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Supplementary Materials for: Influence of Geographical Effects in Hedonic 
Pricing Models for Grass-Fed Cattle in Uruguay 

 

S.1 Hedonic Models 

Linear Regression 

To maintain consistency with previous studies, the theoretical model developed by Lanfranco et 

al. [2] was used as a reference; this model adopted the factor market method of Ladd and Martin 

[5] within a hedonic price framework. Hedonic price models can be estimated by an ordinary least 

squares (OLS) linear regression (LR). The response was the price in dollars per kilogram (US$ kg-

1) of live weight recorded for each lot of cattle sold at auction. For the extended model of Lanfranco 

and Castaño [3], predictors included in matrix x represented overall market conditions at the time 

of the sale, marketing strategy at cattle auctions, cattle attributes included in the lots, and prevalent 

agro-ecological characteristics of the lot’s police precinct of origin. The price function y (x) allows 

the inclusion of nonlinear relationships; thus, quadratic terms for several of the predictors are 

included. 

 

Following Lanfranco and Castaño [3], for lot Ni ,,1 = , and given a set of K characteristics that 

describe it fully, the function y (x) is expressed as follows: 

 𝑦௜ = 𝜑 + ∑ 𝜗௞𝑥௜௞௄௞ୀଵ + ∑ 𝜌௞𝑥௜௞ଶ௄௞ୀଵ + ∑ ∑ ς௟௞𝑥௜௟𝑥௜௞ + 𝜀௜௄௞ୀଵ௄௜ୀଵ , l ≠ k (1) 

 

where 𝑦௜ is the response (price) variable and predictors 𝑥௜௞ and 𝑥௜௞ଶ  represent linear and quadratic 

relationships of characteristic k, while the product 𝑥௜௟𝑥௜௞ is the potential interaction of the predictor 
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variable k with the predictor variable l, for lot N. The model has K linear relationships, K quadratic 

relationships, and (K × K) - K interactions. Model coefficients φ, ϑk, ρk and ςlk are estimated by 

OLS. Some interactions between predictors (e.g., breed × sex) were not considered, meaning that 

some ςlk coefficients were set to zero. For OLS, residual error εi is assumed independent and 

identically distributed, εi ~ N (0, σ2I). Differentiating equation (1) with respect to xk gives the price 

(or implicit marginal value) for a given characteristic k. Substituting the estimated coefficients for 

parameters 𝜗መ௞, 𝜌ො௞ and 𝜍௟̂௞ and ignoring the lot subscript, provides the following expression that 

includes quadratic relationships and factor interactions: 

 𝑦௞ = 𝜗መ௞ + 2𝜌ො௞𝑥௞ + 𝜍௟̂௞xl,  l ≠ k and k = 1, ..., K.   (2) 

 

The price or marginal values in equation (2) connect the reserve equilibrium prices, δ and θ, with 

characteristics that determine product quality, such that δ(x) = y(x) = θ(x). This does not reveal 

information concerning inherent supply and demand functions. Corrections were also applied to 

mitigate against heteroscedasticity of the variance-covariance matrix [3] and were only applied for 

LR. In summary, the following LR model was investigated: 

 

𝑃𝑅𝐼𝐶𝐸 = 𝑓(𝐵𝑒𝑒𝑓 𝑎𝑛𝑑 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑜𝑛𝑑. +𝐴𝑢𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡. +𝐶𝑎𝑡𝑡𝑙𝑒 𝐴𝑡𝑡𝑟𝑖. +𝐴𝑔𝑟𝑜𝑒𝑐𝑜 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) (3) 
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Incorporating Spatial Effects through an Autocorrelated Error Term 

For spatial extensions, it is convenient to re-name the K = 51 coefficients φ, ϑk, ρk, and ςlk, for the 

model in equation (3), to give a model with a K x 1 vector of coefficients, named β = [β0, β1, β2, 

…, βk]. Thus, the regression in equation (1) can be re-written: 

 

𝑦௜ =  𝛽଴ +  ෍ 𝛽௞𝑥௜௞ + 𝜀௜ ௄
௞ୀଵ  

(4) 

 

where in matrix terms, the coefficients β are estimated via OLS using: 

 𝛃෡ை௅ௌ = (𝐗்𝐗)ିଵ𝐗𝐲 (5) 

