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Abstract: Foeniculum vulgare Mill. (commonly known as fennel) is used in the pharmaceutical,
cosmetic, and food industries. Fennel widely used as a digestive, carminative, galactagogue and
diuretic and in treating gastrointestinal and respiratory disorders. Improving low heritability traits
such as essential oil yield (EOY%) and trans-anethole yield (TAY%) of fennel by direct selection does
not result in rapid gains of EOY% and TAY%. Identification of high-heritable traits and using efficient
modeling methods can be a beneficial approach to overcome this limitation and help breeders select
the most advantageous traits in medicinal plant breeding programs. The present study aims to
compare the performance of the artificial neural network (ANN) and multilinear regression (MLR) to
predict the EOY% and TAY% of fennel populations. Stepwise regression (SWR) was used to assess
the effect of various input variables. Based on SWR, nine traits—number of days to 50% flowering
(NDF50%), number of days to maturity (NDM), final plant height (FPH), number of internodes (NI),
number of umbels (NU), seed yield per square meter (SY/m2), number of seeds per plant (NS/P),
number of seeds per umbel (NS/U) and 1000-seed weight (TSW)—were chosen as input variables.
The network with Sigmoid Axon transfer function and two hidden layers was selected as the final
ANN model for the prediction of EOY%, and the TanhAxon function with one hidden layer was
used for the prediction of TAY%. The results revealed that the ANN method could predict the EOY%
and TAY% with more accuracy and efficiency (R2 of EOY% = 0.929, R2 of TAY% = 0.777, RMSE of
EOY% = 0.544, RMSE of TAY% = 0.264, MAE of EOY% = 0.385 and MAE of TAY% = 0.352) compared
with the MLR model (R2 of EOY% = 0.553, R2 of TAY% = 0.467, RMSE of EOY% = 0.819, RMSE of
TAY% = 0.448, MAE of EOY% = 0.624 and MAE of TAY% = 0.452). Based on the sensitivity analysis,
SY/m2, NDF50% and NS/P were the most important traits to predict EOY% as well as SY/m2, NS/U
and NDM to predict of TAY%. The results demonstrate the potential of ANNs as a promising tool to
predict the EOY% and TAY% of fennel, and they can be used in future fennel breeding programs.

Keywords: artificial neural networks; essential oil; fennel; medicinal plant; trans-anethole; stepwise
regression
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1. Introduction

Fennel (Foeniculum vulgare Mill. var. vulgare), which belongs to the Apiaceae family, is
an open-pollinated plant, originating from the Mediterranean regions where it is possible
to observe high genetic diversity. Fennel essential oil is widely used in pharmaceutical,
food, and cosmetic industries. Trans-anethole is the main compound of the fennel essential
oil, and the highest value of this compound is existing in seeds of fennel [1]. Trans-anethole
is known as a flavoring agent in the food industry and in the production of perfume, as
well as an anti-bloating compound in traditional medicine. It is an effective substance in
the taste and smell of fennel [2–4].

Medicinal plants have a special place in traditional medicine folk and are used as
treatment for many diseases [5,6]. Essential oils are naturally occurring in medicinal and
aromatic plants which are rich in valuable biochemical compounds with high bioactivities
such as antibacterial, antioxidant and phytotoxic activity [7–10].

Classical breeding methods, including the selection and release of elite cultivars, as
well as the recognition of the agronomic traits as the suitable criteria to use in breeding
programs, are being remembered as fast, easy and reliable methods to introduce superior
fennel cultivars. Screening the best indicators to use in essential oil yield (EOY%) improve-
ment plans and finding the correlation between EOY% and its components is the first
priority [11–13]. Piccaglia and Marotti [14] reported that biomass weight and the number of
umbels per plant are positively related to the essential oil content (R = 0.651 and 0.569, re-
spectively) [14]. Cosge et al. [15] have elucidated that EOY% positively correlated with the
1000-grain weight trait [15]. The phenotypic expression process of quantitative and poly-
genic traits such as EOY% is non-linear, intricate, complex and time-variant. This intricacy
is due to the high diversity within and between populations, also due to environmental
impacts [16–18]. Therefore, because of the low heritability of EOY%, direct selection to
improve this characteristic may lead to low genetic gain [19], whereas the indirect selection
of EOY% through high-heritable and related characters with EOY% directly or indirectly
affects the EOY% via positive or negative effects of other traits [20,21].

So far, some modeling studies have been used for EOY% prediction and researchers
have studied the EOY% using physiological, phenological, morphological and phyto-
chemical properties of plant by application of parametric analysis such as path analysis
(PA), stepwise regression (SWR) and other techniques [11,14,15,22]. Previous studies have
used linear procedures such as correlation analysis and multiple linear regressions (MLR),
in which a linear correlation among variables is presumed. Nevertheless, linear meth-
ods were inadequate and could not really explain the interactions between variables and
EOY% [23–25]. These complex relationships require non-linear methods such as adaptive
neuro-fuzzy inference system (ANFIS), Bayesian classification (BC), artificial neural net-
works (ANNs) and genetic expression programming (GEP) to overcome the drawbacks of
linear methods and find an accurate relationship among the studied traits [26–30]. Non-
linear nonparametric machine learning algorithms, such as ANN, have great potential in
yield component analysis and indirect selection of highly complex quantitative traits of
plants, which are strongly affected by several genes, the environment and their interaction
(G × E) [31].

