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Abstract: Combine harvesters are widely used worldwide in harvesting many crops, and they have
many functions that cover the entire harvesting process, such as cutting, threshing, separating, and
cleaning. The threshing drum is the core working device of the combine harvester and plays an
influential role in rice threshing efficiency, threshing power requirement, and seed loss. In this study,
two structures of rice threshers (conical-shaped and cylindrical-shaped) were tested and evaluated
for performance under different thresher rotating speeds of 1100, 1300, and 1500 rpm and different
feeding rates of 0.8, 1.1, and 1.4 kg/s. The experiment was designed using the Taguchi method, and
the obtained results were evaluated using the same technique. The thresher structure and operating
parameters were assessed and optimized with reference to threshing efficiency, required power, and
productivity. The obtained results revealed that increasing thresher rotating speed and the feeding
rate positively related to threshing efficiency, power, and productivity. The highest efficiency of 98%
and the maximum productivity of 0.64 kg/s were obtained using the conical-shaped thresher under
a 1500 rpm rotating speed and a feed rate of 1.4 kg/s, whereas the minimum required power of
5.45 kW was obtained using the conical thresher under a rotating speed of 1100 rpm and a feed rate
of 0.8 kg/s.

Keywords: rice threshing; rice combine; longitudinal axial flow thresher; Taguchi method

1. Introduction

Rice is the second most important cereal after wheal, which together supply 95% of
the world’s population’s whole staple food [1].

China is the biggest grain producer globally, with a planting area of 94,370.8 km2 and
accounting for 21.98% of the world’s grain production [2].

The grain harvester is the most essential piece of agricultural machinery that improves
harvesting efficiency and reduces labor costs [3–6].

Combine harvesters are widely used worldwide to harvest different crops under
different environmental and operating conditions. They have many functions such as
cutting, threshing, separating, cleaning, and sometimes storing crops.

Many small, medium, and giant threshers have existed for a long time, but because
of their low performance compared to traditional threshing methods, they have never
been adapted to a significant extent. Some of these threshers are hand-held, and others are
pedal-operated [7].

Threshing is considered one of the most vital crop processing operations for separating
grains from the ears and preparing them for the market [8].

Threshing is the process of separating the edible part of the cereal grain from the chaff
that surrounds it, and it is done after harvesting the crop and before winnowing it [9].

The simplest threshing system is picking up rice stalks and trampling the panicles
underfoot or beating them against a hard surface such as a rack, threshing board, or tub [10].
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In several countries in Asia, Madagascar, and Africa, cereal crop is being trodden by
humans or animals underfoot for threshing; this method results in a high loss due to grain
breakage or buried under the earth [11].

Many researchers have done many experiments to examine grain threshing devices,
and many kinds of grain threshers have been developed since the 1820s [12–17].

The mechanical threshing concept entails providing energy for turning materials,
drawing in materials to be threshed, and creating different layers of velocity to rub grain
heads together. The grain separating process directly acts on the linkage of grain and
stalk. The threshing chamber is made of a drum and concave. The drum consists of a long
cylinder mounted on bearings with spikes or rasp bars attached to its surface, and the
concave is perforated to enable the threshed product to drop by gravity into a collector [18].

There are many types of threshing cylinders: the spike tooth, which threshes by
striking action, and the rasp bar, which thresh by rubbing and friction. A spike teeth
threshing drum gives higher throughput values at higher speeds than a rasp bar threshing
drum due to the greater impact of the spikes against the stalk, even at lower speeds [19].

In axial flow threshers, the crop spirally moves between the concave and the rotating
drum for several complete turns, which allows for multiple impacts between the concave
and drum as the crop moves along the drum length [11].

In axial-flow threshers, around 80% of grains are separated in the drum’s first half,
whereas just 20% of grains are separated in the other half [20].

The factors influencing thresher performance are classified as crop factors (crop variety
and crop moisture content), machine factors (cylinder diameter, cylinder type, feeding
chute angle, spike shape, spike number and size, concave clearance, shape, and size), and
operational factors (feed rate, cylinder speed, and machine adjustment) [21].

An optimum drum speed is necessary for improving thresher performance because
extreme speed can cause grain crack but a low speed can result in an un-threshed head.
The impact is the main threshing action for grain separating from the ear. In all threshers,
this impact force is controlled by the thresher rotating speed [22].

A multi-crop thresher was developed and evaluated by Singh et al. (2015) [23], who
found that increasing the drum speed highly affected the thresher threshing efficiency.