 

where, X is a ൫𝑁 × (𝐾 + 1)൯ predictor data matrix and y is a  (𝑁 × 1) response data vector. Spatial 

autocorrelation in the error term can be accounted for, if present, by fitting a linear mixed model 

(LMM), where the coefficients are unbiasedly estimated using restricted maximum likelihood 

(REML) [59,31]: 

 𝛃෡ோாெ௅ = (𝐗୘[𝚺∆]ି𝟏𝐗)ିଵ𝐗୘[𝚺∆]ି𝟏𝐲 (6) 

 

and where [Σ∆]ିଵ represents unbiased variogram information of the (spatially-autocorrelated) 

residual process, 𝐲 − 𝐗𝛃෡ோாெ௅. In this study, an exponential variogram model was chosen for this 

purpose, which can be defined as: 
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𝛾(ℎ) = 𝑐଴ + 𝑐ଵ ൭1 − exp ൬− ℎ𝑎൰൱ 
(7) 

 

where the parameters c0 and c1 represent the partial sills of the variogram and a is the correlation 

range; h is distance, assuming isotropy. Details for specifying variograms for an LMM can be 

found in Schabenberger and Gotway [16]. Failure to account for a spatially-autocorrelated error 

term in regression modelling are unreliable coefficient and uncertainty estimates from a naïve 

(OLS) LR fit. As with the LR model, an LMM was investigated following the same functional 

form given in equation (3). As this study is dealing with areal data, an alternative spatial regression 

could have been formulated using a simultaneous or conditional autoregressive model (i.e. a SAR 

or CAR model, respectively). This study’s reporting of an R2 value for the LMM, should be viewed 

cautiously, as the R2 value (or coefficient of determination) is specifically designed for an OLS 

LR fit and therefore does not account for error variation due to residual spatial autocorrelation. 

 

Incorporating Spatial Effects through Scale-dependent Relationships 

For the second spatial model, a geographically weighted regression (GWR) model was used [17]. 

GWR is a spatially varying coefficient (SVC) model that investigates how relationships between 

the response and predictors may vary across space. It is underpinned by the idea that global or 

whole map statistical models such as an LR/LMM may make unreasonable stationary assumptions 

amongst the regression’s coefficients under investigation. GWR provides a measure of process 

spatial heterogeneity in data relationships, where local coefficients (i.e. the SVCs) and associated 

measures of uncertainty (e.g. t-values) can be mapped to explore this [36,44]. 
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In its standard form, GWR calculates a series of local regressions at target locations, using nearby 

weighted data falling under a kernel at the center of each location. Only a single kernel bandwidth 

is used, which is limiting in that it unrealistically assumes the same level of spatial smoothness for 

each set of SVCs. Thus, when some relationships operate at a large-scale while others operate at a 

small-scale, standard GWR will not capture these differences and only find a ‘best-on-average’ 

scale of relationship nonstationarity (as using only a single kernel bandwidth). As a first step to 

mitigate against this limitation, mixed GWR can be implemented in which some relationships are 

taken as stationary (globally-fixed) whilst others are taken as nonstationary (locally-varying) [18]. 

However, a mixed GWR model does not fully address the limitation, as the subset of relationships 

that are locally-varying are all still taken to operate at the same spatial scale. Instead, multiscale 

GWR (MGWR) can be used [32,33,27,47,34,48], in which each relationship is characterized 

through its own bandwidth. Thus, the scale of relationship nonstationarity is allowed to vary for 

each response to predictor relationship. 

 

Following that given in Murakami et al. [48], a basic linear SVC model can be defined as: 

 

𝑦௜ = ෍ 𝑥௜௞𝛽௞(𝑠௜)௄
௞ୀଵ + 𝜀௜,          𝐸[𝜀௜] = 0,        𝑉𝑎𝑟[𝜀௜] = 𝜎ଶ, (8) 

 

where βk(si) denotes the k-th SVC for site i. This local approach estimates coefficients at the i-th 

site, {β1(si),... βk(si),... βK(si)}, where in the case of standard GWR, a weighted least squares 
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estimation is applied to nearby sub-samples that are weighted through some distance-decay 

function at site i. Supposing β(si) = [β1(si),... βk(si),... βK(si)]T, the standard GWR estimator gives: 

