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Abstract: The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays
an important role in investigating the distribution of arecanut planting area and the subsequent
adjustment and optimization of regional planting structures. Satellite imagery has previously been
used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the
monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level
of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the
Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting
distribution based on feature space optimization. First, spectral and textural feature variables were
selected to form the initial feature space, followed by the implementation of the random forest
algorithm to optimize the feature space. Arecanut planting area extraction models based on the
support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification
algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and
RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with
Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features
exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of
the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and
7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa
coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to
extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize
the initial feature space, composed of spectral and textural feature variables, further improving the
extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and
technical reference for the agricultural and forestry industries.

Keywords: arecanut; PlanetScope satellite image; random forest algorithm; feature optimization;
area extraction

1. Introduction

Arecanut (Areca catechu L.) is a perennial evergreen tree of the palm family and
an important Chinese medicinal plant. It is common in some areas of southern Asia
to chew the fruit; however, it is currently listed as a class 1 carcinogen by the World
Health Organization International Agency for Research on Cancer. At present, arecanut
is principally distributed in the Asian countries of India, Indonesia, Bangladesh, China,
Myanmar, Thailand, the Philippines, Vietnam, and Cambodia [1]. It is a key economic
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crop in the tropical and subtropical regions of China, with a planting history of more than
1000 years. Principle sowing locations include tropical regions such as Hainan and Taiwan,
with smaller distributions in Guangxi, Yunnan, Hunan, and Fujian. The production of
arecanut in Hainan Province currently accounts for more than 90% of the domestic total.
Furthermore, in 2019, the planting area, harvest area, and total output reached 115,171 ha,
83,318 ha, and 272,200 t, respectively [2]. This identifies arecanut as one of the largest
tropical cash crops in Hainan Province, playing a crucial role in the industry and farmers’
income within the province.

The negative impact of diseases (i.e., yellow leaf disease) has resulted in the recent
reduction in the arecanut planting area and yield. The area of areca affected by yellow
leaf disease has reached 533.3 km2, with an increase of 20–30 km2 per year; moreover, the
annual loss caused by yellow leaf disease is estimated to exceed 2 billion yuan [3]. As
a major pillar of industry in Hainan Province, the reduction in the arecanut output has
generated huge economic losses to arecanut growers in the province. Therefore, there is
an urgent need for the timely and accurate extraction of the planting area of arecanut in
Hainan in order to grasp the dynamic changes of this crop and to effectively manage the
development of the arecanut industry in Hainan.

Remote sensing technology holds numerous advantages, such as high efficiency,
dynamic applications, wide spatial coverage, and fast data acquisition, allowing for the
rapid, accurate, and dynamic monitoring of crop planting areas [4–6]. Current research
on the monitoring of crop areas typically employs remote sensing technology to classify
crops and extract planting information. In small-scale areas, unmanned aerial vehicle
(UAV) aerial remote sensing platforms are often used for the extraction of crop planting
areas. For example, Zheng et al. [7] used RGB, NIR-GB, and multispectral images from
unmanned aerial vehicle (UAV) to extract rice plants information at the early growth stages.
Shen et al. [8] integrated UAV technology with moderate spatial resolution (MSR) data
to estimate crop planting areas using random stratified sampling, making the crop area
estimation accuracy more than 95% with a 95% confidence interval. Based on the extraction
of crop area, more scholars use UAV remote sensing to monitor growth and predict yield [9].
However, UAV remote sensing has limitations in its endurance time and flight radius, and
it is not suitable for large-scale crop surveys.

Satellite imagery is associated with a high and wide field of view, fast data collection,
repeatable coverage, and continuous observations [10], and is frequently applied for
the large-scale extraction of crop planting areas. Based on moderate resolution imaging
spectroradiometer (MODIS) time series data, Pan et al. [11] established the crop proportion
phenology index (CPPI) for estimating wheat area, with the root mean square error (RMSE)
in fractional crop area predictions ranging roughly from 15% in the individual pixels to 5%
above 6.25 km2. Zhang and Lin [12] fused Landsat-8 OLI time series with phenological
parameters for the extraction of rice planting area in cloudy areas based on object-oriented
algorithms, providing high-precision rice distribution maps with an overall accuracy of
92.38%. Liu et al. [13] constructed a decision tree model based on multitemporal HJ-1
CCD images to accurately extract corn planting area in Zhecheng County, Henan Province,
China. However, these satellite data are mostly limited by low spatial resolution or short
revisit period, which are not suitable for crop monitoring in some regions (i.e., the tropical
and subtropical regions) with fragmented plots and cloudy and rainy weather.