A paddy thresher was fabricated and evaluated at three threshing drum speeds (15.5,
17.3, and 19.0 m s−1) and three feed rates (44, 720, and 1163 kg h−1). The results revealed
that the percentage of threshing efficiency and damaged grain increased with increasing
drum speed for all feed rates [24]. The impact of drum speed, crop moisture content, and
crop variety on grain damage, threshing loss, and power was studied. It was revealed that
the increase in drum speed reduced threshing losses but increased the damaged grain due
to spikes’ greater impact against the crop stalks [25].

Increasing the drum speed increased the threshing efficiency because of high level of
impacting to the plant spikes. The highest threshing efficiency was 99.76% at a feed rate of
15 kg/min and a drum speed of 1400 rpm (21.25 m/s) [26].

The threshing efficiency was positively affected by the cylinder speed, the concave
clearance, the crop feeding rate, and the crop variety [27].

In this paper, a testing platform for a longitudinal axial flow rice thresher was con-
structed. Two kinds of threshers (cylindrical and conical) were tested and evaluated
for performance under different rotating speeds and feeding rates using Taguchi tech-
niques to get the highest possible threshing efficiency and productivity and the lowest
required power.

2. Materials and Methods
2.1. Testing Platform

To simulate the rice threshing process, a longitudinal axial flow threshing platform
was constructed in a factory. The platform comprised a conveying belt, a longitudinal axial
flow thresher, a concave thresher cover, receiving boxes, a diesel engine, a feeding device,
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a frequency convertor, an electric motor, and a torque sensor. The platform is shown in
Figure 1, and the characteristics of it are shown in Table 1.
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Table 1. Characteristics of the platform.

Part Parameters Value

platform
Length 3700 mm

Width 1460 mm

Height 1540 mm

Thresher

Length 1360 mm

Diameter 370 mm

No. of threshing bars 6

No. of threshing teeth 87

Tooth height 50–70 mm

Tooth diameter 20 mm

Distance between two adjacent teeth 80 mm

Concave

Length 1000 mm

Wrap angle 180◦

Meshing size 20 × 36.6 mm

Clearance 20 mm

Top cover
Deflector helical angle 24–30◦

The gap between the two deflectors 160◦

Feeding auger

Length 193 mm

Front diameter 230 mm

rear diameter 270 mm

The conveying mechanism composed of a rotating belt with dimensions of 6 × 0.5 m,
and it was driven by an electric motor. Its speed was controlled using a frequency converter.
It was used to transport rice to the feeding auger, which consisted of a rotating auger and a
rotating chain with steel bars. The power was conveyed from the diesel engine to the auger
using a belt and pulley. Its function was to feed the rice from the conveying mechanism to
the threshing unit.
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The threshing unit consisted of a longitudinal axial flow thresher with spike teeth,
a thresher cover with helical blades, and a stationary concave. The thresher composed
of 6 bars with spike teeth, and the rotational speed was conveyed from the engine to
the thresher using a pulley and belt. Two kinds of thresher structures (cylindrical and
conical), and three thresher rotating speeds of (1100, 1300, and 1500 rpm) were tested for
the experiment. The threshers are shown in Figure 2.
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2.2. Torque Sensor

The torque sensor (Figure 3) was installed on the thresher shaft to measure thresher
rotating speed, threshing torque, and required power. The torque sensor’s measuring range
was 0–10,000 N.m and 0–12,000 rpm.
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2.3. Testing Instruments

An TD 1001 electronic digital balance with an accuracy of 0.01 g produced by the
Chengdu Cheng Sheng tools group company, LTD; an Sdh-1202 rapid halogen moisture
meter produced by the same instruments company, LTD; a TMS-PRO type texture analyzer
produced by the FTC USA company; an MB45 moisture meter produced by the OHAUS
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USA company; an electronic digital display Vernier caliper; a tape; scissors; some sealing
bags; a tachometer; and a frequency converter were used for the test.

2.4. Rice Cultivar

The Huanghuazhan rice variety was used for the experiment. It was planted in a field
at Huazhong agricultural university, Wuhan, China. The planting method was artificial
transplanting. Manual harvesting was used, with a stubble height of about 150 mm, and
then the rice was transported to the university factory for testing.

Each rice stem was subjected to a three-point bending test and a shearing test using the
TMS-PRO type texture analyzer at the engineering college’s agricultural equipment laboratory,
as shown in Figure 4. The properties of rice stalks and grains are shown in Table 2.
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Table 2. Rice stalks and grain properties.

