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Abstract: The possibility of using gypsum-containing waste–citrogypsum, which is a by-product of
the chemical biosynthesis of citric acid, was considered as an additive for composting poultry manure
from poultry farms that practice litter-free poultry keeping. The research was carried out on an
experimental batch of 1500 tons. The production of the batch was carried out by mixing citrogypsum
with a moisture content of 30% and litterless chicken manure with a moisture content of no more
than 80% in a ratio of 1:2. The resulting mixture was placed on an open landfill in piles 3 m wide,
1 m high and 400 m long and was mixed twice with a compost turner. Further processing consisted
of mixing the mass once every seven days. The controlled parameters were changes in humidity,
temperature, pH and nitrogen content during composting. In the course of the experiment, it was
found that the introduction of citrogypsum into the composition of the compost helps to optimize
the moisture, temperature and pH of the mixture, and a decrease in ammonia emission to 87% was
recorded, with an increase in nitrogen content of 2.4 times compared to the initial value. It was
concluded that citrogypsum can be used in composting poultry waste to reduce volatilization of
ammonia and preserve nutrients.

Keywords: gypsum-containing waste; citrogypsum; chicken droppings; chemical reclamation; nitro-
gen; ammonia volatilization

1. Introduction

Animal waste is a significant factor that negatively affects the environment. This, in
particular, is expressed in the formation of greenhouse gases, an unpleasant odor, the spread
of pathogenic microorganisms, etc., which actually worsens the ecological situation [1–5].
Composting is an affordable, efficient and environmentally friendly way to process organic
waste using a microbiological method. In the course of biothermal processes, compounds
that are easily assimilated by plants are formed in the compost. Compost additives reduce
organic matter and nitrogen losses [6–10].

However, the aerobic composting process can cause associated problems; some chem-
ical compounds (for example, trimethylamine (TMA), ammonia (NH3), 2-pentanone, 1-
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propanol-2-methyl, dimethyl sulfide, dimethyl disulfide, dimethyltrisulfide and acetophe-
none) are the causes of unpleasant odor from composting [11–14]. Losses of nitrogen
(volatilization of ammonia) that occur during composting of chicken manure can be up
to 62% within 1.5–2 months. Volatilization of ammonia during composting is, on the one
hand, a negative environmental factor, and on the other hand, it reduces the quality of the
resulting fertilizer due to its depletion with nitrogen [3–5]. In general, when using various
composting methods, it is necessary to take into account four key aspects—environmental,
economic, social and technical, including, among other things, negative factors of the
process [15].

The rate of ammonia emission depends on many factors, such as the ratio of carbon
to nitrogen in the compost, moisture, aeration, temperature, microbial composition, and
composting-optimizing additives. High-temperature composting has become popular for
the processing of hardly decomposable organic waste with the participation of thermophilic
bacteria, which makes it possible to obtain a safe and effective fertilizer [16].

One of the ways to optimize composting processes is the use of various additives [17]
such as biochar [18,19], wood fly ash [20], lime, zeolite [21,22], bentonite [23,24], polyethy-
lene glycol, palm sugar [25], superphosphate [26], microbial inoculants [27], etc. In addition
to those listed, gypsum [28,29] and gypsum-containing waste (GCW) [14,26,30,31] are also
used as an additive to compost.

GCW with life elements necessary for plants, such as S, Si and Ca, combine well with
the organic component of fertilizers and enhance their effectiveness. Chemically, GCW is
calcium sulfate dihydrate which has not been subjected to thermal or mechanical stress,
which reduces chemical activity; it is especially effective in the decomposition of biomass
and has a positive effect on reducing ammonia losses during composting [32].

The likely scheme of the ongoing chemical reactions is as follows:

CaSO4 + 2NH3 + CO2 + H2O→ CaCO3 + (NH4)2SO4 (1)

Calcium sulphate interacts with ammonia, carbonic oxide (IV), formed as a decompo-
sition product of biomass, in the presence of moisture. This produces ammonium sulfate
and calcium carbonate: the first is a valuable mineral fertilizer, and the second helps to
stabilize the pH of fertilizers at an optimal level for plants. Calcium and magnesium, which
are part of the GCW, are useful as effective soil restoration agents and are recommended by
agricultural technicians. This agrotechnical method is based on a decrease the concentration
of K and Na cations, which are prone to exchange interactions in saline soils [26,30].

