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Abstract: Background. Efficient analysis of large image data produced in greenhouse phenotyping
experiments is often challenged by a large variability of optical plant and background appearance
which requires advanced classification model methods and reliable ground truth data for their
training. In the absence of appropriate computational tools, generation of ground truth data has
to be performed manually, which represents a time-consuming task. Methods. Here, we present
a efficient GUI-based software solution which reduces the task of plant image segmentation to
manual annotation of a small number of image regions automatically pre-segmented using k-means
clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other
supervised clustering techniques k-means enables a computationally efficient pre-segmentation of
large plant images in their original resolution. Thereby, the binary segmentation of plant images
in fore- and background regions is performed within a few minutes with the average accuracy of
96–99% validated by a direct comparison with ground truth data. Conclusion. Primarily developed
for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg
tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting
distinctive differences between colors of fore- and background structures.

Keywords: plant image segmentation; plant phenotyping; ground truth data generation; color spaces;
principle component analysis; unsupervised data clustering

1. Introduction

With the introduction of high-throughput plant phenotyping facilities, efficient anal-
ysis of large multimodal image data turned into focus of quantitative plant research [1].
Typical goals of high-throughput plant image analysis include detection, counting or
pixel-wise segmentation of targeted plant structures (e.g., whole shoots, fruits, spikes, etc.)
in field or greenhouse environments followed by their quantitative characterization in
terms of morphological, developmental and/or functional traits. Especially the pixel-wise
segmentation represents a critical step of plant image analysis, since the accuracy and
reliability of some phenotypic traits (e.g., linear plant dimensions) are highly prone to
smallest errors of image segmentation. Due to a number of natural and technical factors,
segmentation of plant structures from background image regions represents a challenging
task. Inhomogeneous illumination, shadows, occlusions, reflections and dynamic optical
appearance of growing plants complicate definition of invariant criteria for detection of
different parts (e.g., leaves, flowers, fruits, spikes) of different plant types (e.g., arabidopsis,
maize, wheat) at different developmental stages (e.g., juvenile, adult) in different views
(e.g., top or multiple side views) acquired in different image modalities (e.g., visible light,
fluorescence, near-infrared) [2]. Next generation approaches to analyzing plant images
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rely on pre-trained algorithms and, in particular, deep learning models for classification
of plant and non-plant image pixels or image regions [3–7]. The critical bottle neck of all
supervised and, in particular, novel deep learning techniques is availability of sufficiently
large amount of accurately annotated ’ground truth’ image data for reliable training of
classification-segmentation models. In a number of previous works, exemplary datasets
of manually annotated images of different plant species were published [8,9]. However,
these exemplary ground truth images cannot be generalized for analysis of images of other
plant types and views acquired with other phenotyping platforms. A number of tools
for manual annotation and labeling of images have been presented in previous works.
The predominant majority of these tools including LabelMe [10], AISO [11], Ratsnake [12],
LabelImg [13], ImageTagger [14], VIA [15], FreeLabel [16] are rather tailored to labeling
object bounding boxes and rely on conventional methods such as intensity thresholding,
region growing and/or propagation, as well as polygon/contour based masking of regions
of interest (ROI) that are not suitable for pixel-wise segmentation of geometrically and
optically complex plant structures. De Vylder et al. [17] and Minervini et al. [18] pre-
sented tangible approaches to supervised segmentation of rosette plants. Early attempts
at color-based image segmentation using simple thresholding were done by Granier et
al. [19] in the GROWSCREEN tool developed for analysis of rosette plants. A general
solution for accurate and efficient segmentation of arbitrary plant species is, however,
missing. Meanwhile, a number of commercial AI assisted online platforms for image
labeling and segmentation such as for example [20,21] is known. However, usage of these
novel third-party solutions is not always feasible either because of missing evidence for
their suitability/accuracy by application to a given phenotyping task, concerns with data
sharing and/or additional costs associated with the usage of commercial platforms.

A particular difficulty of plant image segmentation consists of variable optical ap-
pearance of dynamically developing plant structures. Depending on particular plant
phenotype, developmental stage and/or environmental conditions plants can exhibit differ-
ent colors and intensities that can partially overlap with optical characteristics of non-plant
(background) structures. Low contrast between plant and non-plant regions especially
in low-intensity image regions (e.g., shadows, occlusions) compromise performance of
conventional image segmentation tools based on thresholding, region growing or gra-
dient/edge detection. In a number of previous works, transformation of plant images
from original RGB to alternative color spaces (e.g., HSV, CIELAB) was reported to be
advantageous for separating chlorophyll containing plant from chlorophyll-free non-plant
structures in several previous works [22–24]. However, in view of high variability of optical
setups and plant phenotypes, definition of universal criteria (e.g., color/intensity bounds)
for accurate plant image segmentation is not feasible.