Properties Value

Average Grain Length; mm 9.75

Average Grain Width; mm 2.75

Average Grain Thickness; mm 2.02

Grain Moisture Content; % 13.32

1000 Grains Weight; g 30.43

Average Stalk Length; mm 964.08

Stalk Moisture Content; % 63.21

Max Shearing Force; N 249.6

Max Bending Force; N 9

2.5. Taguchi Method and Experiment Design

The Taguchi method is used widely in engineering analysis. It is a dominant design
that reduces the number of tests and minimizes the effects of factors that cannot be con-
trolled [28,29]. It uses a loss function to calculate the deviation between the desired values
and the experimental values. This loss function is converted into a signal–noise (S/N)
ratio [29,30].

The S/N ratio can be divided into three categories given by Equations (1)–(3) [31]:
The nominal is the best:

S
N

= 10 log
y
s2

y
(1)

The lower is better:
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S
N

= −10 log
1
n
(
∑ y2

)
(2)

The higher is better:
S
N

= − log
1
n

(
∑

1
y2

)
(3)

where y is the average of observed data, s2
y is the variation of y, n is the number of

observations, and y is the observed data or each type of the characteristics.

2.5.1. Threshing Parameters and Their Levels

For the test, we used the cylindrical and conical types of threshers (A); three rotational
speeds (B) of 1100, 1300, and 1500 rpm; and three feeding rates (C) of 0.8, 1.1, and 1.4 kg/s,
as shown in Table 3.

Table 3. Threshing parameters levels.

Parameters Symbol Level 1 Level 2 Level 3

Thresher type (T) A Cylindrical Conical
Thresher rotating speed (N), rpm B 1100 1300 1500

Feeding rate (F), Kg/s C 0.8 1.1 1.4

2.5.2. Taguchi Full Factorial Design L18 (21 × 32)

In this study, the Taguchi method was used to assess threshing performance and to
compare two threshers’ structures (cylindrical and conical). Taguchi’s L18 arrangement
was used for experimenting. To determine the optimal threshing conditions and the best
operating parameters, the S/N ratio was calculated. The lower is better was used to
determine the S/N ratio for power requirement, and the higher is better was used for
efficiency and productivity. The experiment results and S/N ratios are shown in Table 4.

Table 4. The results of experiment and the signal–noise (S/N) ratios.

No Thresher
Type

Thresher
Speed

Feeding
Rate

Threshing
Efficiency

S/N
Efficiency Productivity S/N

Productivity Power S/N
Power

1 Cylindrical 1100 0.8 96.98 39.73 0.27 −11.37 6.20 −15.85

2 Cylindrical 1100 1.1 97.77 39.80 0.30 −10.46 8.27 −18.35

3 Cylindrical 1100 1.4 98.16 39.84 0.35 −9.12 10.37 −20.32

4 Cylindrical 1300 0.8 97.07 39.74 0.33 −9.63 6.31 −16.00

5 Cylindrical 1300 1.1 97.96 39.82 0.38 −8.40 8.96 −19.05

6 Cylindrical 1300 1.4 98.28 39.85 0.39 −8.18 10.43 −20.37

7 Cylindrical 1500 0.8 97.40 39.77 0.40 −7.96 6.57 −16.35

8 Cylindrical 1500 1.1 98.05 39.83 0.45 −6.94 9.04 −19.12

9 Cylindrical 1500 1.4 98.41 39.86 0.51 −5.85 10.63 −20.53

10 Conical 1100 0.8 97.21 39.75 0.33 −9.63 5.45 −14.73

11 Conical 1100 1.1 97.90 39.82 0.38 −8.40 7.22 −17.17

12 Conical 1100 1.4 98.21 39.84 0.39 −8.18 10.06 −20.05

13 Conical 1300 0.8 97.48 39.78 0.38 −8.40 5.89 −15.40

14 Conical 1300 1.1 98.09 39.83 0.42 −7.54 7.66 −17.68

15 Conical 1300 1.4 98.34 39.85 0.44 −7.13 10.22 −20.19

16 Conical 1500 0.8 97.92 39.82 0.48 −6.38 6.44 −16.18

17 Conical 1500 1.1 98.15 39.84 0.59 −4.58 8.90 −18.99

18 Conical 1500 1.4 98.60 39.88 0.64 −3.88 10.30 −20.26
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2.6. Testing Procedure

The platform of the thresher was established in the factory. The conveyor belt’s total
length was 6 m, the first meter was left empty, and the rice straw was evenly spread on the
last 5 m to ensure that it would be fed at a stable speed. The conveyor belt’s speed was kept
to 1 m/s, and different feeding rates of 0.8, 1.1, and 1.4 kg/s were tested. The drum speeds
were 1100, 1300, and 1500 rpm. After the experiment, the rice grains were collected from
the boxes under the concave and from the straw outlet, cleaned using a cleaning machine,
and then weighed to measure the threshing efficiency and productivity. Additionally, the
required power was measured using the torque sensor mounted on the thresher shaft.