With the development of remote sensing technology, the high-resolution PlanetScope
satellite cluster can achieve daily global coverage with a 3 m spatial resolution, providing
an effective data source for the extraction of agricultural and forestry planting information
in tropical and subtropical regions. Arecanut is a tropical palm typically reaching 10–20 m
tall with a straight and slender trunk. Its dark green leaves can spread 2 m across. These
morphological features of arecanut present its distinctive spectral and texture features from
the high-resolution imagery that differentiate arecanut land from other lands. The objective
of this research was to (i) establish a high-precision arecanut information extraction method
based on feature space optimization, which is composed of spectral and texture features
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extracted from PlanetScope satellite images, and (ii) evaluate the performance of three
machine learning algorithms with support vector machine (SVM), BP neural network
(BPNN), and random forest (RF) algorithms combined with the optimized feature space in
an attempt to extract the arecanut information. The results provide theoretical and technical
references for the remote sensing extraction of agricultural and forestry information.

2. Materials and Method
2.1. Study Area

The study area is located in Beida Town, Wanning City, Hainan Province, China
(110◦23′–110◦40′ E, 18◦86′–19◦01′ N) with an area of 276.09 km2 (Figure 1). The area has
a tropical monsoon climate, with an average annual temperature of 23.6 ◦C, a monthly
average temperature of 18.7–28.5 ◦C, annual precipitation of approximately 2200 cm, and
average annual sunshine hours over 1800. Beida Town is located in a hilly mountainous
area. The soil type is Ferralsols according to IUSS Working Group WRB [14].

Figure 1. Geographic location of the study area with the spatial distribution of land use/cover type
survey sites.

Hainan Province contains the largest arecanut production area in China, with the great-
est planting area located in Wanning City. In 2018, the planting area reached 18,138 hm2,
accounting for 16.5% of the total planting area in Hainan [2]. Beida Town is the principal
planting area of arecanut in Wanning City. The town also grows cash crops such as rubber,
pineapple, and lychee.

2.2. Data Acquisition and Processing
2.2.1. PlanetScope Satellite Image Acquisition and Preprocessing

The PlanetScope small satellite constellation currently has more than 170 satellites in
orbit, surpassing all current satellites in terms of resolution (3–4 m), frequency (daily), and
global coverage [15]. In the current paper, we selected a high-quality clear and cloudless
PlanetScope satellite image collected on 21 March 2019. The PlanetScope image used is
an orthographic data product (3B) that has undergone sensor and radiometric calibration,
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as well as orthorectification and atmospheric correction. The satellite image has a spatial
resolution of 3 m and contains four spectral bands in the blue, green, red, and near-infrared
regions. Table 1 lists the PlanetScope satellite parameters.

Table 1. Specifications of PlanetScope satellite.

Parameter Parameter Value

Track International Space Station
OrbitSun-synchronous orbit

Orbital inclination 52◦, 98◦

Spatial resolution 3–4 m

Spectral band

Band1: Blue (455–515 nm)
Band2: Green (500–590 nm)
Band3: Red (590–670 nm)
Band4: NIR (780–860 nm)

Track height 400 km, 475 km

Sensor type Bayer filter CCD camera

Width 24.6 km × 16.4 km

2.2.2. Ground Sample Data Collection

The principal land use/cover types in the study area are farmland, forest, impervious
surface (urban and rural areas; industrial and mining, water conservancy construction,
and transportation land), water (rivers, lakes, ponds, etc.), and arecanut grove. Table 2
lists the visual interpretation characteristics of the main features in the study area. Ground
sample data were obtained through field surveys with a GPS receiver on 19–21 March 2019.
The coverage size of the field should be more than 10 m × 10 m. According to the location
of the survey sites, the field boundaries were then drawn based on Google Earth Pro
(version 7.3.2.5776). Finally, a total of 850 field polygon samples were determined. There
are 150 samples for water, 150 for impervious surface, 200 for forest, 150 for farmland,
and 200 for arecanut grove, with 70% and 30% of the samples used for training and
verification, respectively.