 𝛃෡𝑮𝑾𝑹(𝑠௜) = [𝐗୘𝐖(𝑠௜)𝐗]ିଵ𝐗୘𝐖(𝑠௜)𝐲 (9) 

 

where W(si) is an N × N diagonal matrix whose j-th element g(si, sj) represents the weight assigned 

to the j-th sample, and where, g(si, sj) is calculated by a kernel weighting function [56], such as a 

bi-square kernel: 

 

𝑔൫𝑠௜, 𝑠௝൯ = ൞1 − ൭𝑑൫𝑠௜, 𝑠௝൯2𝑏2 ൱ , 𝑑൫𝑠௜, 𝑠௝൯ < 𝑏 0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
(10) 

  

where b denotes the bandwidth parameter and d(si, sj) is the distance between locations si and sj. 

The SVCs from a standard GWR will tend to the constant coefficients of the OLS LR, if b is set 

sufficiently large enough; otherwise, the SVCs will be local. Bandwidths can be specified as a 

fixed distance, or an adaptive distance, where for the latter, bandwidths vary according to a fixed 

local density of sub-samples. 

 

Standard GWR as described above, ignores differences of spatial scale across the SVCs, as the 

same (single) bandwidth is specified for all relationships. To counter this, each set of SVCs can be 

found using its own bandwidth, and thus extend GWR with multiple (or flexible) bandwidths, one 

for each relationship (i.e. MGWR). Here the bi-square kernel for MGWR is defined as: 
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𝑔௞൫𝑠௜, 𝑠௝൯ = ൞1 − ൭𝑑൫𝑠௜, 𝑠௝൯2𝑏௞2 ൱ , 𝑑൫𝑠௜, 𝑠௝൯ < 𝑏௞ 0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
(11) 

 

where bk is the (fixed distance) bandwidth for the k-th coefficient. The estimated SVCs describe a 

global-scale process provided bk is set sufficiently large, and a local-scale process provided bk is 

set sufficiently small. Standard GWR is estimated in a two-stage procedure where first b is 

optimally found through some measure of model fit (say, by maximizing the Akaike Information 

Criterion (AIC) [19]); and second, the SVCs are estimated by substituting the optimal value of b 

into equation (9). The SVCs of MGWR are estimated in a similar manner except that a back-fitting 

approach is used in the first stage, which sequentially iterates the calibration of bk (or b(si)kad) with 

the assumption that all bandwidth parameters are known. For this study, MGWR is calibrated using 

the bi-square function in equation (11) with fixed bandwidths optimally found via an AIC-based 

back-fitting approach. 

 

As with the LR and the LMM, an MGWR was investigated following the same functional form 

given in equation (3). Here, the use of nonlinear quadratic terms in MGWR is unusual given 

nonstationary effects often mimic nonlinear effects but were retained for coherence and 

consistency between model forms. Standard or mixed GWR forms were not investigated. LR and 

LMM do not suffer from the problem of multiple hypothesis testing when determining coefficient 

significance (i.e. false discovery rates), whereas GWR models do. Thus, p-values from MGWR 

are adjusted for multiple comparisons as advocated in Fotheringham et al. [32]; Yu et al. [34]. 

 

 



  8 

S.2 Supplementary Results 

Table S1. Summaries (part 1) for the LR model. 

Description Variable Coefficient 
Standard 

Error t-statistic p-value & significance 
Constant (intercept) C 0.65939 0.11990 5.49960 0.00000 *** 

Steer price (US $ / kg) PSTEER 0.67655 0.01488 45.47410 0.00000 *** 
Exch. rate (UY$/US$) EXRT -0.00810 0.00101 -8.04384 0.00000 *** 

Order of entry (#) ORDER -0.00040 0.00007 -5.92430 0.00000 *** 
ORDER quadratic (#) ORDER2 0.00000 0.00000 7.05475 0.00000 *** 

Lot Size (#) LOTSZ 0.00054 0.00019 2.88571 0.00394 ** 
LOTSZ quadratic (#) LOTSZ2 0.00000 0.00000 -2.27386 0.02305 * 

Recommended lot (Y/N) RECOM 0.02954 0.00514 5.74496 0.00000 *** 
Males (Yes / No) MALE 0.16724 0.00466 35.89716 0.00000 *** 
Live weight (kg) KLW -0.00166 0.00016 -10.71059 0.00000 *** 

