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Abstract: Inventory modes classification can reduce the workload of grain depot management and it
is time-saving, not labor-intensive. This paper proposed a method of using a temperature contour
map converted from digital temperature data to classify stored grain inventory modes in a large
bulk grain warehouse, which mainly included detection of inventory changes and routine operations
performed (aeration). The back propagation (BP) neural network was used in this method to identify
and classify grain storage inventory modes based on the temperature contour map for helping
grain depot management work. The method extracted and combined color coherence vector (CCV),
texture feature vector (TFV) and smoothness feature vector (SFV) of temperature contour maps as
the input vector of the BP neural network, and used inventory modes as the output vector. The
experimental results indicated that the accuracy of the BP neural network with vector (CCV and TFV
and SFV) as the input vector was about 93.9%, and its training time and prediction time were 320
and 0.12 s, respectively.

Keywords: grain storage; temperature contour map; BP neural network; grain inventory

1. Introduction

Deterioration of grain quality during storage, such as condensation [1], self-heating,
mold [2,3], and insects [4–6], is related to improper control of temperature and humid-
ity/moisture in the grain storage facilities. It has been estimated that 15–20 million tons of
grain are lost every year during storage because of inappropriate management [7,8].

To facilitate grain monitoring and management, all state-owned grain depots in China
are equipped with temperature sensors to continuously monitor grain temperature [9].
This system detects a massive volume of temperature data locally at the grain depots and
nationally in the government agencies responsible for stored grain owned by the govern-
ment. These agencies conduct inspections of grain storage warehouses manually every
year to identify and confirm grain quality and quantity changes. The manual inspections
are time-consuming and labor-intensive since grain depots are widely distributed and have
large reserves [10]. Researchers have attempted to analyze the massive datasets of grain
temperature to automate the inspection processes. Xiao [11] summarized the temporal
and spatial changes of grain temperature, and proposed three strategies to detect when
abnormal temperatures occurred.

Based on what Xiao did, the work associated with this research had been done.
Cui et al. [12] analyzed the temporal and spatial distributions of grain temperature in flat
warehouses and confirmed the feasibility of using temperature data recorded in local grain
depots to remotely and timely analyzing grain storage conditions changes. Researchers
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also presented measured temperatures in contour maps of RGB color and used the color
patterns to analyze grain conditions, specifically to detect abnormal temperature changes
during storage [13]. These methods can detect when the abnormal temperature changes
occurred, but they cannot distinguish the causes of the problems. Thus, in this study, we
try to analyze which grain storage inventory modes lead to the abnormal temperature
changes by using RGB temperatures contour maps.

A RGB temperature contour map of stored grain is essentially a color image, which
can be analyzed with methods developed for image classification, such as the deep
learning [14–16] and support vector machines [17,18]. The deep learning algorithm is
a high-latitude matrix operation. It requires relatively high computer performance [19–22].
The support vector machines is suitable and are commonly used to solve binary classifica-
tion problems [23,24]. Classification of grain inventory modes is a multi-class problem with
large-scale training samples, and high-performance computers are generally not available
on site. A more suitable method is the back-propagation (BP) neural network, which can
handle multiple classification issues and does not require high-performance computers.
Many researchers used the BP neural network to achieve their research goals of classifica-
tion [25–27]. For example, Huang et al. proposed an improved BP neural network method
to assess the wood grades for Chinese zither panels [28] and Yuan et al. put forward a
novel method to detect fingerprint liveness based on BP neural network, which was used
for the first time in the fingerprint liveness detection [29]. However, few studies have
applied the BP neural network to inspect grain storage conditions. Therefore, development
of a BP neural network model, whose inputs are the features combinations of temperature
contour maps, is suggested to obtain inspecting and monitoring results of the main grain
storage inventory.

The objective of this research is to develop a BP neural network for classification
of grain storage inventory modes based on the measured temperature contour maps.
Five classes of grain inventory modes are considered, namely, empty storage, new grain
addition, aeration, self-heating and normal mode. The color coherence vector (CCV),
texture feature vector (TFV) and smoothness feature vector (SFV) of temperature contour
maps are extracted and combined as the input matrix of the BP neural network to classify
the five conditions.