To overcome limitations of existing approaches to accurate generation of ground truth
data for pixel-wise plant segmentation and phenotyping, here we developed a stand-alone
GUI-based tool which enables efficient semi-automated labeling and geometrical editing
(i.e., masking, cleaning, etc.) of complex optical scenes using unsupervised clustering of
image color spaces. In order to enable a ’nearly real-time’ processing of images of the
typical size of several megapixels (i.e., n > 1 × 106), unsupervised clustering of image
pixels in color spaces was performed using k-means which on one hand is known to
be faster than other clustering algorithms such as, for example, spectral or hierarchical
clustering [25]. On the other hand k-means turned out to be efficient and sufficiently
accurate for annotation of visible light and fluorescence images of greenhouse cultured
plants that were in primary focus of this work. Jansen at al. [26] used threshold-based
approach to segment fluorescence images of arabidopsis plants. We show that using this
approach semi-automated labeling of optically complex plant phenotyping scenes can be
performed with just a few mouse clicks by assigning pre-segmented color classes/regions
to either plant or non-plant categories. By avoiding manual drawing and pixel-wised
region labeling, the k-means assisted image segmentation tool (kmSeg) enables biologists
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to rapidly perform segmentation and phenotyping of a large amount of arbitrary plant
images with the minimum user-computer interaction.

2. Methods
2.1. Image Data

The kmSeg tool was primarily developed for ground truth segmentation of visible light
(VIS) and fluorescence (FLU) images of maize, wheat and arabidopsis shoots acquired from
greenhouse phenotyping experiments using LemnaTec-Scanalyzer3D high-throughput
phenotyping platforms (LemnaTec GmbH, Aachen, Germany). Figure 1 shows examples
of top- and side-view images of maize, wheat and arabidopsis shoots acquired from three
different screening platforms for large, mid-size and small plant screening.

Figure 1. Examples of side-view (upper raw) and top-view (bottom raw) images of maize (a,d),
wheat (b,e) and arabidopsis (c,f) plants.

Furthermore, top-view arabidopsis and tobacco images from the A1, A2 and A3 datasets
published in [8] were used in this work for validation of the kmSeg performance, see Figure 2.

Figure 2. Examples of original (top row) and binary segmented (bottom row) top-view images of
arabidopsis (A1,A2), and tobacco (A3) plants from [8].
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2.2. Image Pre-Processing and Color-Space Transformations

The goal of image pre-processing is to make representation of fore- and background
image structures in color spaces topologically more suitable for subsequent clustering.
Straightforward clustering of plant images is often hampered by vicinity of plant and
background colors in the original RGB color space. To improve separability of plant and
non-plant image regions following pre-processing steps are applied.

2.2.1. Image Smoothing

Structure-preserving Laplacian smoothing (MATLAB built-in function: locallapfilt) is
optionally used to reduce heterogeneity and noise to make representation of plant and
background structures more distinguishable.

2.2.2. Color Space Transformation

The main disadvantage of the RGB color space for automated image segmentation is
that luminosity and saturation are lumped together within the color definition what makes
it a non-ideal color space especially considering shadowed image regions where the small
topological distances are hard to separate. Alternative color spaces such as HSV or CIELAB
are typically more suitable for these task. Even when they do not provide more information
than original RGB space, the different color representation often allows a better automated
segmentation. To decorrelate plant and background colors, transformation of images from
RGB to special color spaces is applied. In this work, RGB plant images were transformed
to a 10-dimensional color spaces including HSV (3x), CIELAB (3x) and CMYK (4x) color
representations that enable topologically more advantageous organization of typical plant
and non-plant colors, see Figure 3.

Figure 3. Color-space transformations of plant images in the kmSeg tool. First, original RGB plant
images are transformed to a HSV+CIELAB+CMYK 10-dimensional color space. Then, principle
components of 10-dimensional image representation are determined. Bottom raw shows first three
principle components (’Eigen-colors’).

All color transformations were performed using MATLAB built-in functions:

• RGB to HSV: hsv = rgb2hsv(rgb),
• RGB to CIELAB: lab = rgb2lab(rgb),
• RGB to CMYK: cf=makecform(’srgb2cmyk’); cmyk = applycform(rgb, cf).

Thereby, it should be pointed out that MATLAB RGB to CMYK transformation
is device-dependent and, therefore, uses a so-called ICC profile that characterizes the
color output of a specific target device. By default, MATLAB uses the ’Specifications
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for Web Offset Publications’ (SWOP) standard ICC profile to transform from from sRGB
IEC619666-2.1 to CMYK color space, what results in significantly different results com-
pared with simple RGB to CMYK transformations often found online or in literature, see
https://en.wikipedia.org/wiki/Specifications_for_Web_Offset_Publications (accessed on
11 February 2021).