Some researchers have used the ANN method to predict the performance of some
medicinal plants such as cumin (Cuminum cyminum L.) [32], ajowan (Trachyspermum ammi L.) [33]
and sunflower (Helianthus annuus) [30].

The ANN topology is used to solve complex systems which it tries to imitate into
numerical models [23]. ANN models are classified according to their structure, neurons
type, etc. Furthermore, according to the training convergence in an ANN model, different
algorithms can be used [34]. Multi-layer perceptron (MLP) is one of the most commonly
used ANNs in biological studies [25,35–39]. An MLP is a feed-forward ANN model that
contains an input layer, one or more hidden layers and an output layer. In each MLP,
multiple layers of nodes in a directed graph are fully connected to the next one and each
node (except for the input nodes) is a neuron with a nonlinear activation function [40].
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According to the literature review, there is no report on forecasting fennel EOY% and
trans-anethole yield (TAY%) using ANN methods, and predicting these traits based on
the characteristics and parameters affecting them using an effective ANN method seems
necessary to facilitate the process of breeding such complex traits. Therefore, the aims
of the current project were to (1) model and predict the most important ingredient in
the essential oil of fennel using an artificial neural network, (2) compare the predicted
results with the results of conventional regression-based method and (3) determine the
most important selection criteria for EOY% and TAY% in different fennel populations using
sensitivity analysis. The developed model could be helpful to improve the TAY% and
EOY% of different fennel subspecies/varieties.

2. Materials and Methods
2.1. Plant Material Source and Recorded Traits

In the present study, the seeds of 16 populations of fennel (Foeniculum vulgare Mill.
var. vulgare) from Iran, 2 populations from Turkey and 2 populations from Germany
(Table 1) were collected and cultured in the experimental field section at the Faculty of
Agriculture, University of Tabriz, Iran (46◦17′ N, 37◦5′ E), with an altitude of 710 m during
2017–2018. Plant authentication was performed by using the voucher specimens (Table 1)
available at the herbarium of the University of Tabriz, Tabriz, Iran. The soil texture was
loamy clay with a pH value of 7.5 and less than 1% organic matter. The field was not
under cultivation for any plant during the past year. The seeds of each population were
sown in a plot (4 m × 0.5 m) as a randomized complete block design (RCBD) with three
replications. The fertilizers used in this study were 70 kg N, 40 kg P and 25 kg K per hectare.
Essential oil yield (EOY%), trans-anethole yield (TAY%), and different agro-morphological
traits including number of days to germination (NDG), number of days to 50% flowering
(NDF50%), number of days to 100% flowering (NDF100%), number of days to maturity
(NDM), initial plant height (IPH) (plant height at the time of the first inflorescence emer-
gence), final plant height (FPH) (plant height at harvest time), number of stems (NS), stem
diameter (SD), number of internodes (NI), length of the first internode (LFI), length of
the longest internode (LLOI), length of the last internode (LLAI), length of the peduncle
(LP), number of umbels (NU), biomass per square meter (B/m2), 1000-seed weight (TSW),
seed yield per plant (SY/P), seed yield per square meter (SY/m2), number of seeds per
plant (NS/P), number of seeds per umbel (NS/U) and harvest index (HI) were randomly
recorded from 15 plants per plot. An analysis of variance (ANOVA) was conducted to
assess the significant statistical differences among evaluated fennel populations for the
studied characteristics. A normality test was conducted with SAS software before the
analysis of variance. The means of significant differences of traits (average of two years)
were used for the statistical analysis (Table 2).

2.2. Isolation of Essential Oils and GC/MS Analysis

For the isolation of essential oils, 100 g of mature seeds of each population were
subjected to hydro-distillation using a Clevenger-type apparatus for 3 h and the collected
essential oil was dried over anhydrous sodium sulfate and kept at 4 ◦C until analysis. Some
physical characteristics of mature seed including moisture content and average length,
thickness and density of selected seeds were equal to 8%, 5.5 mm, 1.6 mm and 410 Kg/m3,
respectively. Chemical compositions of essential oils were analyzed by an Agilent 7890A
Network GC system pooled with Agilent 5975C Network with Triple-Axis mass detector.
The GC analysis was carried out on the Agilent 7890A Network GC system equipped with
a splitless model injector (with 1.0 µm volume and 250 ◦C temperature). The carrier gas
was helium with a flow rate of 1.1 mL/min and the capillary column used was HP 5-MS
(30 m × 0.25 mm, film thickness 0.25 µm). The column pressure was fixed to 56,054.38 Pa.
The oven temperature was initially kept at 50 ◦C for 2 min after injection and then increased
to 250 ◦C with a rate of 6 ◦C/min heating ramp and kept constant at 250 ◦C for 4 min.
The ionization voltage and mass range were 70 eV and 34–500 m/z, respectively. The
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temperatures 280 ◦C and 250 ◦C were used as anion source and interface temperatures,
respectively. Constituents of the essential oils were recognized based on their retention
time and mass spectra pattern with related available data or with the Wiley library and
literature. Percentages of each compound were calculated from the given GC peak area
and these data were used for quantification purposes.

