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Abstract: Jujube tree yields in dryland saline soils are restricted by water shortages and soil salinity.
Converting traditional flood irrigation to drip irrigation would solve water deficit and salt stress.
The root distribution reacts primarily to the availability of water and nutrients. However, there
is little information about the response of jujube roots to the change from flood irrigation to drip
irrigation. In this context, a two–year experiment was carried out to reveal the effects of the change
from long–term flood irrigation to drip irrigation on soil water, root distribution, fruit yield, and water
use efficiency (WUE) of jujube trees. In this study, drip irrigation amounts were designed with three
levels, i.e., 880 mm (W1), 660 mm (W2), 440 mm (W3), and the flood irrigation of 1100 mm was
designed as the control (CK). The results showed that replacing flood irrigation with drip irrigation
significantly altered soil water distribution and increased soil moisture in the topsoil (0–40 cm). In the
drip irrigation treatments with high levels, soil water storage in the 0–60 cm soil layer at the flowering
and fruit setting, and fruit swelling stages of jujube trees increased significantly compared with the
flood irrigation. After two consecutive years of drip irrigation, the treatments with higher irrigation
levels increased root length density (RLD) in 0–60 cm soil depth but decreased that in the 60–100 cm
depth. In the horizontal direction, higher irrigation levels increased RLD in the distance of 0–50 cm,
while reducing RLD in the distance of 50–100 cm. However, the opposite conclusion was obtained in
W3 treatment. Additionally, in the second year of drip irrigation, W2 treatment (660 mm) significantly
improved yield and WUE, with an increasing of 7.6% for yield and 60.3% for WUE compared to the
flood irrigation. In summary, converting flood irrigation to drip irrigation is useful in regulating
root distribution and improving WUE, which would be a promising method in jujube cultivation in
arid regions.

Keywords: drip irrigation; root length density; jujube tree; soil moisture; water use efficiency

1. Introduction

Jujube cultivation originated in China and has been continued for more than 4000 years [1].
It is mainly cultivated in Shandong, Hebei, Shanxi, Shaanxi, Henan provinces and Xinjiang
Uygur Autonomous Region in China. Among them, Xinjiang has become the largest jujube
producing area in China due to its special climatic environments [2,3]. Xinjiang is an
arid area with a shortage of water resources, most crops in this area have been planted
with advanced drip irrigation technology [4]. However, most jujube trees are irrigated
by traditional flood irrigation, which has low water use efficiency [5]. At the same time,
long-term flood irrigation in arid areas can easily lead to soil compaction and secondary
salinization, which results in reducing crop yields and soil quality [6,7]. Therefore, studying
the impact of changes in irrigation methods on the water requirement and plant growth of
jujube trees is of great significance for improving jujube yields and saving water resources
in arid areas.

Agriculture 2021, 11, 1184. https://doi.org/10.3390/agriculture11121184 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture11121184
https://doi.org/10.3390/agriculture11121184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11121184
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11121184?type=check_update&version=1


Agriculture 2021, 11, 1184 2 of 16

Root activity and distribution are critical for plants to absorb water and nutrients,
as well as synthesize various physiologically-active substances [8–10]. Environmental fac-
tors and agriculture management practices play important roles in root development [11].
For example, irrigation methods can regulate plant root development by changing soil
water distribution and assimilate partitioning [12–14]. Drip irrigation decreased the redun-
dancy growth of roots, which can effectively regulate root distribution [15–17]. In com-
parison to furrow irrigation, drip irrigation can significantly improve root development
and yield of maize [18]. A previous study found that drip irrigation can significantly im-
prove wheat root traits in the 0–30 cm soil layer when compared with conventional border
irrigation [19]. Another study reported that low irrigation level decreased the maximum
rooting depth of jujube, and reduced the use of deep soil water, which might be helpful
to control secondary soil salinization [20]. Furthermore, compared to the micro–sprinkler
irrigation methods, the root length of avocado trees under drip irrigation was increased by
30%, and the number of apple tree roots was significantly changed, of which both factors
are favorable for plant growth and yield improvement [21]. The characteristics of root
distribution of fruit tree were easily influenced by irrigation methods and irrigation levels.
However, the impact of the irrigation methods changing (drip irrigation instead of flood
irrigation) on root redistribution in the arid region is still unknown.