Currently, more than 50 types of gypsum-containing wastes from various industrial
enterprises are known [33,34], but flue-gas desulfurization gypsum (FGDG) and phospho-
gypsum (PG) are the most studied from the point of view of use in agriculture.

At the same time, numerous studies have proven the positive effects of using FGDG
and PG and their combinations with other additives in agriculture. In [35], it was found
that the addition of 20% FGDG to broiler litter reduces NH3 evaporation and increases the
fertilizer value of broiler litter.

The positive effect of the introduction of FGDG has been proven during the co-
composting of dairy manure, sugarcane leaf and press mud (the sludge from sugar factory
effluent) [36], a decrease in carbon losses and an increase of mineralization of organic
nitrogen in the compost was found. The effect of the FGDG additive on the reduction
of nitrogen losses when added into milk manure and solid household waste was also
proved [37].

There are results that indicate the possibility of improving the quality of compost
through the use of a complex additive consisting of biochar and FGDG [14,38].

According to the data given in [14], the introduction of biochar with FGDG as addi-
tional additives to composting of a mixture of slaughter waste, swine slurry and sawdust
helps to reduce ammonia volatilization by 26–59%, accelerates decomposition processes,
as well as the macro- and micro-nutrient content being enhanced by the supplementation
with these co-additives. Positive effects from the introduction of a complex additive into
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the compost give accent to a reduction in the duration of the entire process, a decrease in
nitrogen and carbon losses, an improvement in the decomposition of lignocellulose and
retention of nutrients [38].

The possibility of using phosphogypsum in agriculture has been studied to a greater
extent, which is due to the widespread distribution of this gypsum-containing waste
throughout the world and large volumes of its annual formation [39,40] which in turn
necessitates the search for areas of its utilization, one of which is agriculture.

For example, the authors of [32] proved the positive effect of the introduction of phos-
phogypsum and superphosphate into the composting of kitchen waste, which is to reduce
CH4 and NH3 emissions and greenhouse gas emissions well as. Similar results in reducing
ammonia and greenhouse gas emissions were obtained when studying the effect of PG
and its complex with dicyandiamide on composting sewage sludge [26], as well as during
composting in a forced aeration system of pig manure with corn stalks [41]. In addition, as
positive effects from the use of PG in agriculture, one can single out an improvement in the
physicochemical properties of the soil [42,43] and an increase in productivity due to the
presence of useful nutrient elements (Ca, S, P) in its composition [42,44–46].

However, despite the positive effects from the use of PG in agriculture, there are
significant environmental risks associated with the content of radioactive elements in its
composition (natural uranium radionuclides), which can lead to the possible accumulation
of heavy metals and fluorine in soils. A large amount of trace elements in the composition
of PG, at certain concentrations, can contribute to the accumulation of toxins in the soil and
the transfer of toxic trace elements into water [46,47].

Another gypsum-containing waste that has prospects for use in agriculture is cytrogyp-
sum (CG), which is formed during the production of citric acid during the microbiological
synthesis of molasses using a culture of Aspergillus niger, which is grown by a surface or
submerged methods.

Molasses is the best raw material for obtaining citric acid; along with a high sugar con-
tent, it contains a complex of substances (nitrogen, phosphorus, potassium, etc.) necessary
for the life of the fungus, which ensures the maximum yield of citric acid.

A schematic flow diagram of citric acid production is shown in Figure 1 [48].
Unlike natural gypsum, citrogypsum has a high specific surface area, which eliminates

the need for additional grinding, and, unlike phosphogypsum, it does not contain harmful
impurities that can cause environmental risks [49].