Table 2. Visual interpretation signs of features in the study area.

Feature Category Image Characteristics Feature Description

Water

Light green, the larger the water body, the darker the color. Pit ponds
are small in area, with clear boundaries and irregular shapes; rivers

are in regular curved strips; lakes have large water areas, darker
colors, and irregular shapes.

Impervious surface Light purple and brown with irregular shapes, bare soil, and less
vegetation coverage.

Forest Dark green, the plots are irregularly distributed, with uniform tone
and clear texture.
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Table 2. Cont.

Feature Category Image Characteristics Feature Description

Farmland Light green, with clear stripes, regular continuous distribution, and
uniform texture.

Arecanut Light green, granular canopy distributed in a large area, irregular
plot shape, uniform texture, and small amount of soil exposure.

2.3. Feature Variable Selection
2.3.1. Primary Selection of Characteristic Variables

• Primary selection of spectral characteristic variables

The spectral characteristic variables initially selected included four original spectral
bands and five widely used vegetation indices (Table 3). A spectral band can act as an
important indicator for the extraction of ground feature information from remote sensing
images. Here, we used the blue, green, red, and near-infrared reflectance bands of the
PlanetScope image as the primary selection variables for spectral features. The blue band
is susceptible to factors such as soil background, and plays a key role in the distinction
between soil and vegetation; the green band is more sensitive to different types of plants
and can be used to distinguish between vegetation types [16]; the red band is the principal
absorption band of chlorophyll and is an important indicator of plant vitality [17]; and
the near-infrared band can remove the influence of the atmosphere (e.g., aerosols and thin
clouds) and can reflect the vegetation growth and coverage [18].

Table 3. Description of the spectral characteristic variables selected in this study.

Spectral Characteristic Formula 1 Reference

Blue band RB [16]
Green band RG [16]
Red band RR [17]

Near-infrared band RNIR [18]
Difference Vegetation Index (DVI) RNIR − RR [19]

Modified Soil Adjusted Vegetation Index (MSAVI) 1
2 [(2RNIR + 1)−

√
(2RNIR + 1)2 − 8(RNIR − RR)] [20]

Normalized Difference Vegetation Index (NDVI) (RNIR − RR)/(RNIR + RR) [21]
Ratio Vegetation Index (RVI) RNIR/RR [22]
Soil Brightness Index (SBI)

√
RNIR2 + RR2 [23]

1 RR, RG, RB, and RNIR denote the red, green, blue, and near-infrared band.

Based on the principal feature types in the study area, the Difference Vegetation
Index (DVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference
Vegetation Index (NDVI), Ratio Vegetation Index (RVI), and Soil Brightness Index (SBI)
were selected (Table 3). DVI is extremely sensitive to changes in the soil background
and can better identify vegetation and water bodies [19]; MSAVI can reflect the soil and
vegetation coverage information on the ground under the influence of soil background
factors, and can accurately identify low vegetation coverage [20]; NDVI is sensitive to green
vegetation and can reflect vegetation growth status and coverage [21]; RVI enhances the
radiation difference between vegetation and soil, and can characterize biomass information
under different vegetation coverage [22]; and SBI is sensitive to the soil background and
can effectively extract construction and bare land in the absence of vegetation cover [23].
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• Primary selection of texture feature variables

Texture is a visual feature that reflects the homogeneity of the image and describes the
grayscale spatial distribution of the image pixel neighborhood [24]. Each feature contained
in remote sensing images has its own unique texture structure. However, the spectrum
of an object may vary between features, while different objects may also have the same
spectrum, resulting in difficulties in identifying objects. The stem of the arecanut tree
is upright, arborous, up to 30 m tall, and with obvious circular leaf marks. Moreover,
the leaves are clustered at the top of the stem and with a length of 1.3–2 m. The tree
bears fruit to many pines of a long and narrow lanceolate shape, a 30–60 cm length, and
2.5–4 cm width. The upper pinna is connate and the tip has irregular teeth. Furthermore,
the arecanut has a row spacing of 2.5 to 3.0 m and a plant spacing of 2.0 to 2.5 m. Thus, the
forests of this crop present textural features that are obviously distinct from other ground
objects within the high spatial resolution remote sensing image.

