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Abstract: The identification of light stress is crucial for light control in plant factories. Image-
based lighting classification of leafy vegetables has exhibited remarkable performance with high
convenience and economy. Convolutional Neural Network (CNN) has been widely used for crop
image analysis because of its architecture, high accuracy and efficiency. Among them, large intra-class
differences and small inter-class differences are important factors affecting crop identification and a
critical challenge for fine-grained classification tasks based on CNN. To address this problem, we took
the Lettuce (Lactuca sativa L.) widely grown in plant factories as the research object and constructed
a leaf image set containing four stress levels. Then a light stress grading model combined with
classic pre-trained CNN and Triplet loss function is constructed, which is named Tr-CNN. The model
uses the Triplet loss function to constrain the distance of images in the feature space, which can
reduce the Euclidean distance of the samples from the same class and increase the heterogeneous
Euclidean distance. Multiple sets of experimental results indicate that the model proposed in this
paper (Tr-CNN) has obvious advantages in light stress grading dataset and generalized dataset.

Keywords: light stress grading; fine-grained visual classification; inter-class variance; intra-class
variance; feature mapping

1. Introduction

The identification and control of the light environment is the key to high-yield and
high-quality production of crops in plant factories, and a crucial requirement for energy
conservation. Early recognition of crop light stress presents a critical part for light environ-
ment control in plant factories, but also an important requirement for early detection and
prevention of crop damage.

Crops are very sensitive to light intensity. Strong or weak light will induce changes
to plant growth structure, particularly leaf surface [1,2]. Leafy vegetables are widely
planted in plant factories. While light intensity has a major impact on both the yield and
quality of leafy vegetables. The experiment from Hao et al. [3] evidenced that different
light intensities contributed to huge differences in fresh shoot weight, fresh root weight,
anthocyanin, and soluble sugar of purple Bok Choy. The research of Kleinhenz et al. [4]
also showed that lettuce is very sensitive to light intensity. Different light intensities not
only have a greater impact on the anthocyanins and chlorophylls of lettuce, but also bring
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obvious visual separability. This visual separability can be expressed through images.
Therefore, it would be feasible to grade light stress through images.

There are already many image formats available for stress analysis. Spectral image is
one of the commonly used data formats for this area. Reum et al. [5] established a set of
image processing methods to assess maize plant nitrogen stress based on multi-spectral
images to find information related to nitrogen levels. Nowadays, RGB images have been
applied in more works with the development of high-throughput phenotyping (HTP). RGB
images have the advantages of convenience, high-speed and low-cost relative to spectral
images. It provides the physical properties of plants, such as canopy vitality, leaf color,
leaf texture, size and shape information. Chen et al. [6] analyzed the response of wheat
to drought stress based on RGB images. Esgario et al. [7] designed a practical system
to recognize the severity of stress caused by biological agents in coffee leaves based on
RGB images. In contrast, the acquisition of RGB images is more convenient. Users can
obtain images through monitoring equipment, cameras, or mobile phones. This low-cost
and convenient image acquisition method is more conducive to the universal application
of models.

Many primary studies have been done and published on stress analysis based on
images. Early works were mostly based on traditional image processing methods [8–10]
which have greatly advanced the development of image crop stress analysis. However,
these methods rely on handcrafted features, which not only limits the expression of hidden
features, but also is susceptible to individual visual differences. Therefore, they have
certain limitations in terms of accuracy improvement. The vigorous development of ar-
tificial intelligence has led to the development of image analysis. Inspired by the great
success of deep learning in various computer vision tasks, the application of deep convolu-
tional neural network (DCNN) models to crop stress phenotypes has become increasingly
popular [11–13].

