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Abstract: Recently, industrial and agricultural by-products, resulting from crops, fruit and vegetable
processing which can be used in animal diets have become a hot topic in the animal feed industry.
This review focuses on the agro-industry by-products as feeds, not only for the nutritional values,
but also for their nutricine contribution. In this review, we described the chemical composition of
some by-products as feeds and their limiting factors in animal feeding.
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1. Introduction

With the continuously increasing global population, large margin foods are needed
and it is estimated that agricultural production should also be improved by 70–100% to
meet global food demand in the future [1]. Unfortunately, more than 820 million people
suffered from hunger in 2018, and about 2 billion people undergo moderate or severe food
insecurity globally [2]. However, the Food and Agriculture Organization (FAO) has estimated
that approximately one-third of the food produced globally for human consumption is lost
or wasted, representing a significant loss of the resources spent making, processing and
transporting food and a threat to food security [3]. The reduction of food waste is, therefore, a
potential strategy for closing the gap between the supply and demand of food.

Based on corn and soybean meal as energy and protein sources, livestock provides
meat, eggs, milk (as shown in Figure 1) and so on, contributing 1/5 of protein intake to
human beings [4]. Consequently, livestock production between 2010 and 2025 has been
projected to expand by 21% [5]. If feed efficiency remains the same, this expected expansion
will require the world feed supply to increase from 6.0 to 7.3 billion tons of dry matter [6].
Competition between humans and animals for grains (corns, wheat, bean and others) is
increasing. Therefore, global food security is at risk due to increasing pressure on natural
resources threatening food systems’ sustainability in general. It has become imperative to
consider the development of new ingredients especially non-conventional feedstuffs which
might be used in the animal feed industry. Initial estimates made by FAO for the Food Loss
Index indicate that around 14% of the world’s food is lost from post-harvest up to (but not
including) the retail level [3]. Moreover, halophytes [7], straw [8], and residues [9] also can
be used as feedstuffs.

By-product feedstuffs can be categorized into different classifications including stalks
and residues. The residues contain several categories, such as by-products from residues of
fruit and vegetable, by-products from grain- and legume-milling industry and oil industry.
The agro-industry by-products are rich in nutrients, and they can reduce costs for animal
products. The sharp increase in the processed foods will make industrial by-products
and co-products more available. Systems of feedstuff manufacture from wastes make a
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vertical, mutually complemented synthesis of animal production feasible and resolve the
problem of waste and environmental pollution. Moreover, the utilization of new typical
agro-industry by-products like fruit and vegetable by-products as feeds which supports
sustainable development in feedstuffs. These agro-industry by-products will be of real
value as an outlet for the leading products from which they have been derived and relieved
food crisis to a certain degree. This review discusses and summarizes nutrition and the
methods to improve the quality of agro-industry by-products as unconventional feeds.
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2. The Nutritional Components of the Agro-Industry By-Products

Most agro-industry by-products as feedstuffs are enriched in protein, fiber (as shown in
Table 1), and other nutricines, which play vital roles in the feed industry’s ingredients [10–12].
Plenty of agro-industry by-product protein sources have been used in animal feed [13].

Table 1. The chemical composition of straws and residues from food (%).

Items DM CP NDF ADF CF EE Ash Reference

Stalks
Corn 86.60 5.90 74.10 39.70 - - - Wang et al., 2014 [14]
Rice 89.90 7.26 71.30 44.80 - 1.46 - Wei et al., 2018 [15]

Wheat 88.60 5.45 81.40 58.10 - 1.14 - Wei et al., 2018 [15]
Chickpea 89.60 6.50 69.40 51.60 39.00 1.20 6.80 Bampidis et al., 2011 [16]

Cotton - 6.85 58.86 40.60 - 2.39 7.77 Zhang et al., 2018 [17]
Pepper - 15.77 41.16 37.43 - - - Zhou et al., 2016 [18]

Soybean 94.62 3.67 67.34 51.162 - - 3.69 Shen et al., 2019 [19]
Rape 93.62 5.79 67.87 55.52 - 2.51 7.58 Lan et al., 2019 [20]

Fennel 92.17 4.33 - - 36.41 1.00 - Yuan et al., 2018 [21]
Sunflower 90.73 5.72 53.09 - 30.15 0.89 - Yuan et al., 2018 [21]

Residues
Soya-bean Meal 93.85 44.56 13.84 7.35 5.60 5.69 5.70 NRC, 2012 [22]
Rapeseed Meal 93.11 35.19 23.77 17.57 9.77 9.97 6.39 NRC, 2012 [22]

Cottonseed Meal 90.69 39.22 25.15 17.92 13.96 5.50 6.39 NRC, 2012 [22]
Fishmeal 93.70 63.28 - - 0.24 9.71 16.07 NRC, 2012 [22]

Blood Meal 93.23 88.65 - - - 1.45 5.82 NRC, 2012 [22]
Feather Meal 94.24 80.90 - - - 5.97 5.08 NRC, 2012 [22]

Meat Meal 96.12 56.40 31.60 8.30 - 11.09 21.59 NRC, 2012 [22]
Apple Pomace 92.35 6.62 39.03 20.78 14.48 5.53 - Xiong et al., 2020 [23]
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Table 1. Cont.