2. Methodology
2.1. Virtual Coordinate System of Temperature Sensors and Preprocessing of Temperature Data

In order to generate temperature contour maps, a virtual coordinate system was first
established to define the locations of temperature sensors (Figure 1a), with mx, ny and lz
representing the temperature measurement points in the X, Y and Z directions, respectively.
Temperature sensors were grouped based on the planes that are parallel to XY, XZ, and
YZ planes, respectively. For example, 108 sensors in a grain storage warehouse formed
4 planes (layers) parallel to the XY plane, 3 planes to the XZ plane and 9 planes to the YZ
plane, as shown in Figure 1.

Outliers (or missing points) in the temperature data that affected the generation of
temperature contour maps were mostly caused by software and hardware (sensors) failure.
These outliers typically appeared as values exceeding the physically possible temperature
range (e.g., 99 ◦C), or simply a non-numerical error code. Once found, we first determined
the location (mx, ny, lz) and time t3 where and when the outliers occurred. After that, we
selected the temperature T (mx, ny, lz)t1 and T (mx, ny, lz)t2 at the two adjacent times t2 and
t1 before t3, and then calculated the temperature T (mx, ny, lz)t3 by Equation (1).

T(mx, ny, lz)t3 = T(mx, ny, lz)t2 +
T(mx, ny, lz)t2 − T(mx, ny, lz)t1

t2− t1
(1)

Typically, direction of airflow during aeration is upward from the bottom of grain bulk,
so it is expected that large temperature changes would occur in the planes parallel to YZ or
XZ. Since the planes parallel to XZ contained more temperature sensors, it was selected to
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generate temperature contour maps (Figure 1b). It should be noted that no sensors were
installed near the wall in a typical grain warehouse and the grain temperatures near the
wall (points 2 in Figure 1b) were extrapolated from the temperatures of three consecutive
adjacent points (points 1). Similarly, the average temperature of two adjacent points (points
2) was used to approximate the grain temperature at the corner (point 3).
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Figure 1. Temperature measurement sensors distribution in a grain warehouse: (a) Schematic diagram of temperature
measurement sensors distribution in the grain warehouse. (b) Calculation process of temperatures near the wall and corner.

2.2. Generation of RGB Temperature Contour Maps

The discrete temperature data points consisted of the measured temperature values
and the approximated values near the walls were interpolated by using splines to generate
a temperature contour map. The temperatures from the minimum to the maximum
were divided into 765 grades for the (R, G, B) color intervals. The color (R, G, B) values
corresponding to the maximum temperature were assigned (255, 0, 0), and the minimum
(0, 0, 255) [30]. Then, a RGB temperature contour map for each plane with a resolution of
496 × 158 pixels was generated.

2.3. Classification of Storage Conditions

The storage period of grain is usually more than 6 months in China [31]. Grain
conditions changes are shown in Figure 2. When a shipment arrives, grain is loaded into
an empty warehouse till it is filled. Then, grain stays in the warehouse for the entire
storage period. During storage, grain conditions may change due to the effects of ambient
environment and physical (e.g., aeration) and biological (e.g., mold growth) activities within
the grain bulk. After about 2–4 years of storage, grain is unloaded from the warehouse (the
warehouse returns to being empty again).

According to Figure 2, the storage conditions of grain in a warehouse may be cate-
gorized into five modes: normal, empty (warehouse), new grain addition, aeration, and
self-heating. These five modes are reflected by the temperature distribution (spatial) and
variation (temporal) patterns. Specifically, the empty mode corresponds to uniform temper-
ature distribution through the warehouse (Figure 3a); aeration resulted in the rapid change
of temperatures in local areas or the whole grain bulk (Figure 3b). New grain addition
indicates that grain was just loaded into an empty warehouse. After a while when the ware-
house was filled, the grain temperature at the bottom and surface has dropped. But grain
temperature in the middle was still very high. Then a hot core that ran through the entire
grain bulk formed in the middle of the contour map (Figure 3c). This condition was named
as new grain addition. The self-heating mode is associated with increased temperature in
the local region due to biological activities such as mold and insect’s growth (Figure 3d).
Several temperature patterns existed for the normal storage conditions which depended
on several factors, including the geographical location, the time and the type of warehouse
(Figure 3e,f). From spring to summer, the surrounding area of grain bulk was affected
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by the external temperature, where temperature rises faster and the temperature inside
rose slowly. Until summer, the contour map was characterized by high temperature at the
surrounding area of the grain bulk, and a cold core formed at the bottom of the contour
map (Figure 3e). From summer to winter, the temperature around the grain bulk decreased
rapidly. But inside the grain bulk decreased slowly. Until winter, it was characterized by
low temperatures at the surrounding areas. Then a hot core formed at the bottom of the
grain bulk (Figure 3f). Contour maps in the spring and autumn are also normal mode.