Image-based stress classification is usually based on leaves, which belongs to the
category of fine-grained visual classification (FGVC) [14]. FGVC is also called Sub-Category
Recognition. Its purpose is to divide the coarse-grained categories into more detailed
sub-categories. The investigation of crop fine-grained image classification has been one
of the priority fields in crop stress analysis, pest analysis, fruit maturity recognition in
recent years. Only small local differences usually are used to distinguish different classes
as the differences between categories of fine-grained images are subtler. In our task of
light intensity stress classification, a certain threshold is usually chosen to define two
adjacent classes. This will lead to insignificant differences between classes and insufficient
“aggregation” of features within one class, which is also a huge problem faced by FGVC.
Many scholars have done a lot of researches on it. Improving the learning of local details is
a common way to solve FGVC problems. For instance, learning the local discriminative
features using attention mechanism [15,16] or amplifying the details of the input images
by multi-scale input network [17]. Despite these methods have achieved good results
in extracting fine-grained features, they have not fundamentally solved the problem of
differences between and within categories.

One effective way to deal with small inter-class variance and large intra-class variance
is metric learning. It uses the similarity function to project images with similar content onto
adjacent positions on a manifold, which in turn maps images with different semantic back-
grounds separately. This feature mapping method enables the “separation” of inter-class
features and the “aggregation” of intra-class features. With the vigorous development of
deep neural networks (DNN), metric learning has shifted from learning distance functions
to deep feature embeddings that are more suitable for simple distance functions, such
as Euclidean distance or cosine distance metric learning. Deep metric learning is vastly
used in various target detection e.g., as face recognition, target tracking. Many widely
applicable loss functions have been developed for deep metric learning, such as contrast
loss, triplet loss, quadruplet loss, etc. Their common goal is to encourage samples from the
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same category to be closer and separate samples from different categories in a projected
feature space.

Inspired by the above research, in this work, we present a novel light stress grading
method (we named Tr-CNN) combined with deep metric learning and CNN. It learns
embedding features at a fine-grained level through triplet loss function. By minimizing
the loss of triples, the distance between different classes in the feature space is always
greater than the distance between the same class by a certain threshold. The CNN model
pre-trained on ImageNet was chosen as a baseline to solve the problem of slow convergence
and overfitting in the triple mining process.

In general, the contributions of this work are as follows:

• The classification architecture based on Triplet loss function and pre-trained CNN model
was innovatively proposed and implemented on the new task of light stress grading.

• The model was implemented on our own public dataset. The image set can be
download from https://drive.google.com/drive/folders/1Mz2YQ-Sm7RL-qa4tHvJ8
9_4rnoHq-gkw (accessed on 31 December 2020) or https://pan.baidu.com/s/19
hMRMIAHY9_0rHDeS_HxvQ (Extraction code: tcnn) (accessed on 31 December 2020).

• We determined the parameters through multiple sets of experiments, and evaluated
the applicability of the model through experiments on the generalized dataset. Experi-
mental results show that Tr-CNN has obvious advantages in more fine-grained image
classification.

2. Related Works

Light stress grading based on leaf images belongs to the category of FGVC. Therefore,
in this section, we first reviewed and summarized the research of FGVC based on CNN. In
addition, we made a statement on the core area involved in this paper-metric learning.

2.1. Fine-Grained Visual Classification Based on CNN

FGVC based on CNN is an effective method for processing light intensity stress
recognition tasks. The task is to identify the sub-categories under the parent category. The
main problem faced by FGVC is:

• The distinguishable features are not obvious, that is, small inter-class differences and
large intra-class differences. Especially, when performing classification tasks of the
same species, the categories are usually artificially divided according to a threshold,
which may lead to insignificant differences between the categories.

• Easy to be affected by factors such as viewing angle, background, occlusion, etc.

Many classic CNN models are applied for FGVC, which has achieved acceptable
results in a period [18,19]. But these methods are still limited in solving the above problems.
Some improvements are further developed to boost the performance of CNN in fine-
grained recognition tasks. We summarize the relevant research into the following parts.

2.1.1. Extracting Distinguishing Local Details

The differences between categories are usually manifested in the local content of the
image. For example, crop diseases are generally communicated as illness spots and textures.
Therefore, some models improve the separability by extracting discriminative local image
patches. Attention mechanism is a viable strategy to highlight local details, which can
enhance the expression of interesting features. Wang et al. [20] established a context-aware
attention network to detect and classify field pests. Karthik et al. [21] applied attention
mechanism on top of the residual deep network, which achieved an overall accuracy of 98%
on the validation sets. The powerful recognition and positioning of distinguishable features
by the attention mechanism can effectively resist the interference of complex backgrounds,
which in turn can promote the accuracy of FGVC.