Items DM CP NDF ADF CF EE Ash Reference

Mango Pulps 92.06 16.38 - - 18.90 5.50 6.43 Pluschke et al.,2018 [24]
Orange Pulp 22.10 15.10 26.50 17.20 7.70 19.10 - Minguez et al., 2018 [25]
Potato Pulp 100.00 8.21 22.30 17.53 - - 4.05 Shen et al., 2019 [19]
Fennel Shell 91.17 7.61 - - 23.31 2.92 - Yuan et al., 2018 [21]

Sunflower Plate 89.63 11.84 23.51 - 12.48 2.13 - Yuan et al., 2018 [21]
Cotton Shell 91.57 10.53 45.77 - 53.52 2.04 - Yuan et al., 2018 [21]
Grape Seed 97.40 9.30 53.90 - - 10.90 2.70 Correddu et al., 2015 [26]

Winery Sediment 31.20 2.80 6.40 4.30 - 28.00 21.40 Ishida et al., 2015 [27]
Olive Cake 94.70 7.90 58.4 45.9 - 9.20 13.60 Abbeddou et al., 2011 [28]

Cassava Residue 90.16 2.58 75.34 24.48 - 0.22 - Lv et al.,2017 [29]
Bean Curd Residue(Air-dried) 93.25 18.14 42.99 28.69 - 3.34 - Lv et al.,2017 [29]

Pistachio 90.00 15.30 25.90 - - 5.80 - Ghasemi et al., 2012 [30]
Pomegranate Pulp 91.20 6.90 31.40 22.80 - 2.60 3.60 Valenti et al., 2019 [31]

Citrus Pulp 90.40 7.70 19.40 12.80 - 4.90 16.80 Fegeros et al., 1995 [32]
Exhausted Myrtle Berries 97.00 8.00 67.00 53.30 - 2.60 9.00 Castrkca et al., 2019 [33]

Coffee Grounds 91.10 11.80 - - 42.50 23.1 7.00 Campbell et al., 1976 [34]
Pumpkin Peel - 1.65 - - 2.240 0.86 - Valdez-Arjona et al.,2019 [35]
Pumpkin Pulp - 1.13 - - 1.09 0.42 - Valdez-Arjona et al.,2019 [35]
Pumpkin Seed - 27.50 - - 16.20 52.4 - Valdez-Arjona et al.,2019 [35]
Bitter Gourd 9.27 22.30 a 45.10 a 35.80 a - - - Das et al., 2018 [36]

Brinjal 7.85 17.2 a 47.20 a 42.10 a - - - Das et al., 2018 [36]
Cabbage 9.97 17.3 a 33.70 a 20.90 a - - - Das et al., 2018 [36]

Cauliflower 10.40 27.0 a 58.40 a 30.40 a - - - Das et al., 2018 [36]
Snake Gourd 4.30 18.4 a 48.0 a 37.70 a - - - Das et al., 2018 [36]
Sweet Gourd 5.40 9.40 a 43.10 a 31.20 a - - - Das et al., 2018 [36]

Tomato 5.20 20.0 a 50.40 a 36.90 a - - - Das et al., 2018 [36]
Cucumber 4.00 20.1 a 42.70 a 37.50 a - - - Das et al., 2018 [36]

Sugar Cane Residues 85.04 10.62 31.58 27.77 18.12 1.50 12.82 Zhang et al., 2017 [37]
Pleurotus Eryngii Spent

Mushroom Substrate 93.12 12.34 64.33 44.41 - 0.22 14.22 Li et al., 2019 [38]

Ganoderma Lucidum Bran 90.07 17.77 40.83 28.73 14.76 9.65 14.09 Zhang et al., 2017 [37]
Faba Bean 89.8 4.9 78.80 69.10 - - 5.50 Wegi et al., 2018 [39]

Phragmites Hay - 7.18 a 73.05 a 38.11 a - 2.59 a 8.05 a Zhang, 2019 [40]
Mulberry Leaves - 18.08 43.23 29.87 24.34 0.82 9.53 Cai, 2019 [41]
Bottle Gourd Leaf 8.10 33.6 - - 11.20 4.20 18.2 Hossain, 2016 [42]
Castor Bean Leaf 24.20 21.0 - - 25.00 1.60 9.30 Hossain, 2016 [42]

Broussonetia Papyrifera 91.12 12.80 46.91 35.73 - 3.50 8.84 Hao et al.,2020 [43]

Leucagena 32.00 20.5 31.60 - - - 6.40 Halmemies-Beauchet-Filleau et al.,
2018 [44]

Moringa 33.00 25.1 21.90 - - - 11.50 Halmemies-Beauchet-Filleau et al.,
2018 [44]

Pine Bark - 2.8 66.70 - - 4.70 2.20 Halmemies-Beauchet-Filleau et al.,
2018 [44]

Willow 26.40 16.7 57.30 - - - 7.10 Halmemies-Beauchet-Filleau et al.,
2018 [44]

Note: DM: Dry matter; CP: Crude protein; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; CF: Crude fiber; EE: Ether extract;
a: Based on DM.