Table 1. Locality and average of essential oil yield and trans-anethole yield of studied fennel populations.

No Population Variety Locality Voucher
Number

Latitude
(N)

Longitude
(E)

Essential Oil
Yield (%)

trans-
Anethole
Yield (%)

1 Salzland Vulgare Germany Ah123 51◦78′ 11◦77′ 2.29 ± 0.85 1.46 ± 0.59
2 Gotha Vulgare Germany Ah115 51◦07′ 10◦87′ 2.14 ± 0.73 1.77 ± 0.57
3 Gazianetp Vulgare Turkey Ah114 37◦05′ 37◦37′ 2.67 ± 0.79 2.30 ± 0.68
4 Izmir Vulgare Turkey Ah113 38◦35′ 27◦07′ 1.63 ± 0.41 1.17 ± 0.32
5 Bonab Vulgare Iran Ah111 37◦35′ 46◦03′ 2.89 ± 1.03 2.24 ± 0.91
6 Birjand Vulgare Iran Ah110 32◦84′ 59◦18′ 0.73 ± 0.24 0.54 ± 0.16
7 Tatmaj Vulgare Iran Ah126 33◦69′ 51◦62′ 1.88 ± 0.79 1.50 ± 0.54
8 Torbatejam Vulgare Iran Ah127 35◦23′ 60◦66′ 2.90 ± 0.92 2.45 ± 0.76
9 Meshkinshahr Vulgare Iran Ah120 38◦37′ 47◦69′ 2.30 ± 0.61 1.70 ± 0.62
10 Khorobiabanak Vulgare Iran Ah118 33◦89′ 54◦87′ 0.99 ± 0.41 0.73 ± 0.51
11 Moghan Vulgare Iran Ah121 39◦62′ 47◦87′ 4.12 ± 1.32 2.68 ± 0.68
12 Ziar Vulgare Iran Ah129 32◦50′ 51◦94′ 1.66 ± 0.69 1.14 ± 0.42
13 Shirvan Vulgare Iran Ah124 37◦39′ 57◦96′ 2.42 ± 0.86 1.77 ± 0.68
14 Karaj Vulgare Iran Ah116 35◦77′ 51◦06′ 1.54 ± 0.64 1.07 ± 0.44
15 Kerman Vulgare Iran Ah117 30◦30′ 57◦13′ 0.82 ± 0.33 0.55 ± 0.19
16 Khorramabad Vulgare Iran Ah119 33◦48′ 48◦44′ 2.89 ± 0.67 2.10 ± 0.71
17 Neishabour Vulgare Iran Ah122 36◦19′ 58◦83′ 2.02 ± 0.77 0.33 ± 0.15
18 Varamin Vulgare Iran Ah128 35◦34′ 51◦62′ 3.77 ± 0.94 3.12 ± 0.67
19 Hamedan Vulgare Iran Ah112 34◦81′ 48◦48′ 2.92 ± 0.91 2.16 ± 0.56
20 Tabriz Vulgare Iran Ah125 38◦07′ 46◦08′ 2.50 ± 0.76 0.50 ± 0.12

Table 2. Descriptive statistics of morphological, phonological and yield-related characteristics in the fennel populations.

Characteristic Abbreviation Min Max Mean Standard Deviation

Number of days to germination NDG 7 18 12.45 4.21
Number of days to 50% flowering NDF50% 59 102 79.18 16.56
Number of days to 100% flowering NDF100% 82 114 92.36 24.98

Number of days to maturity NDM 126 180 145.68 36.15
Initial plant height (cm) IPH 39.47 82.89 58.29 17.14
Final plant height (cm) FPH 68.56 198 107.25 36.84

Number of stems NS 1 4 2.58 1.25
Stem diameter (cm) SD 2.75 15.85 8.54 3.62

Number of internodes NI 6 14 9.35 3.48
Length of the first internode (cm) LFI 3.11 9.32 6.13 2.04

Length of the longest internode (cm) LLOI 5.48 19.14 14.59 5.74
Length of the last internode (cm) LLAI 2.36 11.71 7.64 1.91

Length of the peduncle (cm) LP 4.85 14.29 9.25 4.89
Number of umbels NU 12 58 36.25 15.70

Biomass (g/m2) B/m2 654.25 1457.83 124.91 62.25
Thousand seed weight (g) TSW 2.85 7.65 5.16 3.11

Seed yield per plant (g) SY/P 12.35 86.54 32.67 10.29
Seed yield (g/m2) SY/m2 115.12 542.28 315.21 82.27

Number of seeds per plant NS/P 985 9153 7859 2141
Number of seeds per umbel NS/U 112 276 192.51 78.29

Harvest index (%) HI 12.11 46.82 37.26 16.28
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2.3. Data Processing and Statistical Analysis
2.3.1. Input Variables Selection

To ensure a realistic model, only a portion of independent variables was carefully
chosen. At the beginning of this process, the relationship between the dependent and inde-
pendent variables was found using Pearson’s correlation. The important input variables
were selected based on the stepwise regression (SWR) analysis results. Pearson correlation
and SWR analyses were conducted using SAS® software.