Current information on the effect of CG on ammonia binding in composting animal
waste is very limited; therefore, the purpose of this study is to study the effect of the
introduction of citrogypsum into the composition of chicken manure on the composting
processes in industrial conditions with constant aeration. It is hypothesized that CG, as well
as other gypsum-containing wastes (PG, FGDG), the effectiveness of which in agriculture
has been proven by numerous studies, will make a positive effect on composting processes.
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Figure 1. Basic technological scheme of citric acid production.

2. Materials and Methods
2.1. Raw Materials

As a gypsum-containing component, we used citrogypsum, a by-product of the bio-
chemical synthesis of citric acid (LLC «Citrobel», Belgorod, Russian), which is a powdery
material with a specific surface area of about 220–250 m2/kg. The content of CaSO4·2H2O
in citrogypsum is about 95–97%. According to the data obtained with a scanning elec-
tron microscope TESCAN MIRA 3 LMU under the support of Andor software (Oxford
Instruments, High Wycombe Buckinghamshire, England) by energy dispersive X-ray spec-
troscopy, the main elements in cytogypsum are Ca and S (Figure 2) and the predominant
oxides are SO3 and CaO (Table 1). An insignificant amount of Fe, Al and Si oxides can be
associated with the presence of soil impurities, as a result of the accumulation and storage
of citrogypsum in open dumps.
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Figure 2. Elemental composition of citrogypsum.

Table 1. Chemical composition of citrogypsum.

Oxide SO3 CaO SiO2 FeO SrO Al2O3 MgO Na2O P2O5 K2O

Weight, % 55.47 43.36 0.54 0.15 0.14 0.13 0.06 0.04 0.08 0.03

The organic component was poultry manure from poultry farms that practiced lit-
terless cage keeping of poultry (BEZRK-Belgrankorm, RF). The initial pH of the chicken
manure was 5.5, the moisture content was 86% and the content of nutrients for the ini-
tial moisture content was: nitrogen (N)–0.5%, phosphorus (P2O5)–1.46% and potassium
(K2O)–1.34%.

2.2. Preparation of Raw Materials

The process of accumulation of waste in the waste disposal site of citrogypsum has
been carried out for 50 years. The total area of the storage facility is about 58.5 thousand m2
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and the total reserves, according to preliminary estimates, are 351,000.2 m3. The moisture
content of waste in its natural state is about 80% by weight. Their sampling from the
storage was made by a bucket excavator with subsequent mixing in order to average the
material composition. Drying was carried out by periodic stirring in natural conditions in
the open air.

For the production of fertilizer, 500 tons of citrogypsum was delivered to the landfill
(moisture content no more than 30%) and chicken droppings of cage keeping in the amount
of 1000 tons (moisture content no more than 80%).

The experimental batch was 1500 tons. The resulting mixture was placed on an open
landfill in piles 3 m wide, 1 m high and 400 m long. Primary kneading was carried out by
a front-end loader (Figure 3). The selection of the ratio of the compost component 1:2 by
weight (citrogypsum: chicken droppings) was due to the fact that this ratio will provide the
optimal value of the N-P-K index after the final mixture is added to the soil horizon of the
region in which this experiment was carried out. After combining the components into one
pile, double mixing was carried out using a compost turner. Further processing consisted
of mixing the mass once every seven days. At the same time, additional homogenization
and enrichment of the mixture with oxygen took place to activate aerobic processes.
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Figure 3. Heaps with compostable mixture.

To further determine the characteristics of the compostable mixture, point samples
were taken and then combined. Samples were taken along the entire length of the collar
at five different points at a depth of 50 cm. To determine the volatile chemical ammonia,
samples were taken into glass jars with ground-in stoppers, after which they were analyzed
immediately upon delivery to the laboratory. The mass of the sample consumed was 1 kg
of the compostable mixture.

The determination of the mass fraction of moisture was carried out by the gravimetric
method by incubating the samples at a temperature of 100–110 ◦C for 5 h until a constant
mass was obtained.