Agriculture 2021, 11, x FOR PEER REVIEW 4 of 16 

 

ambient environment and physical (e.g., aeration) and biological (e.g., mold growth) 
activities within the grain bulk. After about 2–4 years of storage, grain is unloaded from 
the warehouse (the warehouse returns to being empty again). 

According to Figure 2, the storage conditions of grain in a warehouse may be 
categorized into five modes: normal, empty (warehouse), new grain addition, aeration, 
and self-heating. These five modes are reflected by the temperature distribution (spatial) 
and variation (temporal) patterns. Specifically, the empty mode corresponds to uniform 
temperature distribution through the warehouse (Figure 3a); aeration resulted in the 
rapid change of temperatures in local areas or the whole grain bulk (Figure 3b). New 
grain addition indicates that grain was just loaded into an empty warehouse. After a 
while when the warehouse was filled, the grain temperature at the bottom and surface 
has dropped. But grain temperature in the middle was still very high. Then a hot core 
that ran through the entire grain bulk formed in the middle of the contour map (Figure 
3c). This condition was named as new grain addition. The self-heating mode is associated 
with increased temperature in the local region due to biological activities such as mold 
and insect’s growth (Figure 3d). Several temperature patterns existed for the normal 
storage conditions which depended on several factors, including the geographical 
location, the time and the type of warehouse (Figure 3e, f). From spring to summer, the 
surrounding area of grain bulk was affected by the external temperature, where 
temperature rises faster and the temperature inside rose slowly. Until summer, the 
contour map was characterized by high temperature at the surrounding area of the grain 
bulk, and a cold core formed at the bottom of the contour map (Figure 3e). From summer 
to winter, the temperature around the grain bulk decreased rapidly. But inside the grain 
bulk decreased slowly. Until winter, it was characterized by low temperatures at the 
surrounding areas. Then a hot core formed at the bottom of the grain bulk (Figure 3f). 
Contour maps in the spring and autumn are also normal mode. 

 

Figure 2. Grain storage conditions change process. Figure 2. Grain storage conditions change process.

Agriculture 2021, 11, x FOR PEER REVIEW 5 of 16 

 

 

Figure 3. RGB temperature contour maps of different modes. (a) Empty mode, (b) aeration mode, 
(c) new grain addition, (d) self-heating, (e, f) normal mode. 

2.4. Datasets for Training and Validation 
Grain temperatures data were obtained from 37 flat grain storage warehouses from 

the second to the seventh stored grain ecological regions between 1 June 2017 and 1 
December 2018. Different grain storage warehouses used different types of temperature 
measurement sensors from different manufacturers. The sensors had accuracies typically 
within 1 °C, as per the National Standards of the People’s Republic of China [9]. The types 
of grains stored in these warehouses included corn, wheat and paddy. Those warehouses 
are located at 23–53° north latitude and 101–133° east longitude, and most of them are 
located in the subtropical monsoon climate and temperate monsoon climate. Grain 
temperature data of different inventory modes were selected. After that, the sample set of 
temperature contour map data was generated by the methods in Section 2.1 and 2.2. The 
sample set was composed of 4000 temperature contour maps of empty mode, 2800 
temperature contour maps of aeration mode, 1400 temperature contour maps of new grain 
addition, 1500 temperature contour maps of self-heating mode and 8000 temperature 
contour maps of normal mode. In order to train the network, the labels of the empty mode, 
new grain addition, aeration, self-heating and normal mode were set as 1, 2, 3, 4 and 5, 
respectively. In different literatures, researchers set different proportions of training 
samples and test samples, such as 70:30 [32], 80:20 [33]. Taking into account the diversity of 
temperature contour maps, in this study we increased the proportion of training samples to 
85% of the total dataset, and the remaining proportion (15%) was the test samples. 

2.5. Features Extraction of Temperature Contour Maps 
A key step in using a BP neural network to classify the grain conditions during storage 

is selecting the suitable input to the network. Several features of the RGB temperature 
contour maps are considered, including the color, texture and smoothness features. 