KLW quadratic (kg2) KLW2 0.00000 0.00000 6.62661 0.00000 *** 
Class (scored 3 to 10) CLASS 0.01121 0.00132 8.51169 0.00000 *** 

Condition (scored 3 to 10) COND 0.00038 0.00440 0.08725 0.93048  
Age uniformity (Y/N) AGEU 0.00610 0.00469 1.30013 0.19366  

Shape uniformity (Y/N) UNIF -0.00062 0.00430 -0.14393 0.88556  
Improved nutrition (Y/N) INUT -0.00449 0.00503 -0.89222 0.37235  

Tick area (Y/N) TKAR -0.00082 0.00378 -0.21789 0.82753  
Mio-Mio (Y/N) BCAR 0.00395 0.00544 0.72557 0.46816  

Aberdeen Angus (Y/N) BD2 0.01645 0.00448 3.66980 0.00025 *** 
Other British (Y/N) BD3 -0.00078 0.00568 -0.13782 0.89039  

Continental breed (Y/N) BD4 0.00304 0.00455 0.66879 0.50369  
Dairy breed (Y/N) BD5 -0.01071 0.00461 -2.32213 0.02030 * 
Zebu breed (Y/N) BD6 0.00469 0.00637 0.73529 0.46223  

Hereford × Angus (Y/N) CZ1 -0.02115 0.00505 -4.18866 0.00003 *** 
Brit. × Continental (Y/N) CZ2 0.00026 0.00913 0.02815 0.97754  

Dairy × Zebu (Y/N) CZ3 0.00059 0.00794 0.07459 0.94054  
Lot size × Live weight (kg) LXW 0.00000 0.00000 -0.84324 0.39917  

Condition × Live weight (kg) CXW 0.00002 0.00002 1.09228 0.27481  
Significance level (α) of Student’s t12466 (two-tailed): *** 0.1%; ** 1%; * 5%, and ^ 10%, where the probability of 
committing a Type I error and statistical significance for four levels of α (0.1%, 1%, 5%, and 10%) are shown in the 
last two columns. 
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Table S2. Summaries (part 2) for the LR model. 

Description Variable Coefficient 
Standard 

Error t-statistic p-value & significance 
Soil productivity (#) CONEAT 0.00018 0.00040 0.45099 0.65203  
CONEAT quadratic (#) CONEAT2 0.00000 0.00000 0.42903 0.66793  
Water holding capacity (mm) WHC -0.00106 0.00037 -2.86619 0.00419 ** 
WHC quadratic (mm2) WHC2 0.00000 0.00000 2.06729 0.03880 * 
Summer (Yes / No) T1 -0.01377 0.06787 -0.20283 0.83929  
Fall (Yes / No) T2 -0.12913 0.05592 -2.30929 0.02100 * 
Winter (Yes / No) T3 0.09679 0.07510 1.28878 0.19758  
NDVI (#) NDVI -0.01071 0.00341 -3.14370 0.00169 ** 
NDVI quadratic (#) NDVI2 0.00010 0.00003 3.59105 0.00034 *** 
Surface water runoff (mm) SWR -0.00090 0.00041 -2.19622 0.02816 * 
SWR quadratic (mm2) SWR2 0.00000 0.00000 -5.76850 0.00000 *** 
Available water (%) PAW 0.00357 0.00120 2.96594 0.00304 ** 
PAW quadratic (%2) PAW2 -0.00002 0.00001 -2.20301 0.02768 * 
SWR × PAW SXP 0.00002 0.00000 3.68608 0.00023 *** 
NDVI × Summer NXT1 0.00405 0.00099 4.08890 0.00004 *** 
NDVI × Fall NXT2 0.00255 0.00089 2.87043 0.00413 ** 
NDVI × Winter NXT3 -0.00114 0.00102 -1.10968 0.26723  
SWR × Summer SXT1 -0.00010 0.00017 -0.56159 0.57444  
SWR × Fall SXT2 0.00051 0.00015 3.34261 0.00084 *** 
SWR × Winter SXT3 -0.00013 0.00018 -0.72649 0.46760  
PAW × Summer PXT1 -0.00318 0.00057 -5.55860 0.00000 *** 
PAW × Fall PXT2 -0.00043 0.00047 -0.90305 0.36658  
PAW × Winter PXT3 -0.00065 0.00049 -1.32628 0.18486  
Significance level (α) of Student’s t12466 (two-tailed): *** 0.1%; ** 1%; * 5%, and ^ 10%, where the probability of 
committing a Type I error and statistical significance for four levels of α (0.1%, 1%, 5%, and 10%) are shown in the 
last two columns. 
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Table S3. Summaries (part 1) for the LMM. 