To measure pH, a weighed portion of the fertilizer from a combined sample weighing
5 g was dispersed in 50 mL of 1 M potassium chloride solution, kept for 15 min, mixed
again, and the pH value was measured with an I-160MI ion meter.
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The nitrogen content was determined by the Kjeldahl method. To do this, a weighed
portion of a compostable mixture weighing 10 g is placed in a flask with a capacity of
500 mL and 200 mL of a solution of hydrochloric acid with a molar concentration of
0.05 mol/L is added. The flask is placed on a liquid shaker and shaken for 30 min. It is
allowed to infuse the resulting solution for 12–15 h. The resulting solution is shaken and
filtered through a dry folded filter into a flask with a capacity of 500 mL. The contents on
the filter are washed with 2–3 portions (30–50 cm each) of a hydrochloric acid solution
with a molar concentration of 0.05 mol/L. Next, 30–50 mL of the analyzed solution is
poured into the reaction flask of the distillation unit to determine the content of bound
ammonia. Next, 30–40 mL of a boric acid solution with a mass fraction of 4% was placed in
the receiver, and 3–5 drops of a mixed indicator were added. To the reaction flask, through
the funnel of the device, 25–30 mL of sodium hydroxide solution with a mass fraction of
40% was carefully added. The funnel was rinsed with distilled water so that the volume
of liquid in the reaction flask was 100–150 mL, after which the funnel valve was closed,
the reaction flask was heated, and the solution was brought to a boil. The heating was
controlled so that the boiling was quiet. The completeness of the distillation was controlled
by the condensate sample with Nessler’s reagent.

In the absence of ammonia, the yellow color of Nessler’s reagent should not appear.
The completeness of distillation can be checked using indicator paper (pH 6–7). After
the end of the distillation, the receiver was disconnected, the bubbler was washed with
distilled water, collecting the wash water in the receiver, and the content of the receiver
was titrated with a solution of sulfuric acid with a molar concentration of 0.05 mol/L until
the green color changed to raspberry.

The ammonium and nitrate forms of nitrogen were determined by the colorimetric
method. The main part of ammonium nitrogen in the soil is in the absorbed or exchangeable
condition and is easily displaced from the soil adsorption complex (SAC) by other cations
(for example, potassium).

(SAC)NH4
+ + KCl→ (SAC)K+ + NH4Cl (2)

The formed ammonium chloride when interacting with Nessler’s reagent in an alka-
line medium (K2HgI4) forms a yellow complex compound–ammonium iodide mercurate
(NH2Hg2OI). The intensity of the color obtained is proportional to the ammonium content
in the solution.

NH4Cl + 2K2HgI4 + 4KOH→ NH2Hg2OI + 7KI + KCl + 3H2O (3)

To eliminate the influence of Ca2+ and Mg2+ cations, which interfere with the de-
termination, a Rochelle salt solution (potassium-sodium tartrate KNaC4H4O6·4H2O) is
added to the analyzed sample. The optical density of the solution is determined on a
photocolorimeter or spectrophotometer at a wavelength of 440 nm (blue filter). Inorganic
nitrogen NH4

+, NO3
− and NO2

− were determined by extraction using 2 mol/L KCl and
then analyzed using a Unico 2100 spectrophotometer operating in the visible region of the
spectrum (325–1000 nm). The analysis method is photometric.

The temperature of the composting mixture was recorded by a DS18B20 temperature
sensor and a TEPLOCOM series data logger.

The measurement of the controlled parameters (humidity, temperature, pH, ammonia
volatilization) was carried out every week throughout the composting process for 2 months
(56 days), as well as on the 120th day of composting. Straight compost was used as a
control.