2.2.3. Eigen-Color Transformation

To improve separability of plant and non-plant regions, principal (PCA) or, alter-
natively, independent components (ICA) of the 10-dimensional (HSV+CIELAB+CMYK)
image representation (further termed as Eigen-colors) are determined. In the image pre-
processing stage, users can principally select either PCA or ICA for calculation of image
Eigen-colors. However, due to a significantly higher algorithmic complexity of ICA, PCA
is suggested as a method of choice for rapid processing plant images of the typical size
of several megapixels. Figure 3 (bottom) shows the first three principle components of
the 10-dimensional image representation of a maize shoot image that correspond to three
major color regions: (i) dark green/brown plant/carrier, (ii) white/light green background
and (iii) blue marker pixels.

2.3. Unsupervised Image Pre-Segmentation Using k-Means Clustering

Unsupervised pre-segmentation of plant images into a user-defined number of sub-
regions is performed using MATLAB kmeans clustering which was applied to 10-dimensional
Eigen-color image representations.

In comparison to other conventional clustering algorithms, k-means clustering turned
out to be more efficient and this more suitable for nearly real-time image segmentation.
Comparison of clustering methods including k-means, spectral and hierarchical clustering
is presented in the Experimental Results section below.

2.4. Supervised Labeling of Color Classes

Final image segmentation is performed by manual assignment of k-means color classes
to either plant or non-plant categories. The assignment of plant and non-plant categories is
done in a very intuitive and efficient manner, namely, by visual inspection and subsequent
clicking on (i.e., selecting) appropriate plant color regions from pre-segmented k-means
color classes in the GUI.

2.5. ROI Masking

In some plant images, the background regions exhibit so large spectrum of colors that
accurate separation of fore- and background regions cannot be achieved just by selecting
a relatively large number of k-means color classes. In such cases it is advisable to restrict
the region of interest to the mask around the plant structures. For this purpose, optional
manual masking of the region of interest (ROI) is introduced in the kmSeg tool.

3. Experimental Results

The basic idea of our approach to efficient ground truth labeling of plant images
consists in automated clustering of image colors followed by selection of plant color classes
using the GUI tools. A reliable clustering of images into plant and non-plant classes
can, however, be hampered by statistical noise and/or topological vicinity of fore- and
background colors in a color space.

To improve separability of plant and non-plant colors, a structure (edge) preserving
Laplace smoothing can optionally be applied in the kmSeg tool. Figure 4 demonstrates the
effect of Laplace smoothing on homogeneity of color distribution in a arabidopsis side-view
image. Especially by noisy and low-contrast images, structural enhancement is certainly of
advantage for more accurate clustering of basic image color regions.

https://en.wikipedia.org/wiki/Specifications_for_Web_Offset_Publications
https://en.wikipedia.org/wiki/Specifications_for_Web_Offset_Publications
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Figure 4. Examples of structure-/edge-preserving denoising of arabidopsis side-view images using
Laplace smoothing.

Further important notion is that representation of images in different color spaces can
be more or less optimal for separating fore- and background structures.

To quantitatively assess the degree of color decorrelation (D) in a particular color
space, the following criterion was introduced:

Dj =
√

∑
i=1..3

(ei,j − 1/3)2, (1)

where ei,j ∈ [0, 1] denotes the percentage of data explained by the i-the PCA component of
the image representation in the j-th color space. Here, the percentage of data explained
by PCA components was calculated using the MATLAB pca function. The criterion in
Equation (1) was constructed in a way that D ∈ [0, 0.816] takes the value D = 0 when image
colors are distributed equally over all three PCA components, and the value D = 0.816
when only one single PCA component explains all data.

To systematically assess the degree of color decorrelation in RGB as well as alternative
color spaces including HSV, CIELAB, CMYK, the D criterion in Equation (1) was calculated
for a random selection of 100 greenhouse images. The summary of this performance test of
k-means vs. spectral vs. hierarchical clustering algorithms is shown in Table 1. As you can
see the degree of color decorrelation in alternative color spaces (HSV, CIELAB, CMYK) is
higher (i.e., the D value is lower) than in RGB. Otherwise, the D values of alternative color
spaces appears to lay in a relatively close range.

Table 1. Summary of color decorrelation (D) measurements (Equation (1)) in RGB, HSV, CIELAB and
CMYK color spaces for a test sample of randomly selected 100 greenhouse images.