As a perennial fruit tree, the development of jujube tree is easily influenced by climate
factors, tree ages, and soil moisture and nutrient status. Roots of this tree were primarily
distributed in the top 60 cm soil layer vertically and 60 cm horizontal distance from the
trunk [22]. This tree absorbs water mainly from shallow layers, but deeper soil water also
might be extracted to sustain growth when soil water in the topsoil could not meet the plant
growth needs. Drip irrigation is a localized irrigation technology, which limits the scope
of soil moisture distribution compared with flood irrigation, which might have negative
effects on root growth of jujube tree beyond the wetting range. In recent years, the local
government has tried to use drip irrigation instead of flood irrigation to irrigate the jujube
orchards, but the root system of the jujube trees in the long-term flood irrigation has been
adapted to the flood irrigation methods. Therefore, drip irrigation technology has not
been widely promoted and applied. Despite a lot of experiments focused on the different
irrigation methods on root distribution and water utilization in jujube orchard, there was
little information about the adaptive response of jujube root development to changing soil
water distribution [23–25]. We hypothesized that drip irrigation could reconstruct jujube
root by contracting water distribution, and appropriate irrigation levels could increase
jujube yield and water use efficiency. Therefore, the objectives of this study were (i) to
investigate the effects of replacing long–term flood irrigation with drip irrigation on soil
water and root redistribution of jujube, (ii) to measure the effects of irrigation amounts on
perennial jujube yield and water use efficiency after conversion from flood irrigation to
drip irrigation.

2. Materials and Methods
2.1. Experimental Site

The experiment was conducted in 2018–2019 at the Experimental Station (81◦13′ E,
40◦34′ N; altitude of 1015 m) of the 10th Regiment of the First Division of the Xinjiang
Production and Construction Corps. The study site is located on the northern edge of the
Taklimakan Desert with a typical continental arid desert climate that is characterized by hot
summers with low rainfall, cold winters with little snow, and strong surface evaporation.
Based on Aksu Meteorological Station, over the past 30 years, the average annual rainfall
and evapotranspiration were 50 and 2200 mm, respectively. The annual sunshine duration
in this region was observed 2556–2992 h, the annual mean temperature was 8.4–11.4 ◦C,
and the annual frost–free season recorded 180–221 days, respectively. The rainfall during
the jujube growth period (April–October) in 2018 and 2019 was 41.6 mm and 61.2 mm,
respectively. The depth to the groundwater table was more than 3.5 m. A weather station
(HOBO U30; Onset, Bourne, MA, USA) was used to automatically monitor and record
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climatic variables. Figure 1 presents the maximum and minimum temperature (Tmax and
Tmin), precipitation (P), and reference evapotranspiration (ETo) during the jujube growth
period in 2018 and 2019. The basic properties of soil in the 0–100 cm layer are shown
in Table 1.
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Figure 1. Maximum temperature (Tmax), minimum temperature (Tmin), reference crop evapotranspiration (ET0), and pre-
cipitation (P) in (a) 2018 and (b) 2019.

Table 1. Basic physical and chemical properties of soil in the test field.

Soil Depth
(cm) Soil Texture θFC

(cm3 cm−3)

Soil Bulk
Density
(g cm−3)

Total Nitrogen
(g kg−1)

Available
Phosphorus
(mg kg−1)

Available
Potassium
(mg kg−1)

0–20 Sandy loam soil 0.316 1.52 1.23 50.24 121.58
20–40 Sandy loam soil 0.342 1.53 1.27 48.37 109.38
40–60 Sandy loam soil 0.349 1.54 1.26 42.41 96.57
60–80 Sandy soil 0.322 1.57 0.94 36.32 87.72

80–100 Sandy soil 0.319 1.57 0.67 28.71 63.21

2.2. Experimental Design and Field Management

In this study, Jujube trees (Zizyphus jujube Mill.) were planted in 2007, grafted in
2008, and cultivated for 11 years. The densely-planted orchard has a planting density of
6253 plants ha−1 with a row spacing of 2.0 m and plant spacing of 0.8 m. From 2007 to 2017,
the trees were cultivated with flood irrigation continuously. Since 2018, drip irrigation was
adopted with two pipes per row. Drip line was placed at a distance of 0.2 m to the tree row
on each side. A labyrinth thin-wall drip irrigation line with an inner diameter of 16 mm
was used with an emitter spacing of 0.3 m and emitter discharge of 2.8 L h−1 in a system
operating pressure of 0.1 MPa.