3. Results and Discussions
3.1. Study of the Effect of CG on the Change in the Moisture Content of Compost

Analysis of the graphs of moisture changes showed that the introduction of citrogyp-
sum into the compost helps to reduce the initial moisture content of the mixture from 86 to
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60%, which is due to the lower moisture content of citrogypsum (30%) in comparison with
chicken droppings (Figure 4). By the end of the composting process (120 days), the moisture
content of the control compost was 60%, compost with the addition of CG amounted to
42% and the total moisture loss from the initial one was 14 and 18%, respectively.
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The moisture content in compost is of great importance for the course of microbio-
logical processes. Decomposition processes proceed much faster in thin liquid films that
form on the surface of organic particles. The nature of the particles and their size affect the
value of the optimum moisture content. The most acceptable is the moisture content in the
compost in the range of 50–60%, with a moisture content of less than 30% of the total mass,
the rate of biological processes significantly decreases, and with a moisture content of 20%,
they can completely stop. At the same time, at a humidity of more than 65%, air diffusion
may decrease, which in turn contributes to a significant reduction in degradation and is
accompanied by stenches. If the moisture content is too high, the voids in the compost
structure are filled with water, which limits the access of oxygen to microorganisms [50–52].

Thus, the introduction of citrogypsum optimizes the initial moisture content of the
compost and contributes to its smoother decrease throughout the entire period of the
composting process. Moisture readings are maintained at the optimum level throughout
the composting period. The control sample is characterized by slight jumps in humidity
over time, which can be explained by the negative influence of the initial humidity of the
control compost on air diffusion.

The similarity of the profile of the graphs of the decrease in humidity indicates that
the addition of GCW does not affect the intensity of the change in the controlled indicator.

3.2. Study of the Effect of CG on the Change in the Temperature of the Compost

The results of the effect of CG on the compost temperature are presented in a graph
(Figure 5). The initial temperature in the piles for both types of compost was 20 ◦C. During
the first week, the temperature rise for the control compost was 2 ◦C, while the temperature
of the CG compost increased by 10 ◦C. A larger increase in temperature may indicate the
activation of microbial activity due to the introduction of citrogypsum into the compost,
which is compliant with the data obtained by other researchers [53,54].
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Figure 5. Temperature changes during composting.

The tendency of a gradual rise in temperature for both types of compost is common
with the flesh until the end of the fourth week (day 28) and reaches 30 ◦C for non-additive
compost and 39 ◦C for compost with CG. The smooth rise in temperature during the
indicated period is explained by the release of heat from the vital activity of bacteria or
chemical interaction.

Then, the temperature profile changes. In the control compost by the end of 8 weeks
(56 days) the temperature dropped to 24 ◦C, which indicates the attenuation of the process.
At the same time, the compost with CG showed a jumped in temperature from 40 ◦C
in 35 days and to 60 ◦C on the 49th day. On day 120, the temperature for both types of
compost was 20 ◦C.

It is known that the process of aerobic composting is carried out during several stages
or phases, and that each of them is characterized by its own composition of microorganisms.

In the first preparatory phase, microorganisms adapt to the type of waste and habitat
conditions. The total population of microbes is still small and the temperature is low.

The second phase is mesophilic. The size of the microbial population increases due to
mesophilic organisms adapted to low and moderate temperatures. These organisms break
down soluble and easily degradable components such as simple sugars and carbohydrates.
The deposits of these substances are quickly depleted, and microbes begin to break down
more complex molecules such as cellulose, hemicellulose and proteins. After consuming
these substances, microbes secrete a complex of organic acids, which serve as a food source
for other microorganisms. However, not all of formed organic acids are absorbed, which
leads to their excessive accumulation and, as a result, to decrease in the pH of the medium.
pH serves as an indicator of the end of the second stage of composting. However, this
phenomenon is temporary since an excess of acids leads to the death of microorganisms [55].
The second phase in our case is observed until the end of the fifth week.

The third phase is thermophilic. The size of the microbial population increases, the
general metabolism intensifies and the temperature rises. The mesophilic population is re-
placed by thermophilic species, which grow at temperatures up to 40–60 ◦C [52,55]. During
this phase, there is an accelerated breakdown of proteins, fats, and complex carbohydrates
such as cellulose. After the depletion of food resources, metabolic processes decline, and
the temperature gradually decreases. An increase in temperature above this range has a
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negative effect on the composting process, which is explained by a decrease in the activity
of thermophiles [56]. The introduction of CG in compost helps to optimize composting
processes–in the period from 35 to 56 days, an optimal temperature is created at which
the death of mesophiles occurs and thermophiles come to replace them, which raises the
temperature to 60 ◦C. The duration of the period (more than 14 days) at which the tem-
perature was kept above 55 ◦C gives grounds to conclude that the introduction of CG into
the compost contributes to the creation of conditions under which the death of pathogenic
microorganisms and weed seeds is ensured–the process of compost bio-sterilization [14,57].
It should be noted that the maximum temperature of the control sample was 30 ◦C, which
indicates the absence of a thermophilic phase as such.