Color Space D, Mean D, Stdev

RGB 0.75 0.04
HSV 0.54 0.06
LAB 0.50 0.09

CMYK 0.45 0.11

A particularly strong decorrelation effect of the RGB to CMYK transformation can
be traced back to the particular MATLAB implementation of the target-oriented trans-
formation to a specific ICC color profile. Conventional RGB to CMYK transformations
found in literature cannot have such effect, since they are linear transformations where
the key value K is inverse to the V value of the HSV color space. Based on the results of
this test, a 10-dimensional image representation in the combined HSV+CIELAB+CMYK
color space was used here for subsequent clustering of greenhouse images into fore- and
background structures.

For binary classification of image colors into fore- and background regions, differ-
ent unsupervised methods of data clustering including k-means, spectral or hierarchical
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clustering can be considered. However, in view of interactive nature of the manual image
segmentation an efficient algorithmic performance is required.

To investigate the performance of the above three clustering methods, MATLAB
built-in functions kmeans, spectralcluster, and clusterdata were used. In view of a large
size of phenotypic images (i.e., >1 × 106 pixels), initial performance tests of clustering
methods were performed with synthetic data. For this purpose, a series of parametrically
identical two-dimensional bi-Gaussian distributions of different size in the range between
400 and 40,000 points were generated. Figure 5a shows an example of such a bi-Gaussian
distributed point cloud used in this test. The three above clustering algorithms were
applied to a series of these synthetic point distributions with the goal to separate them
into two clusters corresponding to the two original bi-Gaussian distributions, and to
assess their performance in term of calculation time. The results of these performance
tests shown in Figure 5b demonstrate that spectral and hierarchical clustering algorithms
are computationally too expensive and, thus, cannot be applied for processing images
of typical megapixel size within a reasonable period of time. In contrast, the k-means
clustering algorithm has shown an acceptable performance. The MATLAB code of this
performance test can be found in Algorithm S1.

Figure 5. Evaluation of algorithmic performance of conventional clustering techniques including k-
means, spectral and hierarchical clustering using synthetic data: (a) visualization of a 2D bi-Gaussian
distributed point cloud, (b) plot of the calculation time of three clustering methods as a function
of the data size in the range of n ∈ [4e + 2, 4e + 4] data points. Significantly higher algorithmic
complexity of spectral and hierarchical clustering algorithms makes their application to megapixel
large images non-feasible.

Consequently, fast k-means clustering was adopted in this work for pre-segmentation
of fore- and background image colors in the 10-dimensional Eigen-color space.

The basic approach to plant image segmentation in this work consists in unsupervised
k-means clustering of image Eigen-colors followed by manual selection of color classes
corresponding to the targeted plant structures, e.g., shoots, leaves, flowers, fruits. To
optimize the result of unsupervised k-means clustering, a number of additional image
pre-processing steps such as image filtering an/or ROI masking can be applied.

To enable users efficient processing and analysis of image data, the above described
algorithmic framework was implemented as a GUI tool. Figure 6 shows a screenshot of
the kmSeg tool including three major GUI elements: ’Control’, ’k-means color classes’ and
’Visualization’ areas.
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Figure 6. Graphical user interface of the kmSeg tool including three major GUI elements: the ’Control’
(magenta frame), ’k-means color classes’ (blue frame) and ’Visualization’ (green frame) areas. The
example shows segmentation of a side-view maize image by selecting only one single k-means color
class (icon no. 7) out of totally 16 in the ’k-means color classes’ area.

The work with the kmSeg GUI begins with selection of a target file directory in the
’Control’ area containing one or more images stored in *.png or *.jpg formats. Once an
image directory is selected and images are successfully imported into the program, the
calculation immediately starts using the default set of algorithmic parameters including
the number of k-means classes, the image scaling factor and filters that can afterwards be
adjusted by the user. As rule of thumb, the higher the number of k-means classes is chosen
the more fine and potentially more accurate separation of plant and non-plant structures
can be achieved. Figure 7 shows an example of segmentation of a maize image using k = 5
and k = 25 k-means color classes, respectively.

Figure 7. Automated segmentation of a maize shoot image into k = 5 and k = 25 k-means color classes.
With the higher number of k-means classes a more accurate color separation of plant and non-plant
structures was achieved. From left to right: original RGB image of a greenhouse-grown maize plant,
quasi-color representation of k-means color classes as well the results of plant segmentation for k = 5
and k = 25, respectively.

A typical number of k-means classes for segmentation of greenhouse plant images
ranges between 9 and 36 depending on complexity of color image composition. Fully
automated determination of the number of k-means classes is not necessarily advantageous
in this application, since users may want to adjust the algorithmic performance for optimal
color separation and image segmentation based on their visual inspection. Depending on
complexity of image colors, users can explore and select an optimal number of k-means
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classes by trying and evaluating the results of image segmentation for a number of guesses,
e.g., k = 9, 16, 25, 36. Furthermore, in the ’Control’ area, user can define the type of color
space transformation (PCA or ICA), optional downscaling ratio for faster processing of
large images, image smoothing and filtering as well as visualization of the resulting convex
hull of segmented ROI can be activated here. Changes in the ’Control’ area automatically
trigger re-calculation of image segmentation with the actualized set of parameters.