2.7. Threshing Performance Indicators

Performance evaluation is a scientific method of ascertaining the working conditions
of a system’s main components to establish how the components contribute to the system’s
overall efficiency [32].

The criteria for evaluating threshing mechanisms’ performance include threshing
efficiency, grain loss, grain damage, output capacity, cleaning efficiency, and power require-
ment [33].

The crop’s feed rate into the thresher and operating parameters such as drum speed
significantly affected the threshing performance [34].

2.7.1. Threshing Efficiency

Threshing efficiency is the ratio between the mass of threshed grains received from
thresher outlets and the total grain input per time unit expressed in percentage [25].

It was calculated regarding the following equation:

TE = weight of threshed seed (g)/total weight of seed (g) × 100

2.7.2. Thresher Productivity

The throughput of a thresher is the mass of materials passing through the thresher per
time unit [35].

Throughput = total weight of seed/threshing time

2.7.3. Power Requirement

The required power was calculated after analyzing the obtained data from the
torque sensor.

3. Results and Analysis
3.1. Taguchi Technique Analysis
3.1.1. Analysis of the Signal-to-Noise (S/N) Ratio

Threshing efficiency, power, and productivity were measured using Taguchi tech-
niques, and the optimization of the control factors was provided by signal-to-noise ratios
using the Minitab software. The lowest value of power was effective on threshing per-
formance enhancing, so the lower is better equation was used to determine its S/N ratio.
Additionally, the highest values of threshing efficiency and productivity were very effec-
tive on threshing performance, so the higher is better was used. The values of the S/N
ratios are shown in Tables 5–7 and show the optimal levels of control factors for optimal
threshing efficiency, power, and productivity. These levels are also shown in graph forms
in Figures 5–7.

The optimum level for each control factor was found regarding the highest S/N
ratio in the levels of that control factor. The levels of the factors giving the best efficiency
and productivity were specified as A2B3C3. This means that the optimum efficiency and
productivity were obtained using the conical shaped thresher (A2), a rotating speed of
1500 (B3), and a feed rate of 1.8 (C3). On the other hand, the lowest power requirement was
obtained with a thresher type (A2), at rotating speed (B1), and feeding rate (C1).
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Table 5. Response table for signal to noise ratios for threshing efficiency (larger is better).

Level A B C

1 39.81 39.80 39.77

2 39.82 39.81 39.82

3 39.83 39.85

Delta 0.02 0.03 0.09

Rank 3 2 1

Table 6. Response table for signal to noise ratios for productivity (larger is better).

Level A B C

1 −8.656 −9.527 −8.895

2 −7.124 −8.214 −7.720

3 −5.930 −7.055

Delta 1.532 3.597 1.840

Rank 3 1 2

Table 7. Response table for signal to noise ratios for power (smaller is better).

Level A B C

1 −18.44 −17.74 −15.75
2 −17.85 −18.11 −18.39
3 −18.57 −20.28

Delta 0.59 0.83 4.53
Rank 3 2 1
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3.1.2. Analysis of Variance

ANOVA was used to determine the individual interaction of all of the control fac-
tors in the test. In this study, ANOVA was used to analyze the effects of thresher type,
rotating speeds, and feeding rates on threshing performance. The ANOVA results are
shown in Tables 7–9. This analysis was carried out at a 5% significance level and a 95%
confidence level. The last column of the table shows the percentage value of each parameter
contribution, which indicates the degree of influence on threshing performance.

According to Table 8, the percent contributions of the A, B, and C factors on the
threshing efficiency were found to be 4.87, 11.63, and 79%, respectively. Thus, the most
important factor affecting the threshing efficiency was feeding rate.



Agriculture 2021, 11, 88 10 of 14

Table 8. ANOVA for threshing efficiency.

Source DF Adj SS Adj MS F-Value p-Value Contribution
Rate (%)

Thresher Type (A) 1 0.1860 0.18600 12.99 0.004 4.87

Thresher Speed (B) 2 0.4440 0.22200 15.50 0.000 11.63

Feeding Rate (C) 2 3.0160 1.50799 105.29 0.000 79.00

Error 12 0.1719 0.01432 4.50

Total 17 3.8178 100.00

Table 9. ANOVA for productivity.