In addition to the attention mechanism, coding methods based on higher-order fea-
tures can also locate regions of interest, such as vector of locally aggregated descriptors
(VLAD). It aggregates local salient features into a single vector to express the image con-
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cisely. Lu et al. [22] proposed a feature encoding mechanism based on CNN and Fisher
vector (FV). It tends to highlight subtle objects via filter-specific convolutional represen-
tations to provide stronger discrimination for cultivar recognition. Besides, FV is widely
used to extract lesion areas in medical images [23,24].

2.1.2. The Method Based on Network Integration

In order to enhance the ability to distinguish subtle features, the input image of a single
scale is usually enlarged to different scales, and then sent to a multi-branch network to
learn multi-scale features. In our previous work [17], a two-branch network was designed
to extract features from intact leaves and leaf patches at the same time, which significantly
improved the accuracy of the growth period classification task. Furthermore, a multi-
branch network [25] was proposed to extract complete leaves and leaf patches at four
scales. Partially enlarged leaf patches provide richer texture and context information, and
show better results in the light intensity classification task of lettuce. Wang et al. [20]
established a tree structure based on CNN that could progressively learn fine-grained
features to distinguish a subset of categories, which can learn more discriminative features.

The above methods learn fine-grained features by positioning, coding, or local zoom-
ing of the region of interest, which enormously improves the classification performance
of fine-grained images. However, unlike the phenotype induced by biological stresses
such as diseases and insect pests, many leaf changes caused by abiotic stresses are usually
shown as global features. Therefore, many methods such as attention mechanisms are
difficult to locate local regions of interest. In addition, the above methods are all from the
input or network level to improve the learning ability of fine-grained features, and do not
essentially solve the problem of inter-class and intra-class differences.

2.2. Deep Metric Learning (DML)

As an emerging technique, DML combines deep learning and metric learning. The
purpose of metric learning is to reduce or limit the distance between samples of intra-classes,
and increase the distance between samples of inter-classes. DML uses the recognition ability
of a deep neural network to map the image into a high-dimensional feature space, in which
the Euclidean distance (or cosine distance) is used as the measurement between two
points. Deep metric learning has achieved many successful applications in the field of
computer vision: face recognition [26], face verification [27], image retrieval [28], signature
verification [29], pedestrian re-identification [30], etc.

Loss function is a crucial component of DML, that plays a guide in the optimization of
the entire network. Deep metric learning was first widely used in face recognition, during
which a series of excellent loss functions emerged. Hadsell et al. [31] proposed Contrastive
loss, which can effectively deal with the relationship between paired data in the network
and increase the inter-class difference in classifiers. Triplet loss was first proposed by
Schroff et al. [32] in the FaceNet. It learns the separability between features by calculating
the loss of three input images: make the feature distance between the same identity as small
as possible, and the distance between different identities as large as possible. Similarly,
Wen et al. [33] proposed center loss to constrain the intra-class distance. Compared with
triplet loss, it does not restrict the inter-class distance. Chen et al. [34] proposed quadruplet
loss, which adds two negative samples to learn representations better, but it also brings
greater computing power.

Aside from face recognition and face re-recognition, triplet loss has begun to be
applied to other image recognition and image retrieval tasks. Zhang et al. [35] proposed a
triplet loss network based on paired images for vehicle re-identification tasks, that achieved
better performance than the current level. From Zhang et al. [36], an improved triplet
loss function was used to detect changes in aerial remote sensing images. Tang et al. [37]
combined triplet loss with a self-designed CNN network-TrafficNet for multi-level traffic
state detection.
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Triplet loss can express fine-grained features by constraining the similarity between
samples, which can be better adapted to fine-grained image classification tasks. In addition,
previous research [38,39] shows that triplet loss can adequately manage the imbalance
between classes and small samples. However, triplet loss function has not been introduced
into the field of crop fine-grained image classification to our knowledge.