To restrict automatic pre-segmentation to a particular region of interest two functions
’Clean Inside’ and ’Clean Outside’ are provided in the ’Control’ area. They allow the user to
clean up the regions outside or inside of a freehand-drawn polygon around a particular ROI
(e.g., plant). ROI masking allows the user to avoid artifacts due to faulty segmentation of
shadows or reflection in the background region that are, for example, frequently observed
on the boundaries of photo chambers. Furthermore, masking of the plant ROI reduces
the complexity of color distributions which effectively shortens the calculation time and
improves the accuracy of fore- and background color separation for the same number of
k-means classes. Figure 8 shows an example of top-view arabidopsis image, where such
masking was required to achieve a good segmentation result.

Figure 8. Example of k-means clustering of original full-size and masked images of greenhouse-
grown arabidopsis plant. From let to right: original and masked RGB images, k-means color classes
(k = 25), results of plant segmentation.

The movie https://ag-ba.ipk-gatersleben.de/kmseg_movie.html, (accessed on 11 Febru-
ary 2021) demonstrates all steps of the kmSeg application to segmentation of the arabidop-
sis image from Figure 8 which took approximately 2 min on a Intel i7-6700HQ powered
consumer-notebook with 16 GB RAM. Further examples of ROI masking for efficient seg-
mentation of visible light and fluorescence arabidopsis, barley and maize shoot images in
side- and top-views are shown in Supplementary Information (Figures S1–S12). Although,
the kmSeg tool was primarily developed for processing of images of greenhouse-grown
plants, it can also be applied to other image data that can principally be segmented by
means of color clustering. Further examples of the kmSeg application including segmenta-

https://ag-ba.ipk-gatersleben.de/kmseg_movie.html
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tion of fruits, flowers, leaf speckles, and multi-stain microscopic images can be found in
Supplementary Information (Figures S13–S18).

The ’k-means color classes’ area enables visual inspection and manual assignment of
pre-calculated k-means color classes to either plant or non-plant categories. Here, the user
is supported by a number of numerical indicators including

• running number of the k-means color class,
• the mean RGB values of the color class,
• the green-to-blue (G/B) ratio of the color class which is typically larger than one for

plant structures,
• percentage of the total area of the color class,
• absolute number of pixels (area) of the color class.

Furthermore, spatial regions corresponding to all and selected color classes can be
inspected in in sub-figures of the ’Visualization’ area depicting pseudo-color, original RGB,
binary segmentation with an optional convex hull visualization, see Figure 6. Assignment
of pre-segmented color classes to plant or non-plant categories is performed by a single
click on the icon of the k-means color class which corresponds to the targeted ROI. Re-
newed clicking on the selected color icon deselects the k-means class and assigns it to
another category (e.g., from plant to non-plant category). After the first manual assignment
of plant/background categories to colors of k-means regions, plant/background catego-
rization of color regions in subsequent images is automatically extrapolated from the last
manual segmentation. It can be, however, changed by the user anytime. By using the
’go back’ or ’go forward’ buttons, the previous or the next image can be selected. Instead
of clicking several times, the user can directly jump to the sought image by entering its
running number in the list of all images in the selected folder. By pressing the ’Save results’
button the user saves all segmentation results in a subfolder of the source image directory.

In general, segmentation of images using the kmSeg tool depends on the size of
images and/or selected ROIs. Figure 9 shows a summary of k-means clustering (i.e., the
first automated step toward image segmentation) of up to 5 megapixel large images, which
lays in the range between 5–60 s. In comparison, fully manual image segmentation using
conventional tools (e.g., thresholding, manual drawing and cleaning in ImageJ) is expected
to be several times more time consuming, depending on the user’s skills, software choice
and image complexity.

Figure 9. Computational performance of k-means clustering (without any manual editing) by
segmentation of greenhouse plant images in dependence on the image size.

To quantitatively assess the accuracy and performance of the kmSeg tool by seg-
mentation of different plant images, original and complementary ground truth images
from A1, A2, A3 datasets published in [8] were used. All images were processed as de-
scribed above using 36 k-means classes for clustering of PCA-transformed 10 dimensional
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(HSV+CIELAB+CMYK) image representation, followed by optional ROI masking, selection
of plant color classes and image cleaning.