2.1. Stalks

The structural portion of most plants, such as the stalks, leaves, and stems, are high
in acid detergent fiber (ADF) and neutral detergent fiber (NDF) but low in protein and
minerals [45]. Some dietary fiber may be essential for young ruminants (like calves) to
sustain attrition in their rumen and keep away from abnormal growth of the rumen [46].
As feedstuff, straw is a by-product of crops, including rice, wheat, corn, and vegetables [47].
For example, millet straw is a crucial coarse fodder provenience for ruminants in many
areas [47]. Straws can be not only supplemented with grains or by-products of grains but
also as individual ingredients. Stalks are mixtures of pasture used in ruminant feedstuff
frequently and the raw materials of ensiling [48]. Chen et al. (2020) investigated that the
combinational utilization of millet straw and corn straw could accelerate the metabolism
ability of blood biological chemistry in fattening lambs. The growth performance of fat-
tening lamb was improved by the substitute of 50% corn straw with millet straw [48].
Silage-formed stalks include a moderate quantity of protein (9.3–13.0%) and a high content
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of NDF (48–59%), which may be a possible source of roughage for ruminant animals [49,50].
Straw is rarely used for monogastric animal feeding. Few research studies investigated
that straws were provided to pigs, which could decrease gastric ulcers [51]. In Jensen
et al.’s study, the straws were delivered to pigs on a concrete floor, which increased the
daily weight gain, the improvement of intestinal tract health and increased stimulation
of exploratory behavior with the straws provided need to explore [52]. Ruminants tradi-
tionally grazed on pastures, however, with more intensive systems, pasture availability
and grazing as a source of nutrients is decreasing. One of the effective ways is that straws
are used as feed to ruminant animals. Feeding protein supplements is one of the most
expensive and limiting feed sources [13,53]. Some stalks are with typically high moisture
content, leading to a decrease in the shelf-life and making their collection and incorporation
in animal feed more difficult. In the past years, crop straws fired on the farm not only have
significantly impaired air quality but have also wasted sources [54]. Many researchers
have been attempting to find methods to improve the nutrition of stalks, such as ensiling.
In general, the utilization of stalks, which are human-inedible resources, as a source of
animal feedstuff would help to solve the problem of feed inadequacy in a way, potentially
decreasing feed costs, and reducing the relevant problems of waste resources.

2.2. Residues

The residue feeds contain agro-industry by-products of plants (oil-seed-meals, plant
shell, seed, fruit pulp, fruit pomace, and others), animal (whey, fishmeal, meat and bone
meal, blood meal, and so on), and mushroom substrate. The NDF and ADF of residue
feeds are lower, while crude protein is higher than straw. Most residues are abundant
with crude protein, dietary fiber and phenolic compounds. Agro-industry by-products as
feedstuff of plant include conventional feed (soya bean meal, cottonseed meal, rapeseed
meal, and others) and unconventional (oil-seed-meals, plant shell, seed, fruit pulp, fruit
pomace, etc.) feed.

Soya-bean meal is mainly used in the livestock feed as a protein source, moreover, it is
palatable. However, people are exploring a protein substitute that will displace soya-bean
in the livestock diets because of its dependence on imports and high prices [55]. Rapeseed
meal and cottonseed meal, oil industry by-products, are generally acknowledged as alter-
native protein feed for animals. Rapeseed meal is a feed component with huge economic
potential. It is the second used raw protein material worldwide (after soybean meal) in
feeding livestock [56]. The crude protein of rapeseed meal can vary from 33.9–36% of dry
matter and this protein supplies less lysine than soybean meal protein but contains more
sulfur-containing amino acids [56], and this material is restricted as fodder in livestock due
to high levels of anti-nutritional ingredients (particularly tannins, glucosinolates and phytic
acid). The utilization of cottonseed meal as feedstuff is also limited because of the presence of
high free gossypol (a toxic polyphenolic compound), crude fiber and low lysine level [57].

Agro-industry by-products as unconventional feed sources can be defined as those
not traditionally used in animal feeding and commercially prepared feedstuffs for farm
animals. The agro-industry by-products as unconventional feedstuffs consist of various
food resources, such as palm press fiber (oil palm by-products), by-products from the
processing of sugar, cereal grains, citrus fruits and vegetables from the food processing for
human consumption [58]. Nutritional ingredients of partial agro-industry by-products as
unconventional feeds are listed in Table 1. Agro-industry by-products as unconventional
feedstuffs have been exploited for farm animals mainly including peanut meal, olive oil
cake, mulberry leaves, orange pulp, as shown in Table 1. Concerning the crude protein,
contents and large values can be observed for all by-products or new feed ingredients like
broussonetia papyrifera, mulberry leaves or mango pulps. Fruit pomace also contains
bioactive ingredients including vitamins, polyphenols (especially anthocyanins), dietary
fiber, and essential unsaturated fatty acids [59]. Fruit pulp is a good source of the beneficial
active compounds: gallic acid, phenolic compounds (anthocyanins, etc.) [60], carotenoids,
and dietary fiber [61], and so on. Moreover, dietary fiber is described as supporting
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laxation, attenuating blood glucose responses and assisting with cholesterol-lowering, and
influencing gut microbiota [62]. The biological activities of polyphenols have been primarily
observed and proved the antioxidant abilities, positive consequences on health like anti-
inflammatory effects [63,64]. These natural compounds were considered and they can
replace antibiotics in the agro-industry by-product as feeds are used all over the world [12].
In the past few decades, a hot point to develop functional foods has emerged, which
contains diverse ingredients (protein, specific fatty acids, selenium-riched, low cholesterol),
protecting chronic diseases of cancer [65,66]. Khan et al. (2012) indicated that flaxseed cake
improved omega-3 fatty acid and vitamin of eggs [67]. However, particularly high protein
content of agro-industry by-products has much more phenols including chlorogenic and
caffeic acids, which decreases its nutritional value by combining with proteins, particularly
to essential amino acids such as lysine and methionine [68]. Hence, seeking methods to
improve the nutritional value of agro-industry by-products is indispensable.