In order to find the optimized water management of jujube from traditional flood
irrigation to drip irrigation, we comprehensively analyzed the local long-term drip irri-
gation amount (360–470 mm) [26] and the traditional flood irrigation amount (1100 mm)
during the growth period of jujube tree. Drip irrigation was conducted using three dif-
ferent amounts: 80%, 60%, and 40% of the flood irrigation amounts, which translated to
880 mm (W1), 660 mm (W2), and 440 mm (W3). A flood irrigation treatment was used
as a control group (CK). As a result, a total of four treatments with three replicates were
conducted in 12 plots. A completely randomised block design was adopted for the experi-
ment. Each test plot had an area of 48 m2 (8 m × 6 m), and a separate water gauge was
installed on the pipeline to monitor and control the irrigation water volume. According to
the characteristics of drip irrigation and the water requirement law of jujube [27], a total of
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12 times of irrigation were applied during the growth period. Specifically, irrigation was
applied every 15 days during Germination and New shoot, which the first irrigation was
in late May. During flowering and fruit setting, the irrigation frequency was once every
7 days, and during fruit swelling, the irrigation frequency was once every 10 days. Then,
the last irrigation was applied during fruit ripening. The CK consisted of the local flood
irrigation practice, which comprised of a total of six irrigation events during the growth
period. Here, only one irrigation was applied during Germination and New shoot. During
flowering, fruit setting and fruit swelling, the irrigation frequency was once every 20 days.
Then, the last irrigation was applied during fruit ripening. Irrigation scheduling for drip
irrigation and flood irrigation are shown in Table 2.

Table 2. Irrigation scheduling of jujube in 2018 and 2019.

Year Growth Stage Period
Irrigation Treatment (mm) Irrigation

Events
Drip/FloodW1 W2 W3 CK

2018

Germination and
New shoot 4/30–6/15 146.7 110 73.3 183.3 2/1

Flowering and
Fruit setting 6/16–7/20 366.6 275 183.3 366.7 5/2

Fruit swelling 7/21–8/31 293.4 220 146.7 366.7 4/2
Fruit ripening 9/1–10/20 73.3 55 36.7 183.3 1/1

2019

Germination and
New shoot 5/3–6/20 146.7 110 73.3 183.3 2/1

Flowering and
Fruit setting 6/21–7/23 366.6 275 183.3 366.7 5/2

Fruit swelling 7/24–9/3 293.4 220 146.7 366.7 4/2
Fruit ripening 9/4–10/25 73.3 55 36.7 183.3 1/1

W1, W2, and W3 indicate the seasonal amounts of 880, 660, and 440 mm under drip irrigation. CK indicates the seasonal amount of
1100 mm under flood irrigation.

2.3. Measurements
2.3.1. Soil Moisture

Soil moisture content was measured using the oven drying method. Soil cores were
sampled at the horizontal distances of 0, 20, 35, 50, 70, and 100 cm from the jujube trunk in a
direction perpendicular to the drip irrigation tape. At each sampling site, soil samples were
collected every 20 cm in the 0–100 cm soil profile vertically. There were 30 soil samples
in each plot at each sampling date. Sampling was conducted at 24 h after irrigation to
determine soil water distribution. Additional sampling was carried out at the beginning
and end of each growth stage to determine soil water storage (SWS, mm). SWS is calculated
as follows:

SWS = ∑n
i=1(swci Hi × 10) (1)

where swci (%) is the volumetric moisture content in soil layer i, Hi (cm) is the depth of
soil layer i, and n is the number of soil layers.

Evapotranspiration (ET, mm) is calculated as follows:

ET = I + P + K− C + ∆SWS (2)

where I (mm) is the irrigation amount, P (mm) represents the rainfall, K (mm) denotes
the upward capillary flow into the root zone, C (mm) the deep percolation, and ∆SWS is
the soil water storage change in the soil profile of 0–100 cm. Because of the groundwater
table being more than 3.5 m and the low rate of drip irrigation as well as a clay layer in
the soil layer more than 1 m underground in the test area, the present study ignored the
groundwater supply and the volume of drained water, thereby C = 0 and K = 0.
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Water use efficiency (WUE, kg m−3) is calculated as follows:

WUE = Y/ET/10 (3)

where Y (kg ha−1) is the jujube fruit yield. At harvesting, five jujube trees were randomly
chosen from each plot to measure the jujube fruit dry weight (yield).