2.5.1. Color Coherence Vector Extraction 
As can be seen from Figure 3, there are noticeable differences in the color features of 

different modes. Thus, color feature was considered to classify the modes. In the color 
feature, the color distribution histogram is often extracted to reflect the color feature 
distribution of the image, but the color distribution histogram ignores the position 
information of the color in the image, so the color coherence vector (CCV) was selected to 
analyze the color feature of the temperature contour map. Pass proposed a color 
coherence vector for analyzing the spatial distribution of color [34,35]. The first step is to 
quantize the image into N bins with the uniform quantization method. Then, the 
quantized image is divided into several connected regions. If pixels in connected regions 
are greater than the given threshold, they are treated as coherent pixels; otherwise, 

Figure 3. RGB temperature contour maps of different modes. (a) Empty mode, (b) aeration mode,
(c) new grain addition, (d) self-heating, (e,f) normal mode.

2.4. Datasets for Training and Validation

Grain temperatures data were obtained from 37 flat grain storage warehouses from the
second to the seventh stored grain ecological regions between 1 June 2017 and 1 December
2018. Different grain storage warehouses used different types of temperature measurement
sensors from different manufacturers. The sensors had accuracies typically within 1 ◦C,
as per the National Standards of the People’s Republic of China [9]. The types of grains
stored in these warehouses included corn, wheat and paddy. Those warehouses are located
at 23–53◦ north latitude and 101–133◦ east longitude, and most of them are located in the
subtropical monsoon climate and temperate monsoon climate. Grain temperature data
of different inventory modes were selected. After that, the sample set of temperature
contour map data was generated by the methods in in Sections 2.1 and 2.2. The sample
set was composed of 4000 temperature contour maps of empty mode, 2800 temperature
contour maps of aeration mode, 1400 temperature contour maps of new grain addition,



Agriculture 2021, 11, 451 5 of 15

1500 temperature contour maps of self-heating mode and 8000 temperature contour maps
of normal mode. In order to train the network, the labels of the empty mode, new grain
addition, aeration, self-heating and normal mode were set as 1, 2, 3, 4 and 5, respectively.
In different literatures, researchers set different proportions of training samples and test
samples, such as 70:30 [32], 80:20 [33]. Taking into account the diversity of temperature
contour maps, in this study we increased the proportion of training samples to 85% of the
total dataset, and the remaining proportion (15%) was the test samples.

2.5. Features Extraction of Temperature Contour Maps

A key step in using a BP neural network to classify the grain conditions during storage
is selecting the suitable input to the network. Several features of the RGB temperature
contour maps are considered, including the color, texture and smoothness features.

2.5.1. Color Coherence Vector Extraction

As can be seen from Figure 3, there are noticeable differences in the color features
of different modes. Thus, color feature was considered to classify the modes. In the
color feature, the color distribution histogram is often extracted to reflect the color fea-
ture distribution of the image, but the color distribution histogram ignores the position
information of the color in the image, so the color coherence vector (CCV) was selected to
analyze the color feature of the temperature contour map. Pass proposed a color coherence
vector for analyzing the spatial distribution of color [34,35]. The first step is to quantize
the image into N bins with the uniform quantization method. Then, the quantized im-
age is divided into several connected regions. If pixels in connected regions are greater
than the given threshold, they are treated as coherent pixels; otherwise, incoherent pixels.
Based on the above procedures, the color coherence vector of a RGB temperature contour
map could be expressed as 〈(α1, β1), (α2, β2), . . . (αN , βN)〉, where αx and βx represent the
number of coherent pixels and incoherent pixels in the xth bin, respectively. In order to
easily combine with other feature vectors, the color coherence vector was expressed as
〈α1, β1, α2, β2, . . . αN , βN〉. To minimize the color loss in the quantization process, we set
the range of N between [60, 80] according to the discussion of literature [36]. The CCV was
extracted from each sample, and concatenated into a matrix with 2 N columns, which was
used as the input of the network alone or combined with other matrices as the input matrix
of the network.