In the grading task, different levels are usually divided according to thresholds, which
results in unobvious boundaries between adjacent levels. In our task, the response of leaves
to light intensity stress is usually expressed on the intact leaf. For the same lettuce variety
and same growth environment except for the light intensity, it is difficult for the model
to obtain distinguishable characteristics. Therefore, improving the separability between
samples through metric learning is an effective solution for grading light intensity stress.

Inspired by the above analysis, triplet loss was used as a loss function to learn embed-
dings of images with different light intensity levels. The CNN models (ResNet, NasNet,
VGGNet, InceptionV3) pre-trained on ImageNet were chosen as the baseline for feature
embedding to solve the slow convergence and over-fitting problems.

3. Materials and Methods
3.1. Data Processing
3.1.1. Data Collection

Purple leaf lettuce (Lactuca sativa L., var. zishan) was used as plant materials in our
work, which is grown by hydroponics. Indoor experiments were carried out in the plant fac-
tory of the College of Information and Electrical Engineering, China Agricultural University,
Beijing. Suspended fill light with adjustable light intensity above the hydroponic box was
used as the light source (shown in Figure 1). According to the results of previous plant re-
search and the judgment of botanists with relevant work experience [25], lettuce is divided
into four stress levels: severe low-light stress (light intensity in 0–100 µmol m−2 s−1); semi
light-limited (100–200 µmol m−2 s−1); suitable light environment (200–350 µmol m−2 s−1);
high-light stress (350– µmol m−2 s−1).
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Figure 1. Lettuce growing environment. Figure 1. Lettuce growing environment.

Sony ILCE-5000L/A5000 mirrorless camera was used to obtain visible-light images
of leaves. Fixing the camera’s parameters and height for acquiring. The available leaves
(avoiding the bottom and top 2–3 leaves) were cut and tiled on white paper. As a re-
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sult, a total of 1113 images were acquired, of which the four categories each contained
241,334,298,240 images. Figure 2a shows some samples of our original dataset.
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growth stages.

Besides, in order to evaluate the generalization performance of the model on other
datasets, we selected the Gynura bicolor DC (G. bicolor) leaves in three growth periods [17] to
further evaluate the model. This dataset involves three growth periods leaves of immature,
mature, and aging collected in our previous work. Some samples of G. bicolor leaves are
shown in Figure 2b.

3.1.2. Image Preprocessing

Data augmentation is an effective way to improve the robustness of the model, and the
easiest way to solve the problem of imbalance between classes. In our work, mirror rotation,
image sharping, salt and pepper noise were chosen to increase the sample size. These
methods will not change the color and texture of samples, thus they will not introduce too
much noise and blur the differences between adjacent categories. Besides, we controlled the
number of augmented images in each category to achieve a balanced state between classes.

3.2. The Architecture of Tr-CNN
3.2.1. Overall Structure of Tr-CNN

The overall architecture is shown in Figure 3. First, feature embeddings are extracted
based on the network combined triplet loss function and CNN. The embeddings are then
classified using SVM. Several modules included in the network are defined as follows:

1. Baseline

Efficient learning of image features is a key step of classification task. Several classical
networks (ResNet, NasNet, VGGNet, InceptionV3) were used as baseline to extract features.
Furthermore, in order to solve the problem of slow convergence and are prone to get stuck
in local optima of triplet loss, we chose the pre-trained CNN model (remove the fully
connected layer) on ImageNet as the benchmark and compared their performance to
determine the best model on our dataset.

2. Dimensionality reduction
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The dimensionality reduction of high-dimensional features can extract effective in-
formation and discard useless data, which is significant for the efficient execution of
classification tasks. The commonly used method of dimensionality reduction is principal
component analysis (PCA). It treats the data as a whole to find the optimal linear pro-
jection when the mean square error is the smallest, which may cause data mixing and
decrease the classification accuracy. In this work, a fully connected layer was added after
the convolutional layer to increase the nonlinear expression of the model. We explored the
number of neurons in the fully connected layer through experiments to find the optimal
dimensionality reduction.