Description Variable Coefficient 
Standard 

Error t-statistic p-value & significance 
Constant (intercept) C 0.70575 0.12386 5.69778 0.00000 *** 
Steer price (US $ / kg) PSTEER 0.68200 0.01078 63.28919 0.00000 *** 
Exch. rate (UY$/US$) EXRT -0.00767 0.00102 -7.48880 0.00000 *** 
Order of entry (#) ORDER -0.00040 0.00007 -5.83070 0.00000 *** 
ORDER quadratic (#) ORDER2 0.00000 0.00000 6.41632 0.00000 *** 
Lot Size (#) LOTSZ 0.00057 0.00017 3.26219 0.00112 ** 
LOTSZ quadratic (#) LOTSZ2 0.00000 0.00000 -2.10862 0.03507 * 
Recommended lot (Y/N) RECOM 0.02819 0.00513 5.49078 0.00000 *** 
Males (Yes / No) MALE 0.16732 0.00475 35.19650 0.00000 *** 
Live weight (kg) KLW -0.00165 0.00013 -12.94867 0.00000 *** 
KLW quadratic (kg2) KLW2 0.00000 0.00000 7.90443 0.00000 *** 
Class (scored 3 to 10) CLASS 0.01066 0.00147 7.23449 0.00000 *** 
Condition (scored 3 to 10) COND -0.00090 0.00407 -0.22048 0.82552  
Age uniformity (Y/N) AGEU 0.00514 0.00419 1.22771 0.21966  
Shape uniformity (Y/N) UNIF 0.00025 0.00432 0.05707 0.95449  
Improved nutrition (Y/N) INUT -0.00179 0.00471 -0.38006 0.70393  
Tick area (Y/N) TKAR 0.00075 0.00449 0.16703 0.86736  
Mio-Mio (Y/N) BCAR -0.00101 0.00598 -0.16856 0.86616  
Aberdeen Angus (Y/N) BD2 0.01665 0.00434 3.83338 0.00013 *** 
Other British (Y/N) BD3 -0.00140 0.00607 -0.22995 0.81815  
Continental breed (Y/N) BD4 0.00235 0.00466 0.50311 0.61493  
Dairy breed (Y/N) BD5 -0.01086 0.00454 -2.39410 0.01673 * 
Zebu breed (Y/N) BD6 0.00410 0.00664 0.61813 0.53654  
Hereford × Angus (Y/N) CZ1 -0.01845 0.00563 -3.27863 0.00106 ** 
Brit. × Continental (Y/N) CZ2 0.00007 0.00969 0.00718 0.99427  
Dairy × Zebu (Y/N) CZ3 -0.00015 0.00865 -0.01724 0.98625  
Lot size × Live weight (kg) LXW 0.00000 0.00000 -1.14491 0.25235  
Condition × Live weight (kg) CXW 0.00002 0.00001 1.25120 0.21097  
Significance level (α) of Student’s t12466 (two-tailed): *** 0.1%; ** 1%; * 5%, and ^ 10%, where the probability of 
committing a Type I error and statistical significance for four levels of α (0.1%, 1%, 5%, and 10%) are shown in the 
last two columns. 
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Table S4. Summaries (part 2) for the LMM. 