2.3.2. Multiple Linear Regression

Multiple linear regression (MLR) (stepwise method) was used and for each dependent
variable (EOY% and TAY%), the desired models were fixed. All values for the independent
variables X (Table 2) are related to the dependent value of the variable Y. The general
equation is as follows (Equation (1)):

yi = β0 + β1×1 + β2×2 + . . . + βnxn + εi (1)

where yi is EOY% or TAY%, β0 + βn are coefficients of regression, x1 − xn are input variables
and ε is an error associated with the ith observation. Stepwise regression was applied to
estimate the MLR coefficients. The MLR analysis was carried out using SAS® software.

2.3.3. Artificial Neural Network

The computation of ANN was conducted using Neuro-Solutions software version
5.07 software package from NeuroDimension Inc. (http://www.Neurosolutions.com,
accessed on 22 November 2021). The variables including EOY% and TAY% were used as
the dependent and the other traits were defined as independent variables. Two different
ANN models were established for each EOY% and TAY%. The training and testing of ANN
and MLR were carried out based on the recorded traits from 15 samples of each of the
20 fennel populations over two years. Therefore, the field experiment dataset was based
on the 15 samples of 20 fennel populations. All the data were randomly divided into three
subsets: 65% for training, 20% for network test and 15% for validation. This classification
was based on (i) the results of previous studies with the same number of data, and (ii) trial
and error and comparing the modeling results with different ratios. Descriptive statistical
analysis of the measured traits in two years is shown in Table 2.

For the efficient ANN analysis and to avoid bias estimation due to differences in units
of input variables, all data were normalized and transferred into values between −1 and +1
for hyperbolic tangent and 0 and 1 for sigmoid transfer functions [25] using Equation (2).

xnorm =

[(
(

xi−xmin

xmax−xmin
)

)
× 0.8

]
+1 (2)

where xi is the original data, xnorm is the normalized input or output values and xmax and
xmin are the maximum and minimum values of the resultant variable, respectively.

The three main input, hidden and output layers are essential for building the topology
of a neural network system. In this study, the output of the network is assumed by
Equation (3).

yt = α0 +
n

∑
j=1

αj f (
m

∑
i=1

βijyt−1 + β0j) + εt (3)

where yt is the network output (essential oil), n and m are the number of hidden nodes and
number of input nodes, respectively, and f shows the transfer function. βij {i = 1, 2, . . . , m;
j = 0, 1, . . . , n} are the weights from the input to hidden nodes, αj {j = 0, 1, . . . , n} are the
vectors of weights from the hidden to the output nodes and α0 and β0 j denote the weights
of arcs leading from the bias terms, which always are equal to 1.

The feed-forward multilayer perceptron (MLP) architecture with three layers and a
Back-Propagation (BP) training algorithm along with the Levenberg–Marquardt, Momen-

http://www.Neurosolutions.com
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tum and Conjugate Gradient learning algorithms were applied in the present study. The
most appropriate topology in various numbers of hidden layers (1–4) and neurons related
to each layer was determined by trial and error tests. Several activation functions including
Tangent Hyperbolic Axon, Linear Tangent Hyperbolic Axon, Sigmoid Axon and Linear
Sigmoid Axon were tested with the aim of finding the equation with high capability in
both hidden and output layers.

2.4. Performance and Sensitivity Analysis

Three statistical quality parameters, mean absolute error (MAE), root mean square
error (RMSE) and coefficient of determination (R2), were used to compare the performance
of the developed ANN with different transfer functions and hidden layers and MLR models
for estimating the desired output of EOY% and TAY% according to Equations (4)–(6),
respectively.

MAE =
1
n∑n

i,j=1

∣∣yi − yj
∣∣ (4)

RMSE =

√
∑n

i,j=1 (yi − yj)
2

n
(5)

R2 =
∑n

i,j=1 (yi − yi)(yj − yj)√
∑n

i=1 (yi − yi)
2∑n

j=1 (yj − yj)
2

(6)

where n is the number of data, yi is the observed values, yj represents the predicted values
and the bars denote the mean of the variable. High values of R2 and low values of RMSE
and MAE indicate the better performance of the ANN and MLR model.

After developing the final ANN model, a sensitivity test was applied for choosing
the most influential input variables on the EOY% and TAY% as the outputs. For this, the
dataset was run without any input variables (i.e., SY, NS, NDM, TSW, NU and NI), and the
models’ performance was assessed using R2, RMSE and MAE. Neuro-Solutions software
(version 5.0) was used for the ANN model developing, evaluating and sensitivity analysis.