Source DF Adj SS Adj MS F-Value p-Value Contribution
Rate (%)

Thresher Type (A) 1 0.024939 0.024939 33.25 0.000 16.16

Thresher Speed (B) 2 0.096544 0.048272 64.36 0.000 62.54

Feeding Rate (C) 2 0.023878 0.011939 15.92 0.000 15.47

Error 12 0.009000 0.000750 5.83

Total 17 0.154361 100.00

Referring to Table 9, the percent contributions of the A, B, and C factors in produc-
tivity were 16.16, 62.54, and 15.47%, respectively. Thus, the most effective factor on the
productivity was thresher speed.

Regarding Table 10, the contributions percentage of the A, B, and C factors on the
power were 2.11, 2.74, and 93.05%. Thus, the most effective factor was the feeding rate.

Table 10. ANOVA for power.

Source DF Adj SS Adj MS F-Value p-Value Contribution
Rate (%)

Thresher Type (A) 1 1.196 1.1961 12.04 0.005 2.11

Thresher Speed (B) 2 1.555 0.7776 7.83 0.007 2.74

Feeding Rate (C) 2 52.752 26.3761 265.61 0.000 93.05

Error 12 1.192 0.0993 2.10

Total 17 56.695 100.00

3.2. Results Evaluation and Discussion

After the test was carried out, and after the collected data were analyzed according to
Taguchi techniques, some graphs were drawn using the Origin software in order to assure
the former obtained results.

3.2.1. Effect of Feed Rate on Threshing Efficiency under Different Rotating Speeds for the
Cylindrical and Conical Thresher

It was concluded that increasing the thresher’s feeding rate and rotating speed in-
creased the threshing efficiency from 96.98% to 98.41% for the cylindrical thresher and
from 97.21 to 98.6% for the conical thresher, as shown in Figure 8. These results were in
agreement with the results of Osueke, 2013 [36], and Ahuja et al., 2017 [37]. The increase
in threshing efficiency with drum speed could be attributed to the high frequency of colli-
sions and impacts between spikes and grain heads, resulting in more grain threshing and
separating, and it could also be attributed to the increased friction between the concave
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and grain heads. The efficiency increased with the increase of feeding rate due to greater
amount of mass of the crop fed to the thresher per the time unit.
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3.2.2. Effect of Feed Rate on Power Requirement under Different Rotating Speeds for the
Cylindrical and Conical Thresher

The required power increased with the increase in feeding rate and rotational speed.
This may be attributed to a high load on the thresher because of the excessive stalks passing
through the threshing gap. These results were the same as the obtained results by Ezzatollah
et al., 2009 [8], who noticed that drum speed significantly affected the power requirements.

Using the conical-shaped thresher resulted in low power requirements when com-
pared to the cylindrical thresher, as shown in Figure 9.
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3.2.3. Effect of Feed Rate on Productivity under Different Rotating Speeds for the
Cylindrical and Conical Thresher

Increasing the feed rate increased the productivity of the thresher from 0.27 to 0.51 kg/s
for the cylindrical thresher and from 0.33 to 0.64 kg/s for the conical thresher, as illustrated
in Figure 10. These results were in agreement with the work of Osueke, 2013 [36]. This
may be attributed to the higher mass of rice passing through the thresher per time unit.



Agriculture 2021, 11, 88 12 of 14

Additionally, the increase of the rotational speed increased productivity because the higher
speed resulted in a low threshing time, which increased the threshed crop per the time unit.
The conical thresher gave a higher productivity than the cylindrical thresher.
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4. Conclusions

1. In this paper, two thresher structures were tested and evaluated for performance
under different operating parameters such as thresher speed and feeding rate. The
Taguchi technique was used to reduce the testing time and number and to analyze
the data for experimental variable optimization. The obtained results revealed that
increasing the feed rate and rotating speed positively correlated with threshing effi-
ciency, productivity, and power requirements.

2. The highest threshing efficiency and highest productivity of 98.6% and 0.64 kg/s, respec-
tively, were achieved using the conical thresher under a rotating speed of 1500 rpm and
a feeding rate of 1.4 kg/s.

3. The lowest required power of 5.45 kW was obtained using the conical thresher under
a rotational speed of 1100 rpm and a feeding rate of 0.8 kg/s.

4. It was concluded that the conical thresher was more effective than the cylindrical
thresher because it achieved a higher efficiency, a higher productivity, and a lower
power requirement.

5. This research provides a new method for assessing rice thresher performance and
presents a new threshing drum structure that will be more efficient for rice threshing
with a combine harvester.
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