3. Classification

Support Vector Machine (SVM) was chosen as classifier in this experiment. Under the
condition of high dimension and small sample size, SVM classifier has more advantages
in resisting overfitting and outliers. SVM can use the kernel function to map embeddings
to high-dimensional space, which is widely used in image classification. Multiple com-
binations of two kernel functions (Rbf and Liner), and multiple sets of optimal penalty
parameters and kernel function parameters were tried in the experiment. Therefore, each
group of data obtains its optimal parameter combination through training.
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3.2.2. Feature Mapping Based on Triplet Loss Function

In this paper, Tr-CNN was built to solve the problem of small inter-class variance and
large intra-class variance for stress levels. The execution of this module depends on the
triplet loss function, which can optimize the feature mapping distance between different
categories of images in high dimensional feature space. The goal of the framework is to
learn a metric embedding function f(x) that can map the input image to a feature space:
RI → RF. In this feature space, the images from the same category are “pulled closer”, and
from the different categories are “pushed away”. The network input is a triple <a, p, n>,
where a (anchor) represents a randomly selected anchor, p (positive) is a sample of the same
category as a, and n (negative) indicates a sample of a different category from a. The three
inputs share network parameters. To meet the requirements of image feature mapping,
triples should satisfy the following conditional expressions:

‖ f (xa
i )− f (xp

i )‖
2
2 + α < ‖ f (xa

i )− f (xn
i )‖

2
2

∀( f (xa
i ), f (xp

i ), f (xa
i ), ) ∈ T

(1)

In Formula (1), T represents the set of all triples in a batch and xa
i is a randomly selected

anchor. xp
i represents the sample of the same class as the anchor, and xn

i represents the
sample of a different category from the anchor. α means the threshold for constraining the
distance between positive and negative pairs. f(.) indicates the CNN network as a feature
extractor. ‖ f (xi)− f (xi)‖

2
2 represents the Euclidean distance between two embedded
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features normalized by L2. According to Formula (1), the triplet loss function can be
written as Formula (2):

L =
N

∑
i

[
‖ f (xa

i )− f (xp
i )‖

2
2 − ‖ f (xa

i )− f (xn
i )‖

2
2 + α

]
+

(2)

where N represents the batch size participating in the batch training. The function makes
the distance between sample pairs (a, p) less than the distance between (a, n), while the
distance gap is greater than the margin.

Previous studies have shown that slow convergence and overfitting usually occurred
in the feature extraction network based on triplet loss function [40]. Therefore, we migrated
the CNN model pre-trained on ImageNet as the baseline network.

3.2.3. Triplet Selection for Effective Training

When constructing triples, not all of them are helpful for model training. Exhaustive
training of all triples will bring greater computational pressure, so the choice of triples is
very crucial. Semi-hard triple selection method is chosen in this work [41]. That is, the
samples meet:

‖ f (xa
i )− f (xp

i )‖
2
2 < ‖ f (xa

i )− f (xn
i )‖

2
2 < ‖ f (xa

i )− f (xp
i )‖

2
2 + α (3)

The meaning of each element in Formula (3) is the same as Formula (2).
For a training set D = {(xi, yi)}N

k=1 with N samples, the feature extraction process is
shown in Algorithm 1:

Algorithm 1 Triplet-sampling CNN
Procedure 1 Feature Extraction

Input: Training set D = {(xi, yi)}N
k=1, margin α = 0.1.

Output: Feature learning model f(x).
1: Parameters from pre-trained CNN model as initialization values;
2: for each iteration do
3: Generate triplets according to Equation (3)
4: Map sample xi to Euclidean space through feature expression f(x)
5: Calculate the Euclidean distance between sample pairs
6: Calculate triplet loss according to Equation (2)
7: Backpropagation and update parameters
8: end for

3.3. Experiment Settings
3.3.1. Experimental Environment and Settings

The experiment was conducted on a Windows 10 64-bit PC equipped with Intel(R)
Xeon(R) CPU @ 2.20 GHz processor and 32 GB-RAM. Our program runs on NVIDIA
GeForce GTX 1080 Ti GPU. The CNN model is implemented on the Keras framework,
which is an advanced neural network API, written with python and can run on Tensorflow,
CNTK or Theano.

The basic parameter settings of the model are shown in Table 1. Especially, the learning
rate decreases by a factor of 1/5 every 20 epochs, alternately. Besides, the margin is used to
control the distance difference between sample pairs.