Table 2 gives a summary of the kmSeg performance indicating that typical top-view
plant images can be segmented and analyzed using the kmSeg tool within 2–6 min with an
average accuracy (i.e., the Dice similarity coefficient) ranging between 0.96–0.99. Thereby,
the most time consuming and less accurate segmentation results were observed for A1
images that exhibit a larger variation of colors and background vegetation with a similar
color fingerprint as arabidopsis leaves. A2 and A3 images with higher plant-background
contrast were segmented more efficiently and accurately.

Table 2. Summary of accuracy and performance of semi-automated kmSeg segmentation on A1,
A2, A3 sets of top-view plant images from [8] in terms of the average Dice coefficient of similarity
between kmSeg-segmented and ground truth images (±standard deviation). Columns ’Clustering’
and ’Cleaning’ indicate the maximum time span required for image segmentation using automated
k-means clustering followed by optional manual cleaning.

Data Set # Images Dice Coeff. Clustering Cleaning

A1 128 0.959 ± 0.011 <1 min <5 min
A2 31 0.965 ± 0.021 <1 min <4 min
A3 27 0.986 ± 0.010 <1 min <3 min

As output of image segmentation, the kmSeg tool writes out following files

• segmented images including labeled color classes, RGB and binary images, see the
’Visualization’ area in Figure 6,

• a *.csv file containing basic traits of segmented plant structures including descriptors
of plant area, shape and color fingerprints in RGB, HSV, CIELAB color spaces, see the
full list in Supplementary Information (Table S1),

• a plain ASCII file describing assignment of k-means classes to pseudo-colors of plant
and non-plant regions, Figure S19a,

• a copy of the entire MATLAB workspace (*.mat file) of the kmSeg tool containing
segmentation results and help-variables, Figure S19b.

*.mat files containing the entire internal kmSeg tool variables, that can be used by MATLAB
users for a detailed analysis or serve for debugging purposes. Segmented images and
complementary ASCII files allow users to retrieve all information necessary for quantitative
description of segmented plant and non-plant image regions.

The precompiled executable of the kmSeg tool along with the user guide and examples
of greenhouse plant images is provided for download from https://ag-ba.ipk-gatersleben.
de/kmseg.html, accessed on 11 February 2021.

4. Conclusions

Accurate and efficient segmentation of optically heterogeneous and variable plant
images represents a challenging, time-consuming task considerably limiting the throughput
of phenotypic data analysis. For training of advanced machine and deep learning models, a
large amount of reliable ground truth data is required. Here, we present a software solution
for semi-automated binary segmentation of plant images which is based on combination
of unsupervised clustering of image Eigen-colors and a straightforward categorization
of fore- and background image regions using a intuitive GUI. Consequently, the kmSeg
tool simplifies the task of manual segmentation of structurally complex plant images
to just a few mouse clicks which can be performed even by users without advanced
programming skills.

For the shoot images used as example in this work, the transformation from RGB to
alternative color spaces, including HSV, CIELAB and CMYK, turned out to be advantageous
for color decorrelation and clustering. Thereby, it should be emphasized that the MATLAB
implementation of RGB to CMYK transformation, which is based on the specific SWOP

https://ag-ba.ipk-gatersleben.de/kmseg.html
https://ag-ba.ipk-gatersleben.de/kmseg.html
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ICC profile, significantly differs from the conventional CMYK definition in the literature.
In general, the choice of appropriate color spaces for image clustering and segmentation
is essentially dependent on concrete image data, and can principally be different for
other data and/or application. In our previous works on plant image registration and
classification [2,27], the kmSeg tool was extensively used for generation of thousands of
ground truth images of different plant types, modalities and camera views. Evaluation
with ground truth images of different color variability and structural complexity has
demonstrated that plant image segmentation and analysis using the kmSeg tool can be
performed within a few minutes with an average accuracy of 96–99% in comparison to
ground truth data. Despite the fact that this software framework was primarily developed
for segmentation of plant shoots in visible light and fluorescence greenhouse images, it can
be applied to any other images and image modalities that can principally be segmented
using color or grayscale intensity information. The kmSeg tool was designed for binary
image segmentation and plant shoot phenotyping. However, it can be also used for multi-
class image segmentation when applied in a iterative manner by annotating only one target
structure with a distinctive color fingerprint per iteration such as predominantly green-
yellow leaves, red fruits, white background, brown speckles, or different color channels of
multi-stain microscopic images. In addition to ground truth segmentation, kmSeg can be
used as a handy tool for rapid calculation of basic phenotypic traits of segmented plant
structures.

Further possible extensions of the present approach include generalization of binary
to multi-class image annotation as well as introduction of additional filters and tools for
efficient removal of remaining statistical and structural noise which could not be eliminated
by rough ROI masking and color separation.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supple-
mentary Information accompanies the manuscript.