2.3.2. Root Sampling

Three jujube trees with uniform growth were selected in each experimental plot for
root sampling. A sampling control area was established for each jujube tree using the
following steps: (1) delineating an 80 cm × 100 cm rectangle by placing the two short
vertices (80 cm) at the centers between the test jujube plants and the adjacent plants
in the same row; (2) delineating a circular radius of 100 cm centered at the sampling
plant but confined in the rectangle. This radius was used to determine the sampling
control area of the roots. Sampling was conducted at four points at horizontal distances of
0–25 cm, 25–50 cm, 50–75 cm, and 75–100 cm from the plant within the sampling control
area, respectively. To improve the accuracy of the data, spatial variability for jujube root
distribution and different numbers of sampling were designed at different sites from the
jujube tree in the horizontal direction, i.e., one sampling point at 0–25 cm, two at 25–50 cm,
three at 50–75 cm, and three at 75–100 cm. At each sampling point, samples were collected
every 20 cm within 0–100 cm depth (Figure 2).
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Figure 2. Schematic of root sampling.

Sampling was conducted at the end of the growth period (around mid-October every
year) using a root drill with 10 cm in inner diameter and 20 cm in barrel length. The sam-
pling was repeated three times. The residual roots, grass roots, and other impurities were
removed from the samples, and then live jujube roots were harvested, rinsed clean and
scanned using a root scanner to generate black–and–white JPG images for subsequent
analysis. The images were analyzed using WinRHIZO (Professional version, Regent In-
struments Inc. Quebec, Canada) image analysis software to obtain the root length of each
sample. The root length density (RLD) was calculated by dividing the root length by the
corresponding soil volume.

2.4. Root Simulation

A two-dimensional distribution model of jujube root under drip irrigation was de-
veloped. Based on the field data and previous studies, the roots distribution has the
relation of negative exponential function with the vertical and horizontal distance varia-
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tion [28]. The two-dimensional model proposed by Vrugt et al. [29] could simulate crop
root distribution well. The model was as following:

RLD(z, r) = (1− z
zm

)(1− r
rm

)e−(
pz
zm |z

∗−z|+ pr
rm |r

∗−r|) (4)

where RLD (z, r) is root long density (m m−3); r and z are the horizontal and vertical
distances, respectively, from the central point (Jujube tree) (m); zm and rm are the horizontal
and vertical distances where the highest RLD was obtained (m); z* and r* are the horizontal
and vertical maximum extend distances of jujube tree (m), respectively.

However, this model only simulated the root distribution located at different positions
while the superposition of crop root was ignored. In this study, the jujube orchard with high
density was irrigated for many years, and the plant spacing and row spacing were relatively
low, which the root system inevitably has different degrees of superposition in different
positions. Therefore, in order to improve the simulation accuracy, we improved the model
by considering the root superposition factor. The improved model is as following:

RLD(z, r) = ∑5
i=0 RLDi(z, r) = ∑5

i=0 RLD(z, ri) (5)

where r0 = r; r1 = r2 =
√

d2 + r2; r3 = r5 =
√

d2 + (D− r)2; r4 = D− r; d is plant spacing,
which is 0.8 m in this study; D is row spacing, which is 2 m in this study (Figure 3).
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Figure 3. Schematic of jujube root two-dimensional distribution model. The abbreviations of r0, r1,
r2, r3, r4, and r5 are the distance between the root of jujube tree and the sampling point. D is row
spacing, d is plant spacing.

2.5. Data Analysis

Data processing and analysis of variance (ANOVA) were performed using the statisti-
cal software SPSS 17.0 (IBM Corp., Armonk, NY, USA). A Kolmogorov-Smirnov test was
used to measure the frequency distributions of the dependent and independent variables.
Differences between treatments were determined with the Duncan test at a significance
level of 0.05. Figures were plotted using Origin 2020 (OriginLab Corp., Northampton,
MA, USA).



Agriculture 2021, 11, 1184 7 of 16

3. Results
3.1. Soil Water Distribution

The spatial distribution of soil water content under three drip irrigation treatments
versus flood irrigation is shown in Figure 4. After one irrigation event 24 h (23 July 2018),
the red line in the figure represents 65% of the field water holding capacity. Two-year
experimental data showed that drip irrigation (W1–W3) effectively influenced soil water
distribution compared to flood irrigation [9], the soil water content was significantly
decreased. Moreover, there were significant differences in soil water distribution under
different drip irrigation treatments (65% field capacity as limit). The soil volume with soil
moisture above 65% of the soil water holding capacity decreased with the lower irrigation
water amounts.
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The sampling date was 23 July 2018, after 24 h of one irrigation event.