Different comparative experiments are performed to explore better parameter settings.
Multiple excellent pre-trained models are used for feature extraction to find the optimal
baseline. In addition, we have made many attempts on the dimension of the fully connected
layer to find the law of the feature mapping dimension on the model.
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Table 1. Hyperparameters in Tr-CNN training.

Parameter Value

Optimizer Adam
Batch size 40

Epoch 50
Initial learning rate * 0.001

Momentum 0.9
Margin # 1.0

* Learning rate decreases by a factor of 1/5 every 20 epochs, alternately; # Margin represents the distance between
the class pairs.

3.3.2. Experimental Evaluation

In order to evaluate the effect of image feature mapping, the high-dimensional features
outputted from CNN were reduced by PCA and then visualized on the two-dimensional
plane. The mapping effect is evaluated by the visualization of the training set and test set.

In addition, confusion matrix, average precision, precision, recall and F1-score were
used to evaluate the model classification effect. These indicators are described as follows:
True positive (TP) means that the predicted value and actual value are both positive; False
positive (FP) indicates the predicted value is positive, but the actual predicted value is
negative; False negative (FN) means the predicted value is negative and the actual value is
positive; True negative (TN) means the predicted value and actual value are both negative.
The definitions can be expressed based on Formulas (4)–(7):

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

F1 =
2TP

2TP + FP + FN
(7)

4. Results

In this section, we first analyzed the results using different CNN models to determine
the optimal baseline for our dataset. The embeddings based on different pre-trained CNN
models are visualized to evaluate the mapping effects on the training set and test set. Then,
the classification effect of embeddings on SVM and the direct results of the corresponding
pre-trained CNN model are compared and analyzed in detail. After determining the
optimal baseline, we further discussed the feature mapping dimension of the model.

4.1. Feature Mapping Effect

In our framework, CNN is used to learn the feature mapping of the image set. Mean-
while, the feature distribution is optimized by the triplet loss function. At present, many
classic models have been proposed and shown excellent performance in various tasks. But
it’s important to choose a suitable model for a specific task. Therefore, the outstanding
models on classification tasks VGGNet, InceptionV3, ResNet and NasNet were experi-
mented to find the model suitable for our tasks. In addition, since training a stable model
requires sufficient image set support, so we chose models pre-trained on ImageNet as
the baseline.

The training embeddings extracted by different baselines are visualized on a 2D
surface. Figure 4a shows the feature distribution of the dataset before training. From
the distribution, the features of different classes overlap severely except the first category.
This reflects the phenomenon that the confusion in inter-class features and the scatter in
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intra-class. From b–e of Figure 4, after optimization of different models, image feature
distribution presents different degrees of improvement. This proves the effectiveness of
the proposed framework in solving the problem of image set mapping in fine-grained
classification. Besides, the feature mapping results show obvious differences in different
baseline models. From ResNet, NasNet and VGGNet, the embeddings between two
adjacent classes still occur partially overlap. For the embeddings from inceptionv3, not
only do adjacent classes have good spatial separability, but the feature aggregation effect
within the class is better. Figure 5 shows the mapping effect of different models on the test
set. Similar to the effect on the training set, InceptionV3 achieved the best mapping effect
on the test set. In addition, the four models after training show the same visualization
effects on the training set and the test set, which fully proves that there were no over-fittings
during training.
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4.2. Classification Performance Evaluation

After the network training, the image set is mapped to 512-dimensional embeddings.
Then they were sent to SVM for classification. For evaluating the effectiveness of our
proposed framework, the classic CNN models pre-trained on ImageNet (InceptionV3,
ResNet-50, NasNet-Mobile and VGG-16) were also used for grading tasks. Classification
results are presented in Table 2.

Table 2. Classification results of all the applied models.