Author Contributions: M.H., E.G. conceived, designed and performed the computational experi-
ments, analyzed the data, wrote the paper, prepared figures and tables, reviewed drafts of the paper.
K.N. executed the laboratory experiments, acquired image data, co-wrote the paper, reviewed drafts
of the paper. T.A. co-conceptualized the project, reviewed drafts of the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was performed within the German Plant-Phenotyping Network (DPPN) which
is funded by the German Federal Ministry of Education and Research (BMBF) (project identification
number: 031A053). M.H. was supported from European Regional Development Fund-Project
“SINGING PLANT” (No. CZ.02.1.01/0.0/0.0/16_026/0008446). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This works presents examples of application of methods to images
from open resources such as https://search.creativecommons.org, (accessed on 11 February 2021) as
well as previously published works, e.g., [8]. Further examples of image data are available from the
corresponding author on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Minervini, M.; Scharr, H.; Tsaftaris, S.A. Image Analysis: The New Bottleneck in Plant Phenotyping. IEEE Signal. Proc. Mag. 2015,

32, 126–131 [CrossRef]
2. Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. Comparison and extension of three methods for automated

registration of multimodal plant images. Plant Methods 2019, 15, 44. [CrossRef] [PubMed]
3. Lee, U.; Chang, S.; Putra, G.A.; Kim, H.; Kim, D.H. An automated, high-throughput plant phenotyping system using machine

learning-based plant segmentation and image analysis. PLoS ONE 2018, 13, e0196615. [CrossRef] [PubMed]
4. Zheng, Y.; Kong, J.; Jin, X.; Wang, X.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and

Detection in Precision Agriculture. Sensors 2019, 19, 1058. [CrossRef] [PubMed]

www.mdpi.com/xxx/s1
https://search.creativecommons.org
http://doi.org/10.1109/MSP.2015.2405111
http://dx.doi.org/10.1186/s13007-019-0426-8
http://www.ncbi.nlm.nih.gov/pubmed/31168314
http://dx.doi.org/10.1371/journal.pone.0196615
http://www.ncbi.nlm.nih.gov/pubmed/29702690
http://dx.doi.org/10.3390/s19051058
http://www.ncbi.nlm.nih.gov/pubmed/30832283


Agriculture 2021, 11, 1098 13 of 13

5. Barth, R.; Jsselmuiden, J.; Hemming, J.; Van Henten, E.J. Synthetic bootstrapping of convolutional neural networks for semantic
plant part segmentation. Comput. Electron. Agric. 2019, 161, 291–304. [CrossRef]

6. Zhou, C.; Hu, J.; Xu, Z.; Yue, J.; Ye, H.; Yang, G. A Novel Greenhouse-Based System for the Detection and Plumpness Assessment
of Strawberry Using an Improved Deep Learning Technique. Front. Plant Sci. 2020, 11, 559. [CrossRef] [PubMed]

7. Adams, J.; Qiu, Y.; Xu, Y.; Schnable, J. Plant segmentation by supervised machine learning methods. Plant Phenome J. 2020,
3, e20001. [CrossRef]

8. Scharr, H.; Minervini, M.; Fischbach, A.; Tsaftaris, S. Annotated Image Datasets of Rosette Plants; Technical Report FZJ-2014-03837;
Forschungszentrum Julich: Julich, Germany, 2014.

9. Minervini, M.; Fischbach, A.; Scharr, H.; Tsaftaris, S.A. Finely-grained annotated datasets for image-based plant phenotyping.
Pattern Recognit. Lett. 2016, 81, 80–89. [CrossRef]

10. Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J.
Comput. Vis. 2008, 77, 157–173. [CrossRef]

11. Lingutla, N.T.; Preece, J.; Todorovic, S.; Cooper, L.; Moore, L.; Jaiswal, P. AISO: Annotation of Image Segments with Ontologies.
J. Biomed. Semant. 2014, 5, 50. [CrossRef] [PubMed]

12. Iakovidis, D.K.; Goudas, T.; Smailis, C.; Maglogiannis, I. Ratsnake: A Versatile Image Annotation Tool with Application to
Computer-Aided Diagnosis. Sci. World J. 2014, 2014, 286856. [CrossRef] [PubMed]

13. Tzutalin, D. LabelImg: Git Code. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 11 February 2021).
14. Fiedler, N.; Bestmann, M.; Hendrich, N. ImageTagger: An Open Source Online Platform for Collaborative Image Labeling; RoboCup

2018: Robot World Cup XXII; Springer: Berlin/Heidelberg, Germany, 2018.
15. Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM

International Conference on Multimedia, New York, NY, USA, 21–25 October 2019.
16. Dias, P.; Shen, Z.; Tabb, A.; Medeiros, H. FreeLabel: A Publicly Available Annotation Tool Based on Freehand Traces.