We selected the Gray-Level Co-Occurrence Matrix (GLCM) method to select eight
texture feature indicators: Mean (Me), Variance (Var), Homogeneity (Hom), Contrast (Con),
Dissimilarity (Dis), Entropy (Ent), Second moment (SM), and Correlation (Cor), Table 4
shows their formulas [25]. Based on the four spectral bands of the PlanetScope satellite
image, a total of 32 texture features were subsequently extracted.

Table 4. Description of the texture features selected in this study.

Texture Feature Formula 1 Description

Mean ∑
i

∑
j

P(i, j)× i Reflects the regular degree of texture.

Variance ∑
i

∑
j
(i−Mean)2 × P(i, j) Reflects the deviation between the pixel and mean values;

the larger the grayscale change, the larger the value.

Homogeneity ∑
i

∑
j

P(i, j)× 1
1+(i−j)2

Reflects the local gray uniformity of the image; the more
uniform the local, the larger the value.

Contrast ∑
i

∑
j

P(i, j)× (i− j)2 Reflects the sharpness of the image and the depth of the
texture.

Dissimilarity ∑
i

∑
j

P(i, j)× |i− j| Similar to contrast, with greater linearity; the higher the
local contrast, the higher the dissimilarity.

Entropy −∑
i

∑
j

P(i, j)× log P(i, j) Reflects the texture complexity; the larger the value, the
more complex the texture.

Second Moment ∑
i

∑
j

P(i, j)2 Reflects the uniformity of the image distribution and texture
thickness.

Correlation ∑
i

∑
j

(i−Mean)×(j−Mean)×P(i,j)2

Variance Reflects the image local relevance.

1 P(i, j) is the element value of the image at point (i, j).

2.3.2. Feature Variable Optimization Method

The random forest (RF) algorithm, proposed by Breiman and AdeleCulter in 2001,
integrates multiple trees based on ensemble learning, with a single decision tree taken as
the basic unit [26,27]. Due to its strong noise tolerance, avoidance of overfitting, and ability
to handle high-dimensional data, RF is not only applied to classification tasks, but can also
calculate the importance of a single feature variable. In particular, RF performs feature
screening using a feature importance evaluation, whereby the contribution value of each
feature on each decision tree is determined, and the average values are compared between
features. The out-of-bag (OOB) error rate is typically used as the evaluation index to
measure the feature contribution, denoting the variable importance (VI) of different feature
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variables. The feature optimization is then realized by ranking features by importance. The
feature variable importance, VI, is calculated as follows:

VI =
∑N

k=1 BM
nk
− BM

ok

M
(1)

where N is the number of generated decision trees, M is the number of feature variables,
BM

nk
is the out-of-bag error of the k-th decision tree when feature M is added to the noise

interference, and BM
ok

is the out-of-bag error of the k-th decision tree without noise inter-
ference. The addition of feature M with random noise dramatically reduces the accuracy
rate of the out-of-bag data, indicating the strong influence of this feature on the prediction
results of the sample, and thus its importance is relatively high [28].

2.4. Classification Model Building Method

The proposed classification framework initially calculates the training sample feature
variables and subsequently constructs three classification models based on the BP neural
network (BPNN), RF, and support vector machine (SVM) algorithms. These models are
applied to extract the arecanut and other surrounding ground features. The extraction
results are then verified using the verification samples and compared to determine the
most accurate classification model.

2.4.1. BP Neural Network Algorithm

BPNN is a multilayer feedforward neural network that adopts the error back propaga-
tion algorithm to train the model. As the most widely used neural network to date [29], it
uses the gradient descent method to minimize the mean square error between the actual
and expected output values. BPNN is able to perform both signal forward propagation
and error backward propagation. The input signal of BPNN propagates forward through
the input layer and each hidden layer, and finally reaches the output layer, where the
actual output value is obtained and compared with the expected output value. If the two
output values are not equal, the error will enter back propagation, where the output error
is adjusted with a threshold and weight at each layer via gradient descent. This results
in a neural network model that has an expected output value within the error tolerance
range. The BPNN is composed of the input, output, and hidden layers, and is trained by
constantly adjusting the threshold and weight. The specific implementation process is
as follows:

• Dataset entry: define randomly divided training set P_train, validation set T_test,
training label P class and verification label T class.