2.5.2. Texture Feature Extraction

A statistical method is used to calculate the area with multiple pixels to analyze the
statistical law of the image, which is suitable for irregular arrangement. The arrangement
of texture features of the temperature contour map was not regular, so in this study, we
selected and extracted several commonly used statistical features in a gray histogram as the
texture feature vector. Texture features of the image histogram commonly used include the
gray mean M, variance σ2, standard deviation s, skewness S, kurtosis K, and entropy ER,
whose definitions and calculation methods can be found in the literature [37–39]. These six
features of each component’s histograms (three component histogram R, G, B in each RGB
temperature contour map) were extracted and connected, respectively. Then, they formed
a texture feature vector (TFV) with 18 elements. The TFV was extracted from all contour
maps and concatenated into a matrix with 18 columns that were used as the input matrix
of the network alone or combined with other matrices as the input matrix of the network.

2.5.3. Smoothness Feature Extraction

It can be seen from Figure 3 that the temperature contour map of the empty mode is
smoother than that of other modes. Therefore, the characteristics that can represent the
smoothness of the image were selected to analyze the temperature contour map. Smooth-
ness usually represents the smoothness level/roughness of image intensity. Different
studies have different definitions of smoothness. Sinaga defined features Sm as the smooth-
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ness of color histograms [40] and Deutsch used Os to define it [41]. In this research, these
two features of each component’s histogram were extracted respectively and formed the
smoothness feature vector (SFV) with 6 elements. The SFV was extracted from all contour
maps and was concatenated into a matrix with 6 columns that was utilized as the input
alone, or combined with others as the input matrix of the network.

2.6. Construction of BP Neural Network

As a supervising learning neural networks, the BP neural network is used most widely
and successfully to classify image dataset which includes different objects [42–45]. A
BP neural network usually consists of input layer, hidden layer and output layer [46].
Determination of the number of neurons in the hidden layers and each hidden layer is
important to define the overall neural network architecture. A considerable amount of
literature suggested that a neural network with two hidden layers can approximate any
smooth mapping to any accuracy [47]. Therefore, this study designed a four-layer BP neural
network in MATLAB toolbox (2016b, MathWorks, Massachusetts, USA), including one
input layer, two hidden layers and one output layer. The number of neurons in the input
layer was linked to the input matrix, and the best input matrix was determined through
experiments. The number of neurons in the output layer was set to five corresponding
to the five modes. Based on the numbers of neurons in the input and output layers, the
number of neurons in the hidden layers could be calculated by the empirical formula
Equation (2) [46].

l =
√

m + n + a (2)

where l is the number of neurons in the hidden layer, n is the number of neurons in the
input layer, m is the number of neurons in the output layer, and a is a trial parameter
ranging from 1 to 10 [48].

Apart from the number of nodes in the hidden layer, some other training parameters,
such as the training function, transfer function, learning rate and momentum coefficient,
are related to the training speed and network generalization capability as well [46]. The
‘Levenbverg_Marquardt’ trainlm was selected as the training function, and ‘Log-Sigmoid
function’ was used as transfer function [49], and the learning rate, momentum coefficient
and target error were set to 0.01, 0.9 and 0.0001, respectively through preliminary comparing
experiments [48,50]. The hardware environment of the models and programs running in
this study is Thinkpad X1 Extreme (Lenovo, Beijing, China), whose system version is Win
10-64, and processor is Intel Core (TM) i5-9300H CPU 2.40 GHz.

2.7. Experiments Method
2.7.1. Optimization Experiments of Neural Network Input

Many researchers have analyzed the influence of input matrix on prediction accu-
racy [51]. To optimize input matrix for better classification accuracy, training time (time for
the network to complete training) and prediction time (time for the network to predict), six
matrices were used as the input matrix of BP neural network individually and sequentially,
including CCV, TFV, SFV, combination matrix of CCV and TFV (CCV&TFV), combination
matrix of CCV and SFV (CCV&SFV) and combination matrix of CCV and TFV and SFV
(CCV&TFV&SFV).

Since the number of N (CCV quantified the image into N bins) had an effect on
the accuracy of the network, we first adjusted N to 60, 70, 80 successively to calculate
CCV, and then combined it with TFV and SFV as input matrix to conduct experiments.
The procedure is shown in Figure 4a and results are presented in Figure 5. After the
most suitable N was selected, we used the above six matrices to perform optimization
experiments for better input matrix. The procedure is shown in Figure 4b and the results
are shown in Figures 6 and 7. During all experiments, the training time and prediction
time were recorded.



Agriculture 2021, 11, 451 7 of 15

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 16 

 

Set N 
（60,70,80），

I=1

Initialize 
BP neural 
network

Choose 85% 
samples to train 
the network, and 

the rest to test 
the network. 