Method Accuracy (%) Precision Recall F1-Score

InceptionV3-based 91.5 0.923 0.920 0.915
NasNet-based 86.3 0.872 0.869 0.864
ResNet-based 83.3 0.838 0.842 0.832

VGGNet-based 84.5 0.860 0.850 0.847
InceptionV3 89.4 0.899 0.898 0.894

NasNet 74.5 0.765 0.768 0.725
ResNet 86.9 0.875 0.879 0.868

VGGNet 70.2 0.734 0.734 0.680

In Table 2, the first four rows represent the classification results from Tr-CNN based
on different CNN baselines, while the last four rows list the results based on different pre-
trained CNN models. Tr-CNN with InceptionV3 as baseline obtained the best results on all
the metrics. Except for ResNet, Tr-CNN with different baselines have achieved better results
than their corresponding original models (such as InceptionV3-based and InceptionV3).
The contrast especially striking between NasNet-based and NasNet, VGGNet-based and
VGG-16. These prove the validity of the framework we designed. In addition, on our data
set, both inceptionV3 and inceptionV3-based performed very well, while the classic ResNet
did not achieve the desired results.

Confusion matrix (as is shown in Figure 6) can describe the individual classification
rate by comparing the predicted category (abscissa) and the actual category (ordinate).
Based on the numerical distribution of the confusion, the first and fourth classes show
a better classification effect (averaged at 98.9% and 90.5%). The leaves under extremely
weak or strong light conditions have obvious separability. Conversely, there are many
misclassifications between the second and third categories, resulting in a lower individual
classification rate (averaged at79% and 70.1%). This is primarily related to small differences
between these two categories. ResNet, ResNet-based and VGGNet, VGG-based have poor
classification effects on the second and third categories. This could be attributed to the two
models that have a large number of parameters is difficult to achieve better training results
under limited training data. In contrast, InceptionV3, InceptionV3-based, NasNet, and
NasNet-based show better performance in the four categories. Among them, InceptionV3-
based performed best, especially in the second and third categories. Overall, Tr-CNN based
on different baselines shows better results than their baseline model in the second and
third categories, which indicates the advantages of Tr-CNN in solving the fine-grained
image problems.
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4.3. Determination of Embeddings Dimensions

Through the above experiment, InceptionV3 was finally determined as the baseline
of Tr-CNN for feature embedding. Besides, the initial dimensions of feature embeddings
were set as 512 based on previous works [42,43]. In this part, experiments were performed
on different dimensions to explore the impact of the feature mapping dimension on the
classification effect and find the dimension suitable for our data set. Table 3 lists the
classification results under feature mapping of different dimensions.

Table 3. Results under different dimensions of embeddings.

Dimensions Accuracy (%) Precision Recall F1-Score

1 90.9 0.916 0.916 0.900
4 91.2 0.917 0.917 0.911
16 92.3 0.930 0.928 0.923
64 92.4 0.930 0.930 0.924

128 91.5 0.922 0.921 0.915
256 90.3 0.910 0.911 0.902
512 91.5 0.923 0.920 0.915

1024 89.4 0.901 0.902 0.893
2048 89.1 0.920 0.897 0.892
4092 86.9 0.878 0.875 0.870
8192 81.2 0.825 0.818 0.813

In Table 3, in order to evaluate the classification effect in different dimensions stably, we
take the weighted average of the three results as the final evaluation index. No significant
difference was observed when the feature embedding is mapped below 512 dimensions.
This shows that the lower mapping dimension will not harm the classification effect. As
the dimensionality increases, the results show a clear downward trend. This may be due
to some redundant information have been introduced when the embedding dimension is
too large.
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4.4. Generalization Experiment

In order to test the generalization ability of the Tr-CNN on other datasets, a growth
period classification dataset was used to train and test on Tr-CNN and its related models.
This dataset was created in our previous work, which includes a leaf image set of Gynura
bicolor DC in three growth periods (some samples are shown in Figure 2b). It’s similar to
our task due to the small difference between the three categories. The test results of all
the models are listed in Table 4. The results presented in this paper are different from the
original reference due to the difference in dataset augmentation and division, and the use
of pre-trained models.

Table 4. Classification results of all the applied models on the growth period classification dataset.