• Data normalization: the mapminmax function is used to normalize and map the data
to the range of 0–1 to avoid significant differences between the input and output data.

• A neural network is established and the network parameters are set.
• The training parameters are defined and network training is performed. The number

of iterations, learning rate, training error target, and maximum number of failures are
set to 200, 0.001, 0.0001, and 10, respectively. The train (net, P, T) function is used for
network training.

• Network simulation is performed using the sim (net, test matrix) function and
the overall recognition accuracy of BPNN is obtained based on the predicted and
expected values.

2.4.2. Random Forest Algorithm

The application of RF in classification tasks centers around the bootstrap method to
randomly extract and return s samples from the sample set. Following n sample iterations,
n training sets are obtained with n decision tree models. The generated n decision trees are
then integrated into a random forest with multiple tree classifiers to determine the final
prediction result [28]. Multiple decision trees are constructed during the training phase and
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the final class output is the pattern of a single decision tree class. The number of decision
trees ntree is set to 500, while all other parameters are taken as the default values.

2.4.3. Support Vector Machine

SVM, first proposed by Vapnik [30], is based on statistical learning theory, and in
particular, the principle of structural risk minimization [31]. Under linear separability, SVM
aims to determine the optimal classification hyperplane of the two types of samples in the
original space. For linear inseparability, the relaxation variable is added for analysis, and
the samples in the low dimensional input space are mapped to the high dimensional feature
space via nonlinear mapping, resulting in linearity and allowing for the determination
of the optimal hyperplane in the feature space. Optimizing the segmentation hyperplane
separates the sample types and minimizes the error, resulting in the accurate classification of
data. More details of the SVM calculation process can be found in the relevant literature [32].
SVM has a simple structure and strong adaptability and robustness, and is thus applicable
to a wide range of linear, nonlinear, classification, and regression problems. We employed
SVM to build a monitoring model for arecanut yellowing disease using the mapminmax
function to normalize the training and validation sets and to scale the data within [0,1]. The
svmtrain and svmpredict commands were then implemented in LIBSVM 3.23 to train the
samples and test the validation set, respectively. SVM system default values were used for
the linear kernel function and parameters such as penalty factor c and kernel parameter g.

3. Results
3.1. Feature Space Optimization

The initial feature space contains a total of 41 feature variables (9 spectral and 32 tex-
tural feature variables). A large number of feature variables will generate redundant data,
increasing the model complexity and affecting the classification accuracy. We employed
the RF algorithm to evaluate the importance of the 41 feature variables in the initial feature
space, ranking their importance based on the feature variable weights. Figure 2 presents
the importance rankings of the target feature variables, whereby the first 12 feature weights
are greater than 1, the middle 12 feature weights range between 0.5 and 1, and the latter
17 feature weights are less than 0.5. Then, according to the order of feature importance, the
first k (i = 1, 2, . . . . . . , 41) feature variables were selected to construct the random forest
classification model of arecanut, and the overall classification accuracy was subsequently
calculated. The overall classification accuracy is maximized to 88.3% when the number
of feature variables equals 14. Therefore, the first 14 feature variables (CorNIR, VarNIR,
MeNIR, MeR, RB, EntNIR, RR, RNIR, ConNIR, MeB, RG, NDVI, SBI, and HomNIR) were
selected to construct the optimized feature space.

Figure 2. Importance ranking of the first 14 feature variables for constructing the optimized
feature space.
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3.2. Extraction of Arecanut Planting Information

In this study, two feature spaces (i.e., initial feature space and optimized feature space)
were used as the input of three machine learning algorithms (i.e., SVM, BPNN, and RF) to
extract the arecanut planting information, respectively. A total of six classification models
were constructed based on SVM, BPNN, and RF to extract the arecanut planting area in
the study region, denoted as SVM-1, BPNN-1, and RF-1 for the initial feature space input
and SVM-2, BPNN-2, and RF-2 for the optimized feature space as input. Ground survey
data were used to evaluate the classification accuracy of the initial and optimized feature
space inputs, and the impact of feature optimization on the extraction accuracy of arecanut
planting area was then analyzed.