Feedstuffs of animal-by-product are generally better than that of plants for the health
and performance of livestock and poultry because of the greater quantity of proteinogenic
amino acids (AAs) and higher quality (the proportions and digestibility of AAs) [69].
Moreover, animal-derived feedstuffs contain taurine, creatine and creatine phosphate that
are effective anti-oxidants and partake in energy metabolism in the brain, skeletal muscle,
heart, and gonads of animals [70]. Additionally, animal-derived feedstuffs may involve
polyamines that are fundamental for DNA and protein syntheses in most animals [71].
Common animal-by-product feedstuffs contain fishmeal, feather meal, blood meal, meat
and bone meal, and meat meal. Among animal-by-product feedstuffs, fishmeal was most
used which generally exchanged at 65% crude protein, but the crude protein content can
change from 57% to 77%, relying on the species of fish processed [69]. Varieties of fish
species can be used in fishmeal, while the most general is Menhaden that occupies about
90% of U.S. fishmeal production [72]. Feather meal is superior to soybean meal in total
cysteine, valine, and threonine content. It is cheaper as a protein source. On the other hand,
feather meal has not been widely used as a protein source in livestock and poultry diets due
to the modifiability in quality and digestibility [73]. Animal-by-products are not widely
used as protein sources in feedstuffs compared with plant-by-products. One of the most
important reasons is that if pathogenic bacteria would be unsuccessful in being inactivated
during the processing of animal carcasses under these altered conditions, and that feeding
such polluted material to animals spread the pathogen to animals, causing disease [74].
By-products of animals as protein sources in diets for livestock are forbidden in Europe
(European Commission Decisions No. 98/272/CE and 2000/374/CE). According to the
report of Hahn, the following steps of the processing of animal meal include that cutting
up the carcasses, sterilization of the material, drying the material to a water content of
around 5%, removal of fat, and grinding and sieving of the material. Every step should be
performed carefully to guarantee the quality of animal meal [75].

A mushroom substrate is a co-product of composted organic medium from the mush-
room growth process which is usually the production of renewable agricultural residues
including sugarcane bagasse, cottonseed meal, cocoa shells, oil palm empty fruit bunch,
and others [76]. After mushrooms are harvested, the mushroom substrates which are
enriched in cellulose, lignin and protein could be more easily digested by animals due
to enzymolysis of mushroom cultivating [77]. The mushroom substrate contains many
bioactive ingredients such as secondary metabolites, extracellular enzymes and carbohy-
drates produced [78]. The mushrooms industry is one of the incredible drivers in the world
and has plentiful mushroom substrates which face storage and disposal issues [79]. One
method to solve the problem is to feed animals with the mushroom substrate.

It is worth noting that the chemical compositions of by-products depend on soil varieties,
agroclimatic conditions, stage of ripening, or other facts [35,43,80]. Several factors, including
protein concentration and its biological value, digestibility, level of energy, fats and carbohy-
drates, concentration of amino acids, vitamin and mineral, and the amount of fiber and the
existence of toxic substances, influence the quality of by-product feedstuffs.
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3. The Measures to Improve Agro-Industry By-Product Quality

Lots of agro-industry by-products have low quality, and some of them contain anti-
nutritional factors (Table 2) which influence feed palatability, digestibility, and impaired
animal production performance [81–83]. Bampidis et al. (2011) reviewed that chick-
peas contain a variety of secondary compounds (protease and amylase inhibitors, lectins,
polyphenols and oligosaccharides) which impair nutrient absorption on animal health and
growth [16]. The agro-industry by-products as feeds are also limited by high fiber [84,85].
Ruminants generally can endure a much higher content of toxic factors than nonrumi-
nants [86]. However, there are new and available technologies emerging to degrade or
remove anti-nutritional factors and improve the quality of by-products.

Table 2. Anti-nutritional factors on agro-industry by-products ingredients.

Anti-Nutritional Factors Sources

Protease inhibitors Beans

Lectin Beans, Gramineae, Solanaceae, Amaryllidaceae
J. St.-Hil.

Tannin Sorghum, Brassica napus L, beans
Non-starch polysaccharide (NSP) All plants

Gaseous distention factor Beans
Antigenic protein Beans

3.1. Physical Processing

Physical processing, including crushing, peeling, soaking, extruding, and expanding,
does not have effects on the chemical composition of biomass, but changes physical charac-
teristics such as surface area, bulk density, and specific porosity [87]. Physical processing is
used as pretreatment for destroying the by-products’ stubborn structure to facilitate the
following processing more effectively. As Akobi et al. indicated, the extrusion decreased
particle size and crystallinity and enhanced surface area of biomass sugar availability of
lignocellulosic [88]. Heat-treating rapeseed products is a straightforward, effective way to
deactivate myrosinase. This approach, currently the most popular, degrades up to 70% of
the glucosinolates contained in rapeseed meal [56].

3.2. Chemical Processing

Chemical processing includes alkalinization, acidification, oxidation and ammonifi-
cation. Alkalinization, acidification and oxidation have not been widely used because of
pollution, high cost, etc. Ammoniation is commonly used in chemical processing. However,
liquid ammonia and ammonia water transport are very inconvenient. Additionally, the
ammonia loss rate is high, and there is a certain degree of insecurity. However, the methods
mentioned can be combined in their utilization. For example, lignocellulose is a mass of
content in straws of about 80–95%. It has bad hydrolysis performance which hinders the ab-
sorption and degradation of energy recovery and volatile concrete degradation which can
treatment with mesophilic anaerobic digestion and urea plus nitrate pretreatment [89,90].