3.2. Soil Water Storage

Figure 5 presents the change of soil water storage (SWS) in the 0–100 cm soil layer
at different growth stages of jujube under different treatments in 2018. Compared with
flood irrigation, drip irrigation (W1, W2) significantly increased the SWS of the 0–60 cm
soil layer during the key growth stages of jujube trees, while it was significantly reduced
in the 60–100 cm soil layer. There were significant differences in SWS under different
drip irrigation treatments. SWS of the 0–60 cm depth in W1 was significantly higher in
the flowering, fruit setting stage, and fruit swelling stage, while SWS in W2 was only
marked higher in the fruit swelling stage. As the low irrigation amount in W3, SWS was
significantly lower than other treatments during the whole growing season.
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3.3. Root Length Density
3.3.1. Vertical Distribution of RLD

As shown in Figure 6, irrigation methods significantly changed the distribution of
the roots in different soil layers. RLD was gradually decreased with the increase in soil
depth in all treatments, while the decrease rate in vertical direction was different between
drip irrigation and flood irrigation. After the first year of drip irrigation, the jujube
roots in drip irrigation treatments (W1–W3) were mostly concentrated in the 0–60 cm
soil layer with the maximum RLD in the 0–20 cm soil layer. The W1 and W2 treatments
significantly changed the root length proportion and RLD at each soil layer. Compared
with CK, the W1 and W2 treatments significantly increased the concentration of roots in
shallow layers, but decreased in the deep layers. However, the shallow roots in W3 did not
significantly differ from CK but increased the concentration of deep roots. After two-year
application of drip irrigation, the W1 and W2 treatments significantly increased the mean
RLD by 29.2% and 21.4% than CK in the 0–60 cm soil layers but decreased by 44.3% and
31% in the 60–100 cm soil layers. The mean RLD in W3 was 7.5% lower than that in CK in
the 0–60 cm soil layers but increased the mean RLD by 24.5% in the 60–100 soil layers.
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3.3.2. Horizontal Distribution of RLD

After long-term flood irrigation, the RLD of jujube trees gradually decreased with the
increase in the horizontal distance, while the decrease rate was relatively small (Figure 7).
After flood irrigation was replaced by drip irrigation, obvious changes occurred in the
horizontal distribution of jujube root systems. In 2018 and 2019, the three drip irriga-
tion treatments (W1–W3) all led to maximum RLD at a horizontal distance of 0–25 cm.
Drip irrigation significantly increased RLD near the drip irrigation tape and significantly
decreased it farther away from the tape. Root distribution differed depending on the
irrigation amount. After two-year application of drip irrigation, the jujube root system
in the horizontal direction in W1 and W2 was mainly concentrated at the horizontal dis-
tance of 0–50 cm, the mean RLD increased 39.6% and 25.8% than CK, but significantly
reduced at the horizontal distance of 50–100 cm. On the contrary, the RLD in W3 showed a
phenomenon that the two ends were high and the middle was low along the horizontal
direction, especially at the position of 75–100 cm increased by 15.02% compared with CK.
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3.3.3. RLD of Different Diameter Roots

In the jujube orchard with long–term flood irrigation, RLD of diameter <2 mm (ab-
sorption roots) was markedly greater than that with diameter >2 mm (conducting roots)
(Table 3). After one year of applying drip irrigation, both W1 and W2 significantly increased
the RLD of jujube absorption roots in shallow soil compared with CK, but the increase
rate gradually decreased as soil depth increased. There was not significant difference in
RLD of absorption roots in the 0–40 cm soil layer between W3 and CK, but the difference
in the soil layer of 40–100 cm was significant. The RLD of diameter >2 mm (conductive
roots) in the topsoil of W1 and W2 was significantly lower than that of CK. Jujube trees in
W3 had a similar value of RLD (conducting roots) in the 0–40 cm soil layer compared with
CK, but markedly higher than CK in the 60–80 cm soil layer. After two-year application
of drip irrigation, the RLD of absorption roots in the 0–60 cm soil layer in W1 and W2 in-
creased significantly compared with the value in 2018. The RLD of absorption roots in the
40–60 cm soil layer in W3 decreased markedly. In general, by replacing flood irrigation
with drip irrigation, the suitable irrigation amount could effectively improve the growth of
the absorbing roots and limit the growth of the conducting roots. However, an excessively
low irrigation amount decreased the growth of absorbing roots in shallow soil, whereas it
promoted the growth of conducting roots, which became more obvious in deep soil.