3. Results and Discussions
3.1. Selection of Input Variables

Since the input variables have a significant effect on the weighted coefficients and
the final architecture of the model, the selection of these variables is a very important
step for the development of the model [35]. To this end, Pearson’s correlation coefficient
was used to consider the relationship between dependent variables (EOY% and TAY%)
and the other characteristics (as the independent variables) (Figures 1 and 2). EOY% had
the highest positive correlation with HI (R = 0.794), followed by SY/m2 (R = 0.756), NU
(R = 0.754), SY/P (R = 0.732), NDM (R = 0.706), NS/P (R = 0.699), LFI (R = 0.676) and NS/U
(R = 0.467). A negative significant correlation coefficient was observed between EOY% and
NDF50% (R = −0.842), NDF100% (R = −0.659), NI (R = −0.719), LLOI (R = −0.713), FPH
(R = −0.661), LP (R = −0.616) and SP (R = −0.518) (Figure 1). Rahimmalek et al. [41] also
reported a negative significant correlation between essential oil yield with plant height
and flowering date of Iranian fennel accessions. Overall, the results of the correlation
analysis showed that HI, SY/m2, NU, SY/P and NS/P are the most important parameters
to determine essential oil yield in fennel populations. As reported by Bahmani et al. [11,22]
and Cosges [15], there is a significant correlation between the essential oil content of fennel
and length of the peduncle, stem diameter, plant height, the weight of dry biomass, number
of nodes, number of leaves, length of middle internodes, number of inflorescences and
1000-seed weight [11,15,22].
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TAY% (as a second dependent variable) had the strongest positive correlation with
HI (R = 0.823) followed by SY/P (R = 0.693), SY/m2 (R = 0.693), EOY% (R = 0.590),
NS/P (R = 0.573), NU (R = 0.572) and LFI (R = 0.456), as well as a negative significant
correlation with LLOI (Figure 2). The correlation between various traits can be positively
or negatively affected by other variables and these low coefficients can significantly reduce
the capability of the correlation analysis to select the input variables [42,43]. However,
there are parameters than other morphological and yield components that affect the oil
yield and trans-anethole content of fennel. The correlation of climatic data (temperature)
with oil yield and trans-anethole content of Iranian fennel accessions was assessed and a
negative correlation between oil yield and Tmax and a positive correlation between trans-
anethole and Tmax (r = 0.459) were reported [41]. These results indicate the importance
of environmental parameters in assessing the correlation analysis of fennel populations.
Incorporating such data into the model can increase the decision-making power and
accuracy of the predictive model. In addition to perform the correlation analysis, stepwise
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regression (SWR) analysis was employed in this study to optimize the number of input
variables [43].

Based on the SWR (Tables 3 and 4), nine traits out of eleven (SY/m2, NDF 50%, NS/P,
NU, FPH, NS/U, NDM, TSW and NI) were entered into the models as the most suitable
input variables (the dependent variables were EOY% and TAY%). The number of umbels
is an important yield component characteristic that can affect grain yield and subsequently
the essential oil yield of fennel populations. This characteristic affect both EOY% and TAY%
of the evaluated fennel population of the present study. These results are consistent with
the results of Sefidan et al. [44] and Kalleli et al. [45].

Table 3. Stepwise regression analysis for essential oil yield as dependent variable.

Step Entered Variables in Model Partial R2 Model R2

1 SY/m2 0.1642 0.1642
2 SY/m2, NDF 50% 0.1415 0.3057
3 SY/m2, NDF 50%, NS/P 0.1276 0.4333
4 SY/m2, NDF 50%, NS/P, NU 0.0781 0.5114
5 SY/m2, NDF 50%, NS/P, NU, FPH 0.0742 0.5856

Adjusted R2 = 0.5533.

Table 4. Stepwise regression analysis for trans anethole yield as the dependent variable.

Step Entered Variables in Model Partial R2 Model R2

1 SY/m2 0.123 0.123
2 SY/m2, NS/U 0.114 0.237
3 SY/m2, NS/U, NDM 0.1056 0.3426
4 SY/m2, NS/U, NDM, TSW 0.0561 0.3987
5 SY/m2, NS/U, NDM, TSW, NU 0.052 0.4507
6 SY/m2, NS/U, NDM, TSW, NU, NI 0.0441 0.4948

Adjusted R2 = 0.4672.

Although HI and LFI were significantly correlated with EOY% and TAY%, according to
the SWR analysis, these parameters could not be recognized as appropriate input variables
(Tables 3 and 4). MLR results revealed the weakness of the correlation method, which can
be due to the indirect positive and negative effects of other traits on the correlation between
dependent traits (EOY% and TAY%) and other independent traits [43]. Bahmani et al. [11]
also applied SWR to identify to most important characteristics affecting the essential oil
content of Iranian fennel and reported low partial R2 values for inserted variables in the
model (partial R2 = 0.32, 0.06, 0.03, 0.02 and 0.02 for number of leaves, length of peduncle,
plant height and days to 50% flowering, respectively). The low estimated partial R2 values
for all independent variables indicate the insufficient efficiency of the linear regression
model in interpreting the relationships between independent and dependent variables.
Therefore, a non-linear model is needed to better interpret these relationships.