In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA,
7–11 January 2019; pp. 21–30.

17. De Vylder, J.; Vandenbussche, F.; Hu, Y.; Philips, W.; Van Der Straeten, D. Rosette tracker: An open source image analysis tool for
automatic quantification of genotype effects. Plant Physiol. 2012, 160, 1149–1159. [CrossRef] [PubMed]

18. Minervini, M.; Giuffrida, M.V.; Tsaftaris, S.A. An interactive tool for semi-automated leaf annotation. In Proceedings of the
Computer Vision Problems in Plant Phenotyping Workshop, CVPPP 2015; BMVA Press: Swansea, UK, 2015.

19. Granier, C.; Aguirrezabal, L.; Chenu, K.; Cookson, S.; Dauzat, M.; Hamard, P.; Thioux, J.; Rolland, G.; Bouchier-Combaud, S.;
Lebaudy, A.; et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit
in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 2006,
169, 623–635. [CrossRef] [PubMed]

20. TOLOKA. Take Control of your Data Labeling. Available online: https://toloka.ai (accessed on 11 February 2021).
21. DARWIN. A Scalable, AI Powered Image Annotation Platform. Available online: https://www.v7labs.com/darwin (accessed on

11 February 2021).
22. Philipp, I.; Rath, T. Improving plant discrimination in image processing by use of different colour space transformations. Comput.

Electron. Agric. 2002, 35, 1–15. [CrossRef]
23. Yang, W.; Zhao, X.; Sile, W.; Zhang, J.; Feng, J. Greenness identification based on HSV decision tree. Inf. Process. Agric. 2015,

2, 149–160. [CrossRef]
24. Fahlgren, N.; Feldman, M.; Gehan, M.; Wilson, M.; Shyu, C.; Bryant, D.; Hill, S.; McEntee, C.; Warnasooriya, S.; Kumar, I.; et al.

A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol.
Plant 2015, 8, 1520–1535. [CrossRef] [PubMed]

25. Kowsari, K. Comparison Three Methods of Clustering: k-Means, SPECTRAL clustering and Hierarchical Clustering. 2013.
Available online: http://xxx.lanl.gov/abs/https://arxiv.org/pdf/1312.6117v1.pdf (accessed on 11 February 2021).

26. Jansen, M.; Gilmer, F.; Biskup, B.; Nagel, K.; Rascher, U.; Fischbach, A.; Briem, S.; Dreissen, G.; Tittmann, S.; Braun, S.; et al.
Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress
tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 2009, 36, 902–914. [CrossRef] [PubMed]

27. Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. A two-step registration-classification approach to automated
segmentation of multimodal images for high-throughput greenhouse plant phenotyping. Plant Methods 2020, 16, e20001.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compag.2017.11.040
http://dx.doi.org/10.3389/fpls.2020.00559
http://www.ncbi.nlm.nih.gov/pubmed/32582225
http://dx.doi.org/10.1002/ppj2.20001
http://dx.doi.org/10.1016/j.patrec.2015.10.013
http://dx.doi.org/10.1007/s11263-007-0090-8
http://dx.doi.org/10.1186/2041-1480-5-50
http://www.ncbi.nlm.nih.gov/pubmed/25584184
http://dx.doi.org/10.1155/2014/286856
http://www.ncbi.nlm.nih.gov/pubmed/24616617
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.1104/pp.112.202762
http://www.ncbi.nlm.nih.gov/pubmed/22942389
http://dx.doi.org/10.1111/j.1469-8137.2005.01609.x
http://www.ncbi.nlm.nih.gov/pubmed/16411964
https://toloka.ai
https://www.v7labs.com/darwin
http://dx.doi.org/10.1016/S0168-1699(02)00050-9
http://dx.doi.org/10.1016/j.inpa.2015.07.003
http://dx.doi.org/10.1016/j.molp.2015.06.005
http://www.ncbi.nlm.nih.gov/pubmed/26099924
http://xxx.lanl.gov/abs/https://arxiv.org/pdf/1312.6117v1.pdf
http://dx.doi.org/10.1071/FP09095
http://www.ncbi.nlm.nih.gov/pubmed/32688701
http://dx.doi.org/10.1186/s13007-020-00637-x
http://www.ncbi.nlm.nih.gov/pubmed/32670387

	Introduction
	Methods
	Image Data
	Image Pre-Processing and Color-Space Transformations
	Image Smoothing
	Color Space Transformation
	Eigen-Color Transformation

	Unsupervised Image Pre-Segmentation Using k-Means Clustering
	Supervised Labeling of Color Classes
	ROI Masking

	Experimental Results
	Conclusions
	References