Table 3. Distribution of RLD of absorption roots (d < 2 mm) and conducting roots (d > 2 mm) of jujube in different treatments
in 2018 and 2019.

Year
Soil

Depth
(cm)

d < 2 mm d > 2 mm

W1 W2 W3 CK W1 W2 W3 CK

2018

0–20 2101.6 aA 1710.7 aB 1480.9 aC 1451.4 aC 94.9 aA 51.4 aC 80.8 bB 77.7 bB

20–40 1581.1 bA 1367.3 bB 1150.5 bC 1162.8 bC 42.4 bB 44.7 abB 117.1 aA 118.1 aA

40–60 946.1 cB 731.1 cC 1111.4 bA 929.7 cB 38.8 bBC 38.5 bcBC 45.4 cB 66.2 bcA

60–80 519.8 dC 500.2 dC 864.2 cA 760.3 dB 8.4 cD 16.9 dC 81.9 bA 51.2 cB

80–100 377.8 eC 404.8 eC 711.9 dA 568.3 eB 9.8 cA 8.9 eA 10.9 dA 13.7 dA

2019

0–20 2070.2 aA 1955.2 aB 1412.2 aC 1499.1 aC 107.1 aA 46.4 aD 91.7 bB 76.3 bC

20–40 1737.7 bA 1662.9 bA 1149.9 bB 1181.7 bB 48.8 bB 47.7 aB 110.5 aA 118.9 aA

40–60 995.2 cA 931.1 cA 753.2 deB 918.1 cA 34.3 cC 46.8 aBC 53.4 cB 69.3 bA

60–80 425.5 dD 521.1 dC 842.3 cA 707.4 dB 16.6 dD 31.4 bC 93.5 bA 48.5 cB

80–100 325.4 eC 391.3 eC 780.0 cdA 631.8 edB 11.6 dB 21.5 cA 29.2 dA 11.9 dB

W1, W2, and W3 indicate irrigation amounts of 880, 660, and 440 mm under drip irrigation, CK indicates irrigation amount of 1100 mm
under flood irrigation. Different lower- and upper-case letters, respectively, indicate significant differences among same column and same
row at 0.05 level.

3.4. Model Application

In Table 4 and Figure 8, we compared the measured data and simulated values of
RLD using the improved model. In the treatment of W1, W2, and CK, there was a good
correlation between RLD and the parameters of two-dimensional model, and the correlation
coefficients were all greater than 0.8. In the first year, transferring to drip irrigation from
flooding irrigation, the determination coefficient between measured data and simulated
values in W3 was 0.7, and in the second year, the determination coefficient decreased to
0.61. Here, Pz and Pr reflect the attenuation rate of RLD along the vertical and horizontal
directions, respectively. In W1 and W2, Pz and Pr were higher than that in CK, and RSME
was lower than other treatments. However, Pz in W3 was lower than CK, and RMSE in
W3 was significantly higher than other treatments.
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Table 4. Simulation results of jujube root two-dimensional distribution model.

Year Irrigation
Treatment Pz Pr RMSE R2

2018

W1 3.29 1.40 0.34 0.94
W2 2.69 1.27 0.44 0.90
W3 1.19 0.74 0.84 0.70
CK 1.80 0.96 0.70 0.84

2019

W1 3.38 1.45 0.42 0.90
W2 2.93 2.03 0.51 0.84
W3 1.37 1.53 0.86 0.61
CK 1.98 1.04 0.71 0.83

W1, W2, and W3 indicate irrigation amounts of 880, 660, and 440 mm under drip irrigation, CK indicates irrigation
amount of 1100 mm under flood irrigation. Pz and Pr reflect the attenuation rate of root length density (RLD)
along the vertical and horizontal directions, respectively. RMSE represents the root mean squared error.
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3.5. Yield and WUE

The effects of different irrigation treatments on jujube yield and WUE are shown
in Table 5. Compared with flood irrigation, drip irrigation significantly decreased water
consumption and improved WUE over the two years. ET of drip–irrigated jujube gradually
increased with the increase in irrigation volume, while it was in reverse for WUE. After
one year using drip irrigation (2018), the jujube yield in W1 in 2018 reached 8735 kg ha−1

with increased yield and water use efficiency by 8.6% and 26.6%, respectively, compared
with CK. There was no significant difference in jujube yield between W2 and CK. After
two years (2019) using drip irrigation, jujube yields in W1 and W2 were 9.91% and 7.64%
higher than CK, respectively. The WUE of jujube under drip irrigation was 50% higher (on
average) than that under CK across the two seasons.
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Table 5. Jujube fruit yield (Y), evapotranspiration (ET), and water use efficiency (WUE) in different
irrigation treatments in 2018 and 2019.