Table 5 reports the classification accuracy of arecanut based on the different classi-
fication models. Following RF feature optimization, the user’s and producer’s accuracy
of SVM-2 are observed to exceed those of SVM-1 by 10.35% and 7.54%, respectively. The
producer’s accuracy for BPNN-2 remained changed, while the user’s accuracy increased
from 81.86% to 87.50%. In addition, the user’s and producer’s accuracy of the RF-2 model
is 0.60% and 7.58% higher than those of the SVM-1 and RF-1 models, respectively. The
overall accuracy of SVM-2, BPNN-2, and RF-2 is determined as 74.82%, 83.67%, and 88.30%,
respectively, which is 3.90%, 7.77%, and 7.45% higher than that of SVM-1, BPNN-1, and
RF-1. Moreover, the Kappa coefficients of SVM-2, BPNN-2, and RF-2 are 0.680, 0.795, and
0.853, respectively, exceeding those of SVM-1, BPNN-1, and RF-1.

Table 5. The classification accuracy of arecanut based on different classification models with different feature subsets.

Model Omission
Error/%

Commission
Error/%

User’s
Accuracy/%

Producer’s
Accuracy/%

Overall
Accuracy/%

Kappa
Coefficient

SVM-1 24.24 27.54 72.46 75.76 70.92 0.630
BPNN-1 15.15 18.84 81.16 84.85 75.90 0.698

RF-1 13.64 8.06 91.94 86.36 80.85 0.760
SVM-2 19.70 17.19 82.81 83.30 74.82 0.680

BPNN-2 15.15 12.50 87.50 84.85 83.67 0.795
RF-2 6.06 7.46 92.54 93.94 88.30 0.853

In order to compare the extraction effects of SVM, BPNN, and RF on the arecanut
planting area, we further compared and analyzed the classification results of SVM-2, BPNN-
2, and RF-2 following feature space optimization (Table 5). RF-2 is observed to have the
highest overall accuracy, improving on those of BPNN-2 and SVM-2 by 5.53% and 18.02%,
respectively. In summary, the classification model following feature space optimization has
the ability to improve the extraction accuracy of the arecanut planting area, with the feature
optimized RF-2 model identified as the most suitable for arecanut planting information
extraction, effectively improving the extraction accuracy of arecanut.

In order to verify the influence of different classification algorithms on the extraction
accuracy of arecanut, we further constructed a confusion matrix for the classification results
of SVM-2, BPNN-2, and RF-2 (Table 6) and investigated the omission and misclassification
of arecanut. The SVM-2 results reveal that 17.19% of the identified arecanut are misclassified
forest land and farmland, while 19.70% are misclassified as forest land. The BPNN-2 and
RF-2 models reduced the omission and commission errors of arecanut compared to SVM-2,
with RF-2 exhibiting the lowest omission and commission errors. Thus, the optimized RF-2
model is identified to have the greatest separability for arecanut, forest, and farmland.
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Table 6. Confusion matrix of the classification results based on SVM-2, BPNN-2 and RF-2 models.

Model. Land Use Type Water Impervious Surface Forest Farmland Arecanut Total

SVM-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 1 0 59 46 13 119
Farmland 0 0 0 0 0 0
Arecanut 0 0 7 4 53 64

Total 50 50 66 50 66 282

BPNN-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 0 0 50 15 4 69
Farmland 1 0 12 31 6 50
Arecanut 0 0 4 4 56 64

Total 50 50 66 50 66 282

RF-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 0 0 57 17 1 75
Farmland 1 0 6 31 3 41
Arecanut 0 0 3 2 62 67

Total 50 50 66 50 66 282

3.3. Regional Application

In order to visually compare the classification effect of the study area images under
different methods, we selected the central area of the study area image and employed
SVM-2, BPNN-2, and RF-2 to determine the distribution map of the arecanut extraction
results on a regional scale (Figure 3). Table 6 and Figure 3 reveal that the SVM-2 model has a
serious leakage of cultivated land in the study area, almost all of which is classified as forest
and arecanut. Furthermore, a large extent of forest is wrongly divided into arecanut. The
BPNN model effectively overcomes the mixed separation of farmland and other vegetation,
and the distinction between arecanut and forest is more obvious. The classification results
of the RF model are generally consistent with those of the BPNN model, while the former
improves on the misclassification of farmland in the northern region. In summary, based on
the feature variables following RF feature optimization, the application of the RF method
can extract the arecanut planting area in the study region more effectively compared to the
BPNN and SVM models.

