability to survive in such a dynamic environment. Endophytes
were involved in the superior adaptability and competitiveness reported for Asteraceae hosts and their
evolutionary success. Plant/endophyte interactions regulated the energy costly process of production
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of secondary metabolites possessing therapeutic properties. In the case of the Asteraceae species
analyzed, the host tissue’s environment was more crucial than plant taxonomy for shaping the diversity
and metabolite profile of fungal endophytes. Most endophyte fungi isolated from Asteraceae plants
were wide-spreading. Despite that, they produced very specific secondary metabolites in planta
and in vitro. The interactions between the endophyte and its host controlled by specific chemical
compounds are dynamic and difficult to analyze but crucial for the composition of the medicinal plant
extracts and their standardization.
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