3.2. Prediction of Dependent Variables Using MLP/ANN Model

Several factors as numbers of the hidden layer (s) and their neurons (nods) and
determination of the transfer function are important for the selection of input variables.
They can be determined using trial and error [46]. There are four different transfer functions
to running supervised neural networks, namely Sigmoid Axon, Linear Sigmoid Axon,
Tangent Hyperbolic Axon and Linear Tangent Hyperbolic Axon, to select the proper
transfer function (Table 5).

As presented in Table 6, the lowest values of MAE and RMSE and the highest R2

values were obtained by the Sigmoid Axon function in both training and testing stages for
the prediction of EOY%, as well as the TanhAxon transfer function to predict TAY%.
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Table 5. Summary of the components of the neural networks used to predict essential oil and trans-anethole yield of
fennel populations.

ANN Method Number of
Hidden Layers

Number of
Neurons in

Each Hidden
Layer

Transfer Function Learning Algorithm Number of
Epochs

Multi-layer
perceptron (MLP) 1–5 1–20

Sigmoid Axon Levenberg–

50–2000
Linear Sigmoid Axon Marquardt

TanhAxon Momentum
Liner TanhAxon Conjugate Gradient

Table 6. The performance of the best artificial neural network models to predict outputs.

Output Network
Structure

Transfer
Function

Learning
Algorithm

Training Testing Cross Validation

R2 a RMSE b MAE c R2 a RMSE b MAE c R2 a RMSE b MAE c

Essential
oil yield 11-9-7-1 Sigmoid

Axon

Levenberg–
Marquardt

(LM)
0.953 0.522 0.375 0.929 0.544 0.385 0.904 0.552 0.389

Trans-
anethole

yield
11-10-1 TanhAxon Momentum 0.794 0.246 0.334 0.777 0.264 0.352 0.764 0.258 0.359

a: Determination coefficient; b: root mean square error; c: mean absolute error.

The results of the linear transfer functions are not presented to maintain the clarity of
the useful and applied results. In the testing and training phases, linear transfer functions
reduced the efficiency of the models. These functions apply a simple linear conversion to
the processed input variables and transfer it to the output stage, whereas nonlinear and
TanhAxon functions produce outputs in the ranges 0 to 1 and −1 to 1, respectively [25].
Similar to the present study, Sigmoid Axon and TanhAxon functions have been applied in
previous studies [24,25,32,35]. This is probably due to the high capability of these functions
to justify nonlinear changes compared to the other functions. Various ANN models were
implemented by selected transfer functions, with 1–5 hidden layers and 1–20 nodes per
layer. As shown in Table 6, for the prediction of EOY%, the ANN model with two hidden
layers provided the best performances in the training phases (R2 = 0.953, RMSE = 0.522,
and MAE = 0.375) and testing (R2 = 0.929, RMSE = 0.544 and MAE = 0.385). Therefore,
the results of Tables 5 and 6 reveal that the best EOY% (essential oil) predictive model
consisted of an input layer with 11 input variables (NDF50%, NDF100%, NDM, FPH,
NI, NU, SY/P, SY/m2, NS/P, NS/U, and TSW) and two hidden layers with nine and
seven neurons in each layer, i.e., the 11-9-7-1 structure (Figure 3). The TanhAxon transfer
function, Momentum learning algorithm and one hidden layer (with 11-10-1 structure)
were the best parameters in the ANN model to predict TAY% of fennel (Table 6). This
topology had the minimum amounts of RMSE and MAE and the highest coefficient of
determination (Table 6). Levenberg–Marquardt back-propagation and Logsig and Tansig
transfer functions for hidden and output layers algorithm and the number of 10 neurons
in the hidden layer have been reported as best parameters of an ANN for the modeling
and optimization of anethole ultrasound-assisted extraction from fennel seeds [47]. One
of the main objectives of ANN modeling studies is to achieve a simple model with the
least number of hidden layers and neurons and the highest performance values [30,32].
Niazian et al. [25] reported an ANN model with a 4-4-1 structure, for the prediction of
grain yield in ajowan (Trachyspermum ammi L.) belonging to the Apiaceae family [25]. These
results will be useful to fit an excellent model structure of ANN in future research on the
Apiaceae family.
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An insufficient number of epochs can decrease the ANN performance and too many
epochs can increase the risk of network overtraining and subsequent memorization [25].
To minimize the over-training and memorization, a pretest using two hidden layers and
various numbers of epochs (50–2000) was conducted and the convergence point between
training and validation was considered as the completion of training time to avoid over-
training (Figure 4).
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Figure 4. The convergence of the average MSE value during training and validation of the final
11-9-7-1 ANN structure to predict the essential oil yield of fennel populations.

The comparison of predicted and measured EOY% values is shown in Figures 5 and 6
for both training and testing datasets in the form of scatter plots. As shown in the scatter
plots, the measured data and the ANN model had the same distribution. The EOY% values
predicted by the ANN model tended to follow the corresponding actual ones quite closely.

A scatter plot was also applied to compare observed and predicted values of TAY%
from the ANN model in both training and testing datasets. The ability of the ANN
model to predict TAY% in training (R2 = 0.794) and testing (R2 = 0.777) stages are shown
in Figures 7 and 8, respectively. According to the scatter plot, there was no significant
difference between predicted data and measured data of TAY% in the ANN model in both
training and testing datasets (Figures 7 and 8).