Arecanut planting area extraction models based on the support vector machine (SVM),
BP neural network (BPNN), and random forest (RF) classification algorithms were then
constructed. The overall classification accuracies of the SVM, BPNN, and RF models
optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa
coefficients of 0.680, 0.795, and 0.853, respectively.
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Figure 3. The distribution map of arecanut extracted based on different classification models with the feature space
optimization of PlanetScope imagery. (a) SVM-2, (b) BPNN-2, and (c) RF-2.

4. Discussion

The fusion of spectral and textural features to construct a classification model pre-
sented in the current paper has been demonstrated to achieve promising results in the
extraction of arecanut planting area. However, numerous spectral features have not been
considered. Follow-up research should include additional spectral features based on the
extraction method of arecanut planting area employed in this paper. In addition, more
data sources should be adopted to construct a more accurate method for the extraction of
arecanut planting area.

The selection of characteristic variables is crucial for the construction of a classification
model. In particular, the presence of irrelevant, weakly related, or redundant features in the
primary selected features will directly affect the classification accuracy and generalization
ability of the model [33]. Therefore, feature selection is required to remove such features.
The RF feature variable optimization algorithm can determine each feature variable weight,
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reducing the redundancy of the feature variables and improving the classification accuracy
and generalization ability. However, this optimization approach does not consider the
correlation between various features, thus further improvement is required. Future research
will focus on determining the feature correlations while removing the redundancy between
the features. In addition, simpler and more efficient feature selection algorithms are
required for the model input selection.

The choice of modeling method affects the accuracy of the classification model. Al-
though SVM, BPNN, and RF have strong applications in research, they are associated
with several limitations. For example, although the SVM method is able to deal with
various nonlinear problems through the selection of the kernel function, determining the
kernel function and related parameters proves to be a difficult task, thus restricting its
application [34]. The work presented in the current paper is not based on certain theoretical
standards and only the linear kernel function is selected. The next step should consider
other kernel functions in order to select the optimal function, which can then allow for
the further optimization of the model parameters to obtain a higher precision model. The
BPNN method has strong nonlinear fitting and generalization abilities, and the established
network model is stable. However, the BPNN method also faces limitations, for example,
the accurate determination of the number of hidden layer nodes. In particular, the network
fails to converge for small node numbers and the fault tolerance is poor, while for a large
number of nodes, the network has a long learning time and is prone to overfitting. Al-
though RF has a strong tolerance to noise and is not prone to overfitting, its parameters
are more complicated and features with more value divisions are likely to have a greater
impact on RF decision-making, thereby affecting the accuracy of the model. Determining
how to improve these methods is reserved for future work.

5. Conclusions

Current methods based on low- and medium-resolution satellite images are not able
to meet the demand for the high-precision extraction of arecanut area in Hainan due
to the cloudy and rainy climate and severe land fragmentation. In the current paper, a
high-precision extraction method for arecanut planting area was proposed based on image
feature space optimization using PlanetScope satellite imagery. Results demonstrate the
ability of the spectral and texture features of PlanetScope satellite data to effectively extract
the planting distribution of arecanut. The Kappa coefficients of the SVM, BPNN, and RF
models following the RF feature optimization were determined as 0.680, 0.795, and 0.853,
with overall classification accuracies of 74.82%, 83.67%, and 88.30%, respectively. The ap-
plication of feature optimization improves the overall accuracy by 3.90%, 7.77% and 7.45%,
respectively. This indicates the strong applicability of feature space optimization based on
PlanetScope satellite imagery for the extraction of arecanut planting area. The research
results provide theoretical and technical references for the remote sensing extraction of
agricultural and forestry information.
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