Record 
results, 
I=I+1

Set a=1 and 
calculate the 
number of 

neurons in the 
hidden layer

a=a+1, I=1 and 
calculate the 
number of 

neurons in the 
hidden layer

a=10?

Experiments end, 
Output results

Y

N

I>5?
Y

N

Best 
N=70

Initialize 
BP neural 
network,

I=1

Choose 85% 
samples to train 
the network, and 

the rest to test 
the network 

Record 
results, 
I=I+1

Set a=1 and 
calculate the 
number of 

neurons in the 
hidden layer

a=a+1, I=1 and 
calculate the 
number of 

neurons in the 
hidden layer

a=10?

Experiments end, 
Output results

Y

N

I>5?
Y

N

Analysis results

All N?

Y

Choose 
one input 

matrix

Six
matrices?

Y

N

N

（a）

（b）
 

Figure 4. Optimization experiments flow chart of neural network input. (a) Optimization 
experiments flow chart of the number of N; (b) Optimization experiments flow chart of input 
matrix. 

2.7.2. Classification Experiments of Neural Network 
According to optimization experimental results, combination matrix of CCV (N = 70), 

TFV and SFV was chosen as the input matrix of the neural network. Classification 
experiments by BP neural network were conducted 10× since a was from 1 to 10. After a 
test ended, we reset a value to obtain a new and different number of neurons in the 
hidden layer. Then, the test was repeated five times again, and the average of results was 
considered as the results of the classification experiment with the a value.  

2.7.3. Comparative Experiment 
The support vector machine (SVM) is also a commonly used classification method 

[52,53]. Thus, SVM was chosen as the method of comparative experiments. A library for 
support vector machine (LIBSVM) is an integrated software for support vector 
classification, regression and distribution estimation [54]. The function ‘svmtrain’ in it was 
used to classify the five grain inventory modes. The kernel function of SVM chose the 
function ‘linear’, ‘polynomial’ and ‘radial basis’. Five tests were conducted for each kernel 
function.  

3. Results and Discussion 
3.1. Optimization Experiments Results of Neural Network Input 
3.1.1. Effect of Color Quantification on Classification Accuracy 

To assess the effect of the number N of color quantification bins in CCV on 
classification accuracy, colors were quantified into 60, 70 and 80 bins. Combination of 
CCV, TFV and SFV was used as the input matrix. The results are shown in Figure 5. 
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matrix decreases.

2.7.2. Classification Experiments of Neural Network

According to optimization experimental results, combination matrix of CCV (N = 70),
TFV and SFV was chosen as the input matrix of the neural network. Classification exper-
iments by BP neural network were conducted 10× since a was from 1 to 10. After a test
ended, we reset a value to obtain a new and different number of neurons in the hidden layer.
Then, the test was repeated five times again, and the average of results was considered as
the results of the classification experiment with the a value.
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2.7.3. Comparative Experiment

The support vector machine (SVM) is also a commonly used classification method [52,53].
Thus, SVM was chosen as the method of comparative experiments. A library for support
vector machine (LIBSVM) is an integrated software for support vector classification, re-
gression and distribution estimation [54]. The function ‘svmtrain’ in it was used to classify
the five grain inventory modes. The kernel function of SVM chose the function ‘linear’,
‘polynomial’ and ‘radial basis’. Five tests were conducted for each kernel function.

3. Results and Discussion
3.1. Optimization Experiments Results of Neural Network Input
3.1.1. Effect of Color Quantification on Classification Accuracy

To assess the effect of the number N of color quantification bins in CCV on classification
accuracy, colors were quantified into 60, 70 and 80 bins. Combination of CCV, TFV and
SFV was used as the input matrix. The results are shown in Figure 5.