3.3. Biological Processing

Biological processes include enzymolysis technology, microbial fermentation, and so
on. The enzymes commonly used by the feed industry are the glycanases involved in the
splitting decomposition of NSP in viscous cereals (wheat and triticale) and microbial phytases
that aim at phytate-complexes in plant components [91]. Moreover, relatively abundant
literature examples (papers and patents) have introduced the utilization of typical enzymatic
hydrolysis treatments (proteases, glycosyl hydrolases) on by-products for enhancing the
nutritional value and digestibility of protein hydrolysates [92]. Microbial fermentation can
improve the nutritional ingredient of particular by-products [93]. Fermentation can enrich
the nutrition of residues by biotransformation which implements several microorganisms,
mainly Bacillus, Saccharomycetes, fungi, Lactobacillus spp [94,95]. Fermentation enhanced
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crude protein concentration and other nutriment but reduced many anti-nutritional factors,
crude fiber content and toxic ingredients. Organic acid, several amino acids and metabolite
of Okara were increased by fermentation [96]. Wang et al. (2020) showed that the crude
protein content of corn straw reached the maximum value of 13.23% when fermented by
Trichoderma koningiopsis, Phanerochaete chrysosporium and Saccharomyces cerevisiae [97]
and Wu et al. (2020) reported that the corn stalk fermented by fungi and enzyme mix (cellulose,
xylanase and Phanerochaete chrysosporium were 0.2 g/kg, 0.1 g/kg and 20% respectively)
were degradable, with NDF and ADF to 51.61% (vs. 67.44%) and 31.77% (vs. 39.79%) [98].
Zhu et al. (2018) showed the content of 17 kinds of amino acids and total AA content was
increased in tea residue when fermentation by Aspergillus niger. Moreover, the total tanning,
NDF, ADF were decreased to 2.42% (vs. 11.63%), 32.96% (vs. 39.85%) and 12.28% (vs. 15.70%)
respectively [99]. The ensiling process is an available conservation technology that is known
to acidify biomass, and it restrains the development of spoilage bacteria, thus providing safe
and long-term preservation for humid fodder [100]. Inoculation with lactic acid bacteria
(LAB) or supplementation with easily fermentable carbohydrates (readily metabolizable by
LAB) like molasses, certified to be successful in increasing the availability of the ensiling
process. This supplies an additional source of simple sugars for the growth and multiplication
of LAB, thereby accelerating the silage acidification and avoiding microbial deterioration,
especially when the ensiling biomass has a low concentration of soluble carbohydrates. In
general, agro-industry by-products as feeds can be improved by fermented, silage, enzyme
and other ways [101].

The feedstuffs are commonly manufactured by a combination of technologies to im-
prove nutrition. For example, lignocellulosic biomass can be changed into fermentable
sugars. This process needs pretreatment to decrease the recalcitrance of lignocellulosic
biomass by opening or partially breaking up the recalcitrant structure to enhance the
enzymes’ accessibility to the cellulose during the enzymatic hydrolysis step. These pre-
treatment methods are usually divided into physical, chemical, physical–chemical and
biological categories, such as steam explosion, dilute acid pretreatment, organosol pretreat-
ment, and alkali pretreatment [86].

4. The Application of Agro-Industry By-Products as Feeds in Animals

There is a considerable amount of research studies on the roles of agro-industry
by-products as feeds in animals. Moreover, agro-industry by-products as feeds have an
influence on growth performance, immune function and product quality. However, it is
quite difficult and risky to clarify the contribution of each by-product on feed intake and
animal performance by considering the attribution of nutricines, due to the complexity
of chemical compositions in by-products. In addition, several agro-industry by-products
have negative effects when supplied too much in the feed.

4.1. The Application of Agro-Industry By-Products as Feeds in Monogastric Animals

The applications of agro-industry by-products as feeds in monogastric animals (par-
ticularly pigs and poultry) are especially prudent for their direct competition with humans
for edible energy and protein sources due to the common diet is corn-soybean in the
pig and poultry industry. Monogastric animal feeding is more and more challenged by
feedstuff in the diets, immune traits, and meat quality. Currently, numerous studies focus
on feedstuffs from agricultural by-products on pigs and poultry [102,103]. Moreover, over
the last decade, the interest in entirely natural, plant-derived antioxidants has increased
greatly [104,105]. Many agro-industry by-products as feeds can improve the feed conver-
sion ratio, body weight, antioxidant capacity, immunity, gut morphology and intestinal
microflora of pigs [78,106] and poultry [37,107]. The research studies of agro-industry
by-products as feedings of pigs and poultry are shown in the following subparagraphs.
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4.1.1. Pigs

Agro-industry by-products as pig feedings can enhance growth performance, meat
quality of piglets and growing pigs, and improve production performance, milk, and
quality of sows. Dong et al. (2019) assessed the nutrient profiles, the apparent total tract
digestibility of nutrients, digestible energy, and metabolizable values of the five feeds:
highland barley, buckwheat, glutinous broomcorn millet, non-glutinous broomcorn millet,
and Chinese naked oat in the feeding of growing pigs. The results indicated that the
five feeds, and particularly the broomcorn millets, could replace the corn in growing pig
diets [108]. Numerous beneficial effects of mulberry were identified, including antibacterial
and antitumor effects, reducing blood sugar, and improving immunity [109]. Several
studies reported that mulberry and Broussonetia papyrifera are effective feedstuffs to
improve meat quality and the chemical composition of muscle without negative effects
on growth performance [110,111]. Most experiments of dietary fiber mainly on the sows
confirmed improve production performance, milk quality, immunity traits, and sow’s
welfare [112–114]. The inulin and cellulose as fiber sources were used in the above studies.
Several research studies reported the use of brans or straws which have high fiber content
and low cost as fiber in sow production but few studies are observed on the finishing
pig. Fan et al. (2020) showed that rice bran replacing corn decreased the inflammatory
biomarkers of serum and have the potential function in modulating the intestinal barrier
by upregulating the mRNA expression levels of MUC2 and downregulating Nrf2, NQO1,
and HO-1 in the colon [115]. More attention should be paid to the fiber source from
agro-industry by-products. The results of agro-industry by-products used in pigs are
partly demonstrated in Table 3. The research studies of abnormal by-product feeds of
oil-seed-meals (like olive cake processing waste, cassava peel meal, brewers dried grain,
mango pulp) were supplied for the diets of pigs, and could decrease the backfat thickness
and intramuscular fat [116], reduce Insulin-like growth factor (IG-2) expression in liver
and duodenum [117], and increase starch and protein digestion [24]. By-product feeds of
forestry decreased meat b* value, increased, CP and concentrations of Ala, Thr, Ile, Lys
and Pro in longissimus thoracis, increased final BW, ADFI and ADG, decreased F/G ratio,
improved slaughter weight, carcass weight, and carcass yield and meat a* value, decreased
shear force, drip loss, such as mulberry leaf and moringa oleifera [106].