The fourth phase is a return to mesophilic conditions. The organic substances remain-
ing as a result of the thermophilic phase form humic complexes. In our case, the fourth
phase begins by the end of the 2nd month and on the 120th day, biological processes and,
as a result, temperature changes completely fade, the temperature of both types of compost
becomes equal to the ambient temperature.

Thus, the introduction of CG into compost contributes to the optimization of com-
posting processes–in the period from 35 to 56 days, an optimal temperature is created
at which the death of mesophiles occurs and thermophiles come to replace them, which
raises the temperature to 60 ◦C. The duration of the period (more than 14 days) at which
the temperature was kept above 55 ◦C allows us to conclude that the introduction of CG
into the compost ensures the creation of conditions leading to the death of pathogenic
microorganisms and weed seeds–the process of compost bio-sterilization [14,57].

3.3. Study of the Effect of CG on the Change in the pH of Compost

In their studies, Singh etc [58] note that the optimal pH range of the compost mass, at
which optimal conditions for anaerobic digestion are provided, is in the range of 6.8 to 7.2,
while Chan notes [59] that a pH range of 7 to 8 is optimal for composting.

The pH of citrogypsum and chicken droppings used in this experiment amounts to 5.5.
The change in the pH of the compost with CG and the control sample is shown in

Figure 6. In the case of the control compost there is an inverse dependence of pH on
temperature (Figure 5).

According to the above data, it can be seen that with the introduction of CG, the pH
of the compost increases up to 14 days and reaches 6.5; this is due to the more intense
release of ammonia, that leads to an alkaline reaction, and after that the pH is stabilized.
During 14–35 days, an increase in pH is observed, that is due to the intensification of
decomposition processes. In 35 days the thermophilic phase is started and a decrease in pH
is observed, which is most likely associated with the formation of low molecular weight
organic acids and CO2, evaporation of ammonia and nitrification during composting. It
should be noticed that the introduction of CG into the compost ensures the maintenance of
the pH of the mixture in the required, previously indicated [58,59] optimal range during
the entire composting process.

For the control compost, the pH values practically did not change during the entire pro-
cess. The maximum pH values were recorded at the 8th week of the process and amounted
to 5.8. Low pH values of the control compost may indicate a little biological activity.
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3.4. Study of the Effect of CG on Ammonia Volatilization

As previously stated, ammonia emissions are the main cause of nitrogen loss during
composting, which leads to a decrease in compost quality and environmental risks in
full-scale composting facilities [12–14].

Figure 7 shows graphs of changes in nitrogen content (Figure 7a) including in terms of
dry matter (Figure 7b). In the compost with cytrogypsum, a stable increase in nitrogen was
recorded, from 2% (beginning of the experiment) to 4.83% (120 days), while in the control
compost, the nitrogen content decreased from 3.57% to 2.35%, respectively (Figure 7b).

In addition to fixing the dynamics of total nitrogen throughout the entire period
of the experiment, at the end of the experiment on the 120th day, the content of ammo-
nium nitrogen was determined. It is thanks to ammonium nitrogen that the process of
immobilization of nitrogen in the mixture occurs (the transformation of mineral forms of
nitrogen by microorganisms into organic substances of microbial cells and metabolites).
The content of ammonium nitrogen for 120 days for compost without cytrogypsum was
0.17% for the initial moisture content, and for compost with cytrogypsum 0.92% for the
initial moisture content.

Based on the result of the amount of nitrogen in the composting mixture, the total
ammonia emission during composting with citrogypsum was significantly less during
aeration than during composting without citrogypsum, which is consistent with the data
from studies using FGDG [37]. The highest NH3 volatilization rate in the present study
was at temperatures above 50 ◦C (Figure 5). Probably, according to the inhibition of the
nitrification process [60], high temperature affects the volatilization of ammonia.