Agriculture 2021, 11, 1191 11 of 17

Agriculture 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 4. The convergence of the average MSE value during training and validation of the final 11-
9-7-1 ANN structure to predict the essential oil yield of fennel populations. 

The comparison of predicted and measured EOY% values is shown in Figures 5 and 
6 for both training and testing datasets in the form of scatter plots. As shown in the scatter 
plots, the measured data and the ANN model had the same distribution. The EOY% val-
ues predicted by the ANN model tended to follow the corresponding actual ones quite 
closely. 

 
Figure 5. Scatter plot of measured and predicted essential oil yield of fennel populations in the train-
ing stage of ANN. 

 

Figure 5. Scatter plot of measured and predicted essential oil yield of fennel populations in the
training stage of ANN.

Agriculture 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 4. The convergence of the average MSE value during training and validation of the final 11-
9-7-1 ANN structure to predict the essential oil yield of fennel populations. 

The comparison of predicted and measured EOY% values is shown in Figures 5 and 
6 for both training and testing datasets in the form of scatter plots. As shown in the scatter 
plots, the measured data and the ANN model had the same distribution. The EOY% val-
ues predicted by the ANN model tended to follow the corresponding actual ones quite 
closely. 

 
Figure 5. Scatter plot of measured and predicted essential oil yield of fennel populations in the train-
ing stage of ANN. 

 
Figure 6. Scatter plot of measured and predicted essential oil yield of fennel populations in the
testing stage of ANN.

3.3. Comparing MLR and ANN Models to Predict EOY% and TAY% of Fennel Populations

The MLR models, especially when there are linear relationships between the input and
output variables are known as efficient modeling approaches [48]. In order to determine
the strength of linear regression to predict EOY% and TAY%, two stepwise regression of
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MLR models were determined and the following equations (Equations (7) and (8)) were
computed to predict dependent variables.
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EOY% = 0.037 + 0.216 SY/m2 + 0.113 NDF 50% + 0.126 NS/P + 0.086 NU + 0.079 FPH (7)

TAY% = 0.915 + 0.196 SY/m2 + 0.108 NS/U + 0.089 NDM + 0.073 TSW + 0.065 NU + 0.044 NI (8)
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According to Equation (7), the predicted value of EOY% is a linear transformation of
seed yield per square meter, number of days to 50% flowering, number of seeds per plant,
number of umbels and final plant height variables. On the other hand, seed yield per square
meter, number of seeds per umbel, number of days to maturity, thousand seed weight,
number of umbels and number of internodes were entered in the SWR model, when TAY%
was considered as a dependent variable (Equation (8)). The depended variables are those
that selected based on stepwise regression analysis (Tables 3 and 4). As shown in Tables 3
and 4, independent variables explained approximately 55% and 47% of variations in EOY%
and TAY%, respectively. Therefore, the linear model was not strong enough to explain
the variations of the dependent variables. The MLR constructions (Equations (7) and (8))
showed the importance and the effect of independent variables on dependent variables and
these equations revealed that how the amounts of EOY% or TAY% in fennel can change by
different amounts of independent variables. Bahmani et al. [11] used an MLR model to
find the relationship between independent variables and grain yield of fennel and showed
that 55.41%, 12.72%, 2.21% and 11.63% of total variance of grain yield was explained by
weight of dry biomass, days to 50% flowering, number of inflorescent and days to 70%
seed pasty, respectively [11]. Niazian et al. [25] studied the seed yield of ajowan using an
MLR model and introduced shoot dry weight, number of umbellets in main inflorescence,
number of branches and the biological yield as important independent variables [25].

The results of the ANN and MLR models’ development based on performance eval-
uation indices including R2, RMSE and MAE provide a set of the reasonable criteria for
comparison between two modeling methods. Compared to the MLR model, the ANN
models could predict EOY% and TAY% much better than the MLR model with 39.97% and
32.69% increases in R2, reductions of 0.30 and 0.20 in RMSE and reductions of 0.25 and 0.12
in MAE, respectively. According to the obtained results, the ANN model had higher predic-
tive power than the MLR model and was more efficient than MLR in predicting EOY% and
TAY% traits in fennel populations. The different performance of the two models to predict
EOY% and TAY% shows the importance of choosing the more suitable model. The superi-
ority of the ANN modeling methods compared to the MLR methods has been reported in
other previous studies [24,25,32,35]. The supremacy of ANN modeling seems to be due to
the high capability of this model to capture the highly nonlinear and complex relationship
between EOY% or TAY% and the relevant traits [23]. There is a considerable variation
among different populations of fennel in terms of seed yield, yield components, essential
oil content and essential oil composition [11,49]. This variation along with high genotype
× environment interaction create a difficult situation to improve the fennel population
for the desired traits in a short period using conventional statistical methods and direct
selection [49]. However, using non-linear predicting methods, breeders are able to estimate
the desired values of their desired traits in a faster and more confident way. Therefore, an
advanced computational method can play a complementary role to conventional statistical
methods previously employed to improve the fennel populations [11,49].