Most agro-industry by-products are of lower quality as pig diet feedstuffs. However,
they can be improved through chemical, physical and especially biological technology.
Rho et al. (2018) investigated treating corn and DDGS with a mixture of β-glucanase and
xylanases improved feed efficiency in growing pigs [118]. Sehm et al. (2007) concluded that
the flavonoid-rich feeding regiment (polyphenol-rich apple pomace or red wine pomace)
has positive effects on villi morphology and gut-associated lymphoid tissue activation,
improving pig health [119]. Fang et al. (2016) supplemented apple pomace-mix silage
(APMS) to neutered male pigs, and the results demonstrated no difference in average
daily gain (ADG), carcass weight, backfat thickness or dressing ration with the control
group, but average daily feed intake (ADFI) was lower and feed efficiency was higher
when feeding APMS. Moreover, the APMS improved the moisture, linoleic acid, linolenic
acid and arachidic acid and decreased the water holding capacity, plamitic acid, palmitoleic
acid, and heptadecenoic acid content [120].



Agriculture 2021, 11, 207 9 of 19

Table 3. Applications of agro-industry by-products as feeds in pigs.

Items Levels Monogastric Main Influences References

Olive Cake Processing
Waste 5, 10% Growing-finishing pig

Decreased backfat thickness and
intramuscular fat and modified

their fatty acid composition,
increasing the concentration of

MUFA and PUFA and improving
quality indices.

Liotta et al., 2019 [116]

Brewers dried grain,
cassava peel meal,
Plantain peel meal,

corn
husk meal

35% Growing pigs
Decreased Insulin-like growth

factors (IG-2) expression in liver
and duodenum

Sorhue et al., 2020 [117]

Mango pulp 15% Grower pigs Increased starch and protein
digestion to a certain extent

Pluschke et al., 2018
[24]

Moringa oleifera 4% Finishing pig

Decreased meat b* value,
MyHCIIx mRNA levels, increased
MyHCIIa, CP and concentrations

of Ala, Thr, Ile, Lys and Pro in
longissimus thoracis.

Chen et al., 2021 [106]

Mulberry leaf 4% Finishing pig

increased final BW, ADFI and
ADG,

decreased F/G ratio, improved
slaughter weight, carcass weight,

carcass yield and
meat a* value, decreased shear
force, drip loss, MyHCIIx and

MyHCIIb mRNA
levels, and increased MyHCI and

MyHCIIa mRNA levels.

Chen et al., 2021 [106]

Mulberry leaves 3, 6, 9, 12% Finishing pig

Increased loin-eye area and
contents of crude protein, inosine

monophosphate and several
amino acids in muscle tissues.

Liu et al., 2019 [110]

C. militaris spent
mushroom substrate 2 g/kg Growing pig

Improved growth performance,
immunoglobulin secretion, and
anti-oxidant capacity, decreased

leukocyte percentage, cholesterol,
and MDA concentrations

Boontiam et al., 2019
[78]

Dietary fiber (Ratio of
insoluble to soluble)

3.89, 5.59,
9.12, 12.81% Sow

Improving anti-oxidant and
decreasing inflammatory response

of mothers and their offspring
through modulating the

composition of gut microbiota.

Li et al., 2019 [113]

Dietary fiber (Ratio of
insoluble to soluble)

3.89, 5.59,
9.12, 12.81% Sow

Increased body weight (BW) at
weaning and piglet BW gain, the

crypt depth of the jejunum in
weaned piglets.

Li et al., 2019 [113]

Wheat or oat straw 10% Sow

Wheat straw increased
postprandial IGF-1 and prolactin,
oat straw increased lactation feed
intake and piglet weaning weight.

Agyekum et al., 2019
[90]

Note: b*: yellowness; a*: redness.

4.1.2. Poultry

Poultry production is developing fast all over the world [22]. Therefore, agro-industry
by-products as feedstuffs are in favor of the development of poultry production. The
by-product of grape improves gut morphology and intestinal microflora, increases the
biodiversity degree of intestinal bacteria and enhances the percentage of unsaturated fatty
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acids [121,122]. There is a difference in growth performance when adding high levels of
grape seed, but no unifying data of the maximum values exist [123,124]. Zhai et al. (2020)
indicated that moringa stem meal, afforded at a rational level (no more than 60 g/kg),
could be exploited as a feedstuff for geese in the finisher period [125]. Lombardi et al. (2020)
indicated ancient wheat line by-products (consisting 50:50 of triticum aestivum var. spelta
and Triticum durum dicoccum L.) could improve feed conversion ratio, reduce the level
of cholesterol, triglycerides, ATL and GGT in the blood of laying hens, and increase the
amount of butyrate acid in the caecal content of hens. The ancient grain diet could support
production performances with positive effects on animal health and on environmental
sustainability. [126].