The process, which comes to the end of volatilization of ammonia, can be divided into
three parts:

some of the organic nitrogen is first decomposed to some simple N- containing com-
pounds and stored in compost. These compounds are mineralized after biodegrada-
tion slowdown;
slowly decomposing fraction with a high content of biodegradable nitrogen has been
mineralized;
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NH4
+ after ammonification, in the process of biomass remineralization had influenced

the NH3 emission.
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However, it should be considered that citrogypsum has the ability to absorb ammonia
and, even at high temperatures, the percentage of its volatilization is minimal. Further,
the addition of citrogypsum reacted [61] ammonium carbonate to ammonium sulfate
with the subsequent formation of calcium carbonate. Nitrogen in the form of ammonium
carbonate, unlike ammonium sulfate, tends to volatilize. During the study, it was noted that
the addition of citrogypsum reduced NH3 volatilization by 76.45% compared to compost
without additives. According to the results of other studies [14], aluminum sulfate, chloride
salts of aluminum, calcium and magnesium, FGDG and sodium bisulfate reduce NH3
volatilization by 0–87%, depending on the rate and intervals of incubation of bacteria.
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After the ammonification process, under the influence of other microorganisms–
nitrifiers–occurs, or so-called nitrification–the oxidation of ammonia into nitric acid. The
nitrification process takes place in two stages: the oxidation of ammonia to nitrous acid
and the transition of nitrous acid to nitric acid. The first stage is due to the vital activity of
bacteria of the genera Nitrosomonas, Nitrosocystis, Nitrosolobus and Nitrosospira.

The transformation of a positively charged NH4
+ cation into an NO2

− anion promotes
acidification of the medium, thereby increasing the solubility of a few compounds. Nitrifiers
of the second phase–bacteria of the genera Nitrobacter, Nitrospira and Nitrococcus–make
the oxidation of nitrite ion into nitrate ion. Then nitric acid combines with the bases of
the soil and forms salts–nitrates. The dynamics of the nitrification process in compost
depends on weather conditions, on the composition of the compost, its dispersion, aeration,
humidity and degree of homogeneity and varies greatly over time.

The field of attenuation of biological processes of nitrification and denitrification, the
course of which is accompanied by an increase in temperature (Figure 5) and a change
in pH (Figure 6), the active phase of ammonia emission begins, in our case after 56 days.
Usually this phase is accompanied by the release of an unpleasant odor and negative
impact on the atmospheric air [1–3]. However, the introduction of citrogypsum into the
compost makes it possible to bind the released ammonia according to the Formula (1),
which explains the increase in the nitrogen content in the compost (Figure 7b). At the same
time, the process of emission of ammonia into the atmosphere continues in the control
compost, as evidenced by a decrease in nitrogen indicators in its composition.

Thus, in comparison with the control sample, in which the nitrogen content during
the experiment decreased by 1.5 times (when converted to dry matter), compost with
cytogypsum will have a higher nutritional value and lower emissions of harmful substances
into the atmosphere, as evidenced by an increase nitrogen content 2.4 times by the end of
the experiment (Figure 7b).

The data on ammonium nitrogen, the content of which in the compost with CG by the
end of the experiment (day 120) was 5.4 times higher than in the control composition, also
confirm the effectiveness of the addition of citrogypsum in composting chicken manure.

4. Conclusions

Based on the results of a technological experiment in the field, it can be concluded
that the use of citrogypsum as a compost component is effective. The introduction of
citrogypsum into the composition of the compost helps to optimize the moisture, tempera-
ture and pH of the mixture, which has a beneficial effect on the course of the composting
process. The addition of citrogypsum helps to reduce ammonia emissions and the emission
of harmful substances into the atmosphere during the entire period of composting of
litterless chicken manure, as well as the accumulation of ammonia nitrogen and increase
the nutritional value of the compost mixture.
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