Year Treatment Y (kg ha−1) ET (mm) WUE (kg m−3)

2018

W1 8735 ± 259 a 890.3 ± 48.2 b 98.1 ± 3.1 c
W2 8297 ± 218 b 687.9 ± 38.6 c 120.6 ± 4.2 b
W3 6528 ± 176 c 480.2 ± 35.7 d 135.9 ± 4.6 a
CK 8043 ± 279 b 1037.7 ± 53.3 a 77.5 ± 1.9 d

2019

W1 8896 ± 247 a 898.3 ± 38.6 b 99.0 ± 3.8 b
W2 8712 ± 276 a 694.2 ± 31.2 c 125.5 ± 3.6 a
W3 6022 ± 165 c 489.3 ± 28.3 d 123.1 ± 2.9 a
CK 8094 ± 242 b 1041.3 ± 47.6 a 77.7 ± 3.2 c

W1, W2, and W3 indicate irrigation amounts of 880, 660, and 440 mm under drip irrigation, CK indicates irrigation
amount of 1100 mm under flood irrigation. Different lower-case letters indicate significant differences at 0.05 level
among various groups.

4. Discussion

This study indicated that irrigation methods significantly changed soil water distri-
bution (Figure 4). A good condition of soil water can facilitate root growth and enhance
the ability of crops to absorb water and nutrients from the soil [30]. Soil water content
under flood irrigation is distributed more uniformly, but it causes deep water leakage and
soil evaporation [31]. Drip irrigation is a localized irrigation method, where soil water is
mainly concentrated near the crop root zone, which can improve the utilization efficiency of
water and fertilizers [32–34]. This study found that, under the W1 treatment, the soil water
content in all soil layers within 0–50 cm at the horizontal direction was higher than 21.42%.
However, under the W3 treatment, the soil moisture content was higher than 21.42% only
in the 0–60 cm soil layer at the horizontal distance of 0–35 cm. The results indicate that drip
irrigation can effectively impact soil moisture distribution and the scope of soil wetting
area. Flood irrigation has the characteristics of a high irrigation rate and long irrigation
interval, resulting in soil water content either too high or too low, which is unfavorable
for the growth of plant roots [35]. We also found that the soil water content under flood
irrigation was much greater than that under drip irrigation (Figure 4), but the SWS showed
a large fluctuation during the growth period (Figure 5). At the jujube key growth stages,
e.g., the fruit swelling stage, the soil water storage of the 0–60 cm soil layer in W1 and
W2 was significantly higher than that in CK. It is well known that drip irrigation not only
has a low irrigation rate but also has relatively short irrigation intervals. So, drip irrigation
can provide a relatively good and stable soil moisture environment for jujube trees under a
proper control condition.

Information of root distribution is critical for understanding soil water–nutrient cy-
cling. Previous studies have shown that the economical yield of crops was affected by the
ability of the root system to uptake water and nutrients from soil [5]. Many studies have
shown that long–term irrigation management has an important impact on the distribu-
tion of fruit tree roots [12,36,37]. The present results showed that the spatial distribution
of jujube roots was relatively stable under the condition of long–term flood irrigation
(Figures 6 and 7). The density of jujube roots gradually decreased with an increase in
the vertical depth and in the horizontal direction. However, the spatial variation of root
distribution of jujube was small, which was consistent with soil water distribution under
the flood irrigation condition. Changes in irrigation practices directly affect the soil water
distribution, which in turn affects root growth and distribution [14,38]. After replacing
flood irrigation with drip irrigation, compared with CK, both W1 and W2 increased RLD
in the 0–60 cm soil layer and horizontally at 0–50 cm from the trunk, while W3 increased
RLD in deep soil and at far horizontal distances. The results indicate that drip irrigation
with different irrigation rates effectively regulated jujube roots development by changing
soil moisture distribution. W3 with low irrigation amount significantly reduced soil water
content, which resulted in the limitation of water stress on the root system. Therefore,
it would stimulate the jujube roots to extend out of the soil water pattern to absorb soil
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water [39]. Song et al. [40] also found that the maximum rooting depth of apple trees was
deeper in a dry year than that in a normal year in order to acquire of water by root system
from deeper soil depth. This conclusion was supported by the present observation that soil
water content in deep soil in W3 underwent continuous decline during the jujube growth
period. Soar and Loveys [41] also reported that grapevines grown under a micro–sprinkler
irrigation condition over several years showed significant changes in the development of a
root system after the irrigation practice was changed to drip irrigation. However, a Brazil–
based experiment reported an opposite conclusion that differences in irrigation practices
did not present a significant impact on grape root systems [42]. However, the rainfall
during the growing season of crops in Brazil was 512 mm, while the rainfall in the present
test area was only 50 mm, indicating that abundant rainfall would reduce the impact
of irrigation on crop root systems and could explain the discrepancies between the two
different reports. Therefore, the distribution of crop root systems in arid regions with low
rainfall is much more dependent on irrigation than those in regions with abundant rainfall.