Eggs are ubiquitous in human diets. However, previous studies showed high choles-
terol in eggs will impair peoples’ health by causing cardiovascular disease [127]. A high
number of studies reported that agricultural by-products could reduce cholesterol in
eggs [107,128–130]. Cayan et al. (2015) reported olive leaf powder improved the final
body weight of laying hens, yellowness in yolk color, reduced the concentration of yolk
cholesterol [107]. In the study of Gurbuz et al. (2017), sumac (Rhus coriaria L.) seed powder
and ginger (Zingiber officinale) root powder could decrease powder yolk and blood choles-
terol content and low-density lipoprotein, improved acid composition, ginger root powder.
Dehydrated bo-caiuva pulp revealed a potential anti-oxidant capacity and reduced the
lipid oxidation in egg yolk [129].

Heat stress is one of the major environmental factors which may reduce growth per-
formance, nutrient availability, immunity and welfare in the poultry industry particularly
in tropical and arid regions of the world [131–133]. The addition of by-product feed in the
diet for laying hens under heat stress can be beneficial for hen health and can exert positive
effects on performance and egg quality [134,135]. Tomato pomace diluted the negatively
decreased influence of heat stress on the activities of serum enzymes, oxidative status,
immune response, and bone ingredients [136]. The above-mentioned studies of by-product
feed in poultry are exhibited in Table 4.

Table 4. Applications of agro-industry by-products as feeds in poultry.

Items Levels Monogastric Main Influences References

Moringa stem meal (MSM) 20, 40, 60, 80, 100% Geese

Dietary MSM levels of no more than 60
g/kghad no effects on the growth

performance and slaughter
performance, while diets with 100 g

MSM/kg increased the F/G and serum
ALT enzyme activity, as well as

decreasing the serum GLU level.

Zhai et al., 2019 [125]

Tomato pomace 3, 5% Broilers

Attenuated the detrimental effects of
heat stress on the activities of serum
enzymes, oxidative status, immune

response, and bone composition

Hosseini-Vashan et al.,
2015 [136]

Grape pomace 60 g/kg Broilers

Modify the gut morphology and
intestinal microflora and increase the

biodiversity degree of intestinal
bacteria.

Viveros et al., 2011 [121]

Grape seed extract 7.2 g/kg Broilers

Modify the gut morphology and
intestinal microflora and increase the

biodiversity degree of intestinal
bacteria.

Viveros et al., 2011 [121]

Grape seed 5% Broilers

Higher percentage of unsaturated fatty
acids due to linoleic acid, more nutty

smell, a more metallic flavour and
more stringiness.

Francesch et al., 2015 [122]

Olive leaf powder 1, 2, 3% Laying hens
Increased final body weight,

yellowness in yolk color, decreased
yolk cholesterol content.

Cayan et al., 2015 [107]
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Table 4. Cont.

Items Levels Monogastric Main Influences References

Sumac (Rhus coriaria L.)
seed powder 10, 20, 30% Laying hens

Reduced yolk/blood cholesterol
concentrations and low-density

lipoprotein, improved acid
composition.

Gurbuz et al., 2017
[129]

Ginger (Zingiber
officinale) root powder 10, 20, 30% Laying hens

Reduced yolk/blood cholesterol
concentrations and low-density

lipoprotein, improved acid
composition.

Gurbuz et al., 2017
[129]

Dehydrated bocaiuva
pulp 0.1, 0.2, 0.3, 0.4% Quail

Exhibited a potential antioxidant
capacity and reduced the lipid

oxidation in egg yolk.
Nunes et al., 2018 [130]

Ancient wheat lines
by-products (consisting

in 50:50 of Triticum
aestivum var. spelta
and Triticum durum

dicoccum L.)

36.3% Laying hens

Improved feed conversion ratio,
decreased egg length and width,
egg weight, shell thickness and

strength, reduced level of
cholesterol, triglycerides, ATL and

GGT in blood, increased the
amount of butyrate acid in the

caecal content of hens.

Lombardi et al., 2020
[126]

4.2. The Use of Agro-Industry By-Products as Feeds in Ruminants

Ruminants take advantage of high fiber feed because they have substantial microor-
ganism populations in the rumen [137]. Indeed, to produce the equivalent amount of
animal protein products (meat, milk or eggs) much less human-edible feed is needed in
ruminant systems than in monogastric systems (6 vs. 16 kg of human-edible feed dry
matter (DM) per kilogram of protein products) [5]. The strengths inherent to ruminant
animals in the food production chain could be further developed by more diverse and
efficient exploitation of side streams and increased exploitation of fibrous feeds not suitable
for the nutrition of humans and monogastric livestock. In the past few decades, animal
production systems have undergone radical changes that have led to the concentration
of large herds in fewer specialized intensive farms, where animals, especially ruminants,
are usually kept indoors. Then the feed costs can contribute up to 70% of total production
costs in the ruminant industry due to the lack of grazing on pastures.

Rice straws, wheat straws and other high fiber feeds are commonly used in rumi-
nate [138]. However, energy is crucial to dietary provision for animal production. The data
of energy utilizability of untraditional feedstuff formulated are largely unknown. ME and
NE values (dry matter basis) are 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg
for wheat straw, respectively [15]. Moreover, the straws treated by fermentation, enzyme,
silage, and other methods were proved to exhibit improved quality before application in
ruminant feedstuff recently [139,140]. The agro-industry by-products like grape pomace
or cassava residues used in ruminants are shown in Table 5. Several studies reported that
by-products of cassava and grape could improve the production of lambs, dairy ewes and
cows [141–150]. Moreover, grape by-products were also able to reduce approximately 20%
of CH4 emissions and CH4 yield of dairy cows [146].