3.4. Sensitivity Analysis

A sensitivity analysis is a method of studying the behavior of a model and assessing
the significance of each input variable on the values of the output variable of the model.
Sensitivity analysis provides insight into the usefulness of individual variables. With the
help of this kind of analysis, it is possible to judge which inputs for modeling EOY%
or TAY% parameters should be considered as the most and least significant ones in the
ANN model [36]. For this purpose, the sensitivity tests for ANN and MLR models were
performed without a specific input variable, i.e., SY/m2, NS/P, NDF50%, NS/U and NDM.
The results of the sensitivity test for EOY% showed that the highest RMSE (0.608, 0.911) and
MAE (0.439, 0.659) and the lowest R2 (75.45, 39.12) were achieved without seed yield per
square meter in both ANN and MLR models (Table 7). Number of days to 50% flowering
and number of seeds per plant were the other most effective characteristics on the EOY%
of fennel populations. As shown in Table 7, the ANN and MLR models for TAY% without
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the seed yield per square have the lowest R2 (61.43 and 35.52) and highest RMSE (0.332
and 0.532) and MAE (0.487 and 0.471), respectively. As the results showed, SY/m2 is the
most influential factor to predict EOY% and TAY% in both models.

Bahmani et al. [11] investigated the direct and indirect effects of some morphological
traits on the essential oil content of fennel populations by using path analysis. They
reported that the number of leaves, days to 50% flowering and plant height had direct
effects on essential oil content in the first year of the experiment as well as days to 50%
flowering, stem diameter and the number of seeds per largest inflorescence in the second
year of the experiment [11]. Abdipour et al. [24] used the sensitivity analysis in both ANN
and MLR models to find the importance of each input variable on the oil content of sesame
and reported capsule number per plant as the most important input variable that can
significantly affect RMSE, MAE and R2 of both ANN and MLR models [24]. In the other
study, sensitivity tests were conducted in both MLR and ANN models and results showed
that the highest RMSE and MAE and the lowest R2 were achieved in the MLR and ANN
models without biological yield [25].

Table 7. Sensitivity analysis and selecting three of the most influential inputs on the essential oil and trans-anethole yield of
fennel populations.

Output Method
ANN MLR

R2 a (%) RMSE b MAE c R2 a (%) RMSE b MAE c

Essential oil yield

The best ANN (with all input) 95.30 0.522 0.375 55.33 0.819 0.624
ANN without SY/m2 75.45 0.608 0.439 39.12 0.911 0.659

ANN without NDF50% 84.70 0.585 0.421 42.18 0.747 0.571
ANN without NS/P 85.98 0.578 0.416 44.25 0.812 0.583

trans-anethole
yield

The best ANN (with all input) 79.41 0.246 0.334 46.72 0.448 0.452
ANN without SY/m2 61.43 0.332 0.487 35.52 0.532 0.471
ANN without NS/U 66.40 0.316 0.459 37.14 0.431 0.384
ANN without NDM 68.40 0.308 0.445 38.76 0.416 0.335
a: Determination coefficient; b: root mean square error; c: mean absolute error.

Since fennel is an indeterminate plant, having continuous growth of new leaves,
flowers and seeds during the growing season, it can be said that indeterminate populations
of fennel with a long period from flowering to maturity are the best in stable environmental
conditions. This finding can be seen in the results of the sensitivity analysis (Table 7),
indicating that the number of days to 50% flowering and number of days to maturity had
significant effects on EOY% and TAY%, respectively. The findings of previous studies
determined possible differences and similarities in essential oils and chemical composition
of various plants at different phenological stages in the various medicinal plants [49–51].
The results showed that the EOY% and TAY% depend on different phenological stages. The
effect of phenological stages on essential oil and its composition may be due to its effect
on enzyme activity and the metabolism of essential oil production [52]. The contribution
of each input trait to predict EOY% and TAY% are ranked from highest to lowest in both
ANN and MLR models in Table 7.

4. Conclusions

Identifying high-heritable yield components and using efficient modeling methods
can help breeders select the most advantageous traits in medicinal plant breeding programs.
The results of the present study revealed that the ANN compared to the MLR was able to
predict the EOY% and TAY% of fennel populations with more accuracy. The classical MLR
model could not interpret the non-linear relationships between EOY% and TAY% and their
corresponding independent variables. However, the ANN model showed more accuracy in
interpreting complex relationships among EOY%, TAY% and other variables in the model,
according to R2, RMSE and MAE indicators. These results showed that the selected ANN
model could surely replace MLR to predict EOY% and TAY% of fennel populations. Based
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on the sensitivity analysis, SY/m2, NDF50%, and NS/P were the most important traits to
predict EOY%, whereas SY/m2, NS/U and NDM were the most important traits to predict
the TAY% of fennel populations. The findings of the present study can provide important
information to improve the EOY% of the other medicinal plants of the Apiaceae family.
Plant breeders can also use the optimized artificial neural network models to model other
complicated polygenic traits of medicinal plants, such as the content of various secondary
metabolites that are more valuable for the food and pharmaceutics industries.
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