Description Variable Coefficient 
Standard 

Error t-statistic p-value & significance 
Soil productivity (#) CONEAT 0.00026 0.00053 0.49327 0.62186  
CONEAT quadratic (#) CONEAT2 0.00000 0.00000 0.24961 0.80291  
Water holding capacity (mm) WHC -0.00128 0.00051 -2.49462 0.01267 * 
WHC quadratic (mm2) WHC2 0.00000 0.00000 1.97112 0.04881 * 
Summer (Yes / No) T1 -0.01178 0.06479 -0.18185 0.85571  
Fall (Yes / No) T2 -0.13940 0.05625 -2.47835 0.01326 * 
Winter (Yes / No) T3 0.05952 0.06936 0.85818 0.39086  
NDVI (#) NDVI -0.01181 0.00345 -3.42363 0.00063 *** 
NDVI quadratic (#) NDVI2 0.00011 0.00003 3.83767 0.00013 *** 
Surface water runoff (mm) SWR -0.00080 0.00047 -1.70119 0.08902 ^ 
SWR quadratic (mm2) SWR2 0.00000 0.00000 -5.24602 0.00000 *** 
Available water (%) PAW 0.00296 0.00128 2.30118 0.02145 * 
PAW quadratic (%2) PAW2 -0.00001 0.00001 -1.53039 0.12603  
SWR × PAW SXP 0.00002 0.00001 3.08254 0.00207 ** 
NDVI × Summer NXT1 0.00390 0.00088 4.44173 0.00001 *** 
NDVI × Fall NXT2 0.00276 0.00080 3.42638 0.00062 *** 
NDVI × Winter NXT3 -0.00071 0.00090 -0.79261 0.42807  
SWR × Summer SXT1 -0.00013 0.00021 -0.59719 0.55043  
SWR × Fall SXT2 0.00050 0.00015 3.24618 0.00118 ** 
SWR × Winter SXT3 -0.00016 0.00019 -0.83109 0.40600  
PAW × Summer PXT1 -0.00303 0.00065 -4.67993 0.00000 *** 
PAW × Fall PXT2 -0.00045 0.00051 -0.87510 0.38159  
PAW × Winter PXT3 -0.00049 0.00050 -0.97798 0.32817  
Significance level (α) of Student’s t12466 (two-tailed): *** 0.1%; ** 1%; * 5%, and ^ 10%, where the probability of 
committing a Type I error and statistical significance for four levels of α (0.1%, 1%, 5%, and 10%) are shown in the 
last two columns. 
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Table S5. Estimated stationary coefficients for MGWR (medians from MGWR outputs). 

Variable Coefficient Variable Coefficient Variable Coefficient 
C - BCAR -0.00812 T3 - 

PSTEER - BD2 - NDVI - 
EXRT* -0.00817 BD3 -0.00200 NDVI2* 0.00010 

ORDER* -0.00040 BD4 - SWR -0.00083 
ORDER2* 0.00000 BD5* -0.00951 SWR2* 0.00000 
LOTSZ* 0.00045 BD6 - PAW* 0.00311 
LOTSZ2 -0.00000 CZ1* -0.01270 PAW2 -0.00001 
RECOM* 0.02548 CZ2 - SXP* 0.00002 

MALE - CZ3 -0.00270 NXT1* 0.00271 
KLW - LXW -0.00000 NXT2* 0.00181 

KLW2* 0.00000 CXW -0.00002 NXT3 -0.00115 
CLASS* 0.00889 CONEAT 0.00014 SXT1 -0.00011 
COND -0.00310 CONEAT2 0.00000 SXT2 - 
AGEU 0.00177 WHC* -0.00078 SXT3 - 
UNIF - WHC2 0.00000 PXT1* -0.00298 
INUT - T1 - PXT2 -0.00042 
TKAR 0.00022 T2 -0.07877 PXT3 -0.00003 

Entries highlighted in blue are nonstationary (see main text). * Significant at the 5% level or lower. 
 

S.3 Data Preparation 

In section 2.3 of the main text, a preferential sampling issue was resolved by taking a stratified 

random sample from the full database used in previous studies [2,3], to yield a study dataset of N 

= 2,845 observations. Here, a more sophisticated weighted approach via spatial kernel density 

estimation could have been adopted similar to that proposed in Diggle et al. [35]. This study’s 

pragmatic approach to preferential sampling is still subject to bias, but not as great as that would 

be found using the full dataset. Further, a sensitivity analysis on the effects of sampling variation 

could have been achieved via a parametric bootstrap but would have been computationally 

expensive. It would also have been possible to assess the out-of-sample prediction of accuracy of 

the study models using the larger set-aside dataset (the LMM then becomes a regression kriging 

model). As previous studies used the full database, then some differences would be expected 

between previous LR results and this study’s LR results, as reported above. 