Indeed, there are many other agro-industry by-products of fruits and vegetables like
dried citrus pulp and grape pomace that have exhibited a positive relationship in the
performance of ruminants [151–154]. It is common to supplement by-product materials to
ruminant feeds, however, there is no uniform addition standard. Greenhouse gas emissions
have gained world attention because of their effect on the global climate. This comes from
the fact that cattle take up more than 11% of all human-induced greenhouse gases [155].
The nutricine activities which form agro-industry by-products as feeds have been largely
investigated in greenhouse gas emissions [154,156–158].
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Table 5. Applications of agro-industry by-products as feeds in ruminants.

Items Levels Ruminants Main Influences References

Grape by-product 0, 100, 200, 300 g/kg Lambs

Hay replacement by grape by-product at
up to 300 g/kg in the DM was satisfactory
to weight gain and not impair ADFI and

ADG

Amaral et al.,
2019 [141]

Grape seed and skin 20% Dairy ewes
Improved milk production, calcium, free

iron and urea content, no influence on milk
fat and protein

Mokni et al.,
2016 [142]

Grape pomace 0, 5, 10, 15, 20% Lamb
The optimum inclusion of 12.2% grape
pomace improved lamb productivity,
without compromising meat quality

Chikwanha et al.,
2019 [143]

Grape pomace 5, 10% Suckling lambs No negative effects on meat quality besides
the water holding capacity improved.

Gómez-Cortés et al.,
2018 [144]

Distillers’ grape
residue

3.85, 7.70, 11.55,
15.41% Lamb

Ruminal microbial N decreased and
un-degradable protein and N retention

increased. Suggested not exceeding 10% of
the diet

Gao et al.,
2019 [145]

Grape marc 5 kg/day Dairy cow Decreases of approximately 20% in CH4
emissions and CH4 yield

Moate et al.,
2014 [146]

Grape pomace 15% Dairy cow
No negative influence on blood constituent
metabolism and the fat, protein and caseins

in milk, but increase other components.

Chedea et al.,
2016 [147]

Grape pomace 10% Cattle Reflects antioxidant activity Iannaccone et al.,
2018 [148]

Cassava residue 5, 10, 20% Lambs (21 kg)
Improve growth performance, damage

antioxidant capacity and kidney function,
suggested less than 20%

Lv et al.,
2017 [29]

Cassava
residue(Liquid)

Replacement of 25, 50,
75% corn Lambs (19.5 kg)

The maximum average daily gain (174
g/day) was estimated with a 22.4 %

replacement level

Dos Santos et al.,
2015 [149]

Cassava chips or
fermented cassava

starch residue
100%

Thai native-Lowline
Angus crossbred

steers

replacement of cassava chip in the
concentrate with FCSR decreased feed
digestibility; not impact negatively on
growth performance and carcass traits

Pilajun et al.,
2016 [150]

Fruit and vegetable
waste 6, 8, 12, 18% Lactating Holstein

cows
No negative influence on ADFI and milk

yield but improve milk quality.
Angulo et al.,

2012 [151]
Fruit by-products

(dried citrus
pulp(GDP), Grape

pomace(DGP) )

150 g/kg Angus steer
GP is a better fiber source than DCP to
enhance growth performance, carcass

attributes and economic viability

Tayengwa et al.,
2020 [152]

DDGS, dried citrus
pulp (DCP),

exhausted olive cake
(EOC)

18, 18, 8% respectively Lamb
44% of feed ingredients in the concentrate

replaced without negative growth
performance and animal health

De Evan et al.,
2020 [153]

Grocery by-product
feed 18, 36, 54% Cattle Increase DM intake and energy and TDN

digestibility
Froetschel et al.,

2014 [154]

DDGS: corn distiller’s dried grains with solubles; DCP: dried citrus pulp; EOC: exhausted olive cake.

5. Developmental Strategies for Agro-Industry By-Products

The agro-industry by-products have great potential for animal feedings. However, the
utilization has different limits due to the large variability in their chemical compositions
and physical status, their seasonal production, short shelf-life, high moisture, and fat levels.
To increase the by-products’ shelf-life, some precautions could be adopted, such as treating
by-products rich in water with a hygroscopic substance (e.g., lime) or adding anti-oxidants
to the by-products rich in fats. More attention should be paid to the pesticide residue in
fruit and vegetable by-products that impair animal health [159]. Agro-industry by-product
as feedstuffs should be promoted because of heavy demand for intensification in the future.
A change from the traditional to more intensive systems of production is likely to result
from different factors such as scarcity of grazing land, need for more control over animals,
and higher returns from the stall-feeding system. The quantity of usage of agro-industry
by-products relies on the availability of the resources and the technical facility utilized for its
preparation, reservation, and improvement. Many countries are in the direction of making
the most of all products which are adequate for animal feed. Moreover, the appropriate
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methods of collection, transportation, and processing contribute to decrease the expenses
and further the nutritive value. The following tactics are recognized to be significant
to improve productivity from the animal resources through more efficient utilization of
agro-industry by-products [58]:

1. More intensive use in stall-feeding systems.
2. Development of complete rations.
3. Strategic supplementation.
4. Wider use of by-products.
5. Nutrient enrichment of by-products.

6. Conclusions

Most agro-industry by-products including stalks and residues are rich in nutrients as
raw materials that are particularly well suited to serve as the base of animal feeds. Stalks are
high in dietary fiber but low in protein and minerals while residues are high in protein and
other nutrients. Unfortunately, agro-industry by-products also have many shortcomings
such as the presence of anti-nutritional ingredients. However, modern processing methods,
new sorts, and appropriate developmental strategies are expanding the applications of
agro-industry by-products as animal feeding including pigs, poultry and ruminants. That
said, the processing methods and developmental strategies still need further improvement.
The utilization of agro-industry by-products for animal production will become a sound
foundation for sustained development technology and the management of animal farming.
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