Method Accuracy (%) Precision Recall F1-Score

InceptionV3-based 91.7 0.918 0.917 0.916
NasNet-based 85.3 0.853 0.853 0.852
ResNet-based 78.2 0.800 0.782 0.781

VGGNet-based 90.4 0.911 0.904 0.902
InceptionV3 89.1 0.891 0.891 0.889

NasNet 89.1 0.891 0.891 0.890
ResNet 70.5 0.740 0.705 0.688

VGGNet 71.8 0.744 0.718 0.714

Except for NasNet, all the models have been improved compared to the corresponding
baseline, especially VGGNet-based. The dataset size is similar to the light intensity classi-
fication dataset, so neither ResNet nor VGGNet achieves ideal results at this magnitude.
Nevertheless, with the help of triplet loss to solve small samples, Tr-CNN based on ResNet
and VGGNet has been greatly improved over the baseline model. InceptionV3 has achieved
the best results on both datasets, proving its advantages in fine-grained classification tasks
with limited sample size.

5. Discussion

The following aspects highlighted through the above experiments:

1. Tr-CNN has been associated with satisfactory results.

Triplet loss function was introduced to realize the “separation” of features between
classes and the “aggregation” within classes. The pre-trained model solves the problem
of slow convergence and over-fitting. Besides, the framework uses SVM as a classifier. In
the past, the main problem based on SVM classification is feature selection and extraction,
while our framework solves the problem of single feature input of SVM.

2. The classic CNN model will show huge differences when processing different datasets.

The classic CNN models we selected performed well on other tasks [44,45] but showed
huge differences in our datasets. All the classic models have their specific structure and
depth [46] and therefore apply to different scenarios. For example, large model architectures
have better expressiveness and generalization ability, but they usually need huge data to
achieve full learning, while some simplified model architectures can converge faster for
simple tasks with small data volume. Therefore, different model architectures differ in
their ability to adapt to different scenarios.

3. The choice of the baseline is important for Tr-CNN.

Tr-CNN shows different increments on different baseline models. When solving the
task of light stress classification, NasNet-based and VGGNet-based increase significantly,
while ResNet-based is not improved on the basis of the baseline. Therefore, not only do
different model architectures (depth, breadth, and number of parameters, etc.) have certain
applicability to specific dataset, but also each submodule in the intact model (such as
convolution module, fully connected module, classifier module, and loss function, etc.) has
strong matching.



Agriculture 2021, 11, 1126 14 of 17

4. Tr-CNN has a conspicuous advantage to deal with small inter-class variance in fine-
grained image classification.

During the experiment, we also tried to use Tr-CNN to solve other classification
problems, such as species classification based on leaves. However, not much progress has
been made on such datasets. Tr-CNN focuses on optimizing image feature distribution
with small intra-class variance and large inter-class variance. However, for the image sets
with relatively obvious differences between classes, the common loss function such as
cross-entropy loss has a simpler calculation process and faster convergence, which usually
achieve better results.

5. Many characteristics of leaves contribute to the grading of light intensity stress.

In our task, the texture, vein, edges, shapes, colors, and other hidden features of the
leaves make the leaves separable between different levels of light intensity, but the “black
box” nature of the network makes this mechanism difficult to quantify. Class Activation
Map (CAM) [47] can be used to qualitatively express the contribution of features in the
network in the form of heat map. In Figure 7, this contribution of different types of features
is visualized by using CAM. The four columns from left to right respectively show the
edge, local features such as sunburn parts, overall features such as color, and leaf vein. In
addition, it is undeniable that the network can learn some hidden features that are difficult
to explain, which is the potential of deep learning.
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6. Conclusions

In this study, we used pre-trained CNN models as a baseline, triplet loss as loss
function, and SVM as classifier to grade the light intensity stress of lettuce. This frame-
work solves the problem of small inter-class features and large intra-class features in the
classification task. Through multiple tests, inceptionV3 is determined as the baseline, and
the dimension of embeddings is set as 64. Comparative and generalization experiments
indicate that Tr-CNN is feasible in solving this kind of FGVC.

Although Tr-CNN showed good performance in light stress grading and growth
period classification tasks, some work still needs to be improved in the future. We have
proved the separability of light stress through the classification based on leaves. But
the leaf is obtained by destructive means. Light stress classification based on plants or
leaf segmentation methods should be studied to further serve practical applications. In
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addition, the optimization of triplet loss and the research of classifiers is all that needs to
be done to further improve Tr-CNN.
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