Although the improved model combined the factors of crop root superposition caused
by low row spacing of jujube trees, the spatial superposition degree of roots in W3 was
significantly higher than that in other treatments, resulting in small determination coeffi-
cient. It was shown that, with Pz and Pr, the decay rate of jujube roots was lower along the
horizontal direction than the vertical direction, and the phenomenon was more obvious
with increasing irrigation levels (Figure 8). The results show that the two-dimensional
model could simulate the two-dimensional distribution of the root system of jujube well,
but the simulation accuracy of the two-dimensional model was decreased under water
stress (Table 4).

Crop yield reflects the management level of the agricultural system and soil produc-
tivity. WUE is an indicator of the relationship between crop yield and water consump-
tion [43,44]. In arid regions where water resources are scarce, effective improvement of
WUE while ensuring an increased or stable crop yield is essential for the sustainability
of regional agriculture. As an efficient and accurate irrigation technology, drip irrigation
can accurately deliver water and nutrients required by crops to the root zone, thereby
improving crop yield and WUE [5,45–47]. The consecutive two–year drip irrigation ex-
periment showed that suitable irrigation amounts can significantly improve WUE and
ensure a stable increase in jujube yield (Table 5). The reason may be that the root system
serves as the only channel for crops to absorb soil water and nutrients, and its growth and
development directly reflect the utilization of soil resources by plants [48]. In the present
experiment, the treatments of W1 and W2 significantly increased RLD of the absorbing
roots, and improved matching between water distribution and root absorption, which may
facilitate jujube root uptake of soil water and nutrients and increase jujube fruit yield and
WUE. Plants subjected to water stress will first ensure the growth of root system, but it
is unfavorable to plant growth [49]. It was also concluded from our experiment that the
relatively low content of soil moisture in the topsoil in W3 did not promote the growth of
absorbing roots in shallow soil layers, and the RLD of absorbing and conducting roots in
deep soil were significantly increased with continuous water deficit. However, the fruit
yield in W3 was minimum in the two seasons (Table 5). Huang et al. [50] considered that
irrigation amounts were too low to support the crop which caused water deficit stress
in the plants and had a negative impact on crop yield. Equally, excessive irrigation was
also unfavorable for promoting crop yield and could reduce WUE [51], which was also
confirmed by the yield and WUE of jujube in W1. Therefore, by using drip irrigation
instead of flood irrigation, irrigation amount could be optimally controlled to improve
soil water distribution in the root zone and regulate roots spatial distribution, which will
further improve crop yield and WUE.

5. Conclusions

The two-year experiment showed that drip irrigation concentrated soil water distri-
bution in a smaller range, decreased soil moisture at the 60–100 cm depth vertically and
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>35 cm from trunk horizontally. Under drip irrigation, soil moisture and soil water storage
increased with the increase in irrigation level. Drip irrigation significantly increased the
RLD of jujube tree in the topsoil layer (0–40 cm) compared with flood irrigation. However,
drip irrigation with low irrigation amounts increased the RLD in the deeper soil layer
(40–100 cm). In 2019, the RLD within 50 cm from trunk was significantly increased under
drip irrigation. Drip irrigation increased the length density of roots with a diameter >2 mm
at the 0–40 cm soil depth and decreased it in the deep soil. Compared with flood irrigation,
drip irrigation effectively regulated the redistribution of roots via regulating soil water
distribution. Drip irrigation significantly reduced ET over the two years, but increased
yield and WUE of jujube when the irrigation level was more than 660 mm. Accordingly,
drip irrigation is an effective field–practice option to improve jujube yield and WUE in
dry land.
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