Figure 5a shows that classification accuracies of empty mode are the highest (about
98%) when colors are quantized into 60, 70, and 80 bins, that of aeration mode is the
lowest (about 84%) and that of new grain addition, self-heating and normal is between
91–96%. Figure 5b shows that standard deviation of classification accuracies of empty
mode is the lowest (only about 0.4%). However, for aeration mode, the standard deviation
of classification accuracies is obviously different when colors are quantized into 60, 70, and
80 bins, and among them, standard deviation when 70 bins is the lowest (about 1.5%) and
standard deviations when 60 and 80 bins are the same (about 3.2%). Figure 5 also shows
that when colors are quantized into 60 bins, classification accuracies are the lowest except
for the empty mode and the standard deviations of classification accuracies are higher than
that when 70 and 80 bins. This is due to the fact that the smaller number of bins could not
contain widely distributed colors. However, too many bins may contain too much noise,
resulting in lower classification accuracies and higher standard deviation of classification
accuracies, which is evidenced by the difference between 70 and 80 bins for aeration mode
in Figure 5. It also can be seen that, when colors are quantized into 70 bins, the mean of
classification accuracy is the highest and standard deviation is lowest. Thus, when colors
were quantified into 70 bins, CCV&TFV&SFV could make the neural network get better
classification results. It appeared that 70-bin color quantification was optimal in this study.

3.1.2. Effect of Training Features on Classification Accuracy

To optimize the input matrix for better classification accuracy, training time and
prediction time, the six combinations of the input matrix (CCV (70 bins), TFV, and SFV)
were tested. The results are shown in Figure 6.

Figure 6 shows that accuracies are the highest (near 99%) when CCV&TFV&SFV
or CCV&TFV is the input matrix, and no noticeable differences between these two com-
binations. This is owing to the fact that the distinguishes between these two matrices
CCV&TFV&SFV (CCV 140 columns + TFV 18 columns + SFV 6 columns) and CCV&TFV
(CCV 140 columns + TFV 18 columns) is SFV (6 columns) that contains much less image
information that it has little influence on accuracy. This also can explain why the classifica-
tion accuracies are the lowest when only SFV is used as the input matrix (except for new
grain addition), and why the classification accuracies when CCV&SFV is the input matrix
are slightly higher than that when CCV is alone. In particular, for new grain addition,
classification accuracy when SFV is the input matrix is slightly higher than that when TFV
is. This is owing to the fact that SFV contains more representative features for new grain
addition since most of temperature contour maps of new grain addition is not smooth
because of grain loaded in different ways at different times, while for other modes, the
features SFV contained are not representative.

The computation time is an important factor to be considered when a large amount
of grain temperature data need to be processed to offer timely on-site assessment of grain
conditions. Additionally, if new (different) datasets suddenly became available on-site,
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the BP neural network would need to be retrained in a limited time. Thus, training times
and prediction times of neural network with different input matrices were measured when
experiments were done.

From Figure 7, it can be seen that when CCV&TFV&SFV is the input matrix, training
time and prediction time are the highest, which are about 320 and 0.12 s respectively.
In addition, when CCV&TFV is the input matrix, training time and prediction time are
slightly smaller than that when CCV&TFV&SFV. Additionally, when SFV is the input
matrix, training time and prediction time are the smallest, which are 10 and 0.11 s. Figure 7
also shows that prediction time for different input matrices is between 0.11 and 0.12 s (the
difference can be ignored). It should be noted that when the number of neurons in the
input layer decreases, both training time and prediction time decreases. The decrease of
the number of columns in the input matrix was equivalent to the decrease of the number of
neurons in the input layer. Thus, input matrices affected the training time and prediction
time. It can interpret why training and prediction time increase with the increase of the
number of neurons in the input layer.

Combined classification accuracies and times are shown in Figures 6 and 7, whereby
it should be noted that increasing the number of neurons in the input layer would prolong
the training time, while its classification accuracy would be higher. Simultaneously, it can
be noted that the accuracies are very similar when CCV&TFV&SFV and CCV&TFV are the
input matrix, while training time of CCV&TFV is shorter (the difference can be ignored).
Thus, if the network was to be retrained on site, CCV&TFV could be chosen as the input
matrix for economizing in time. In summary, the BP neural network with CCV&TFV&SFV
or CCV&TFV as inputs possessed better accuracy, and the training time and prediction
time were about 320 and 0.12 s, respectively.

3.2. Classification Accuracy

According to the training results of neural network in the above section, CCV&TFV&
SFV was chosen as the input matrix of the BP neural network. The classification results are
shown in Figure 8. When constant a was re-selected from 1 to 10, the number of hidden
layer neurons was reset. Thus, ten experiments were done. Classification accuracies of ten
experiments are shown in Figure 8 and Table 1.
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Figure 8. Box-plot of classification results by the BP neural network. The middle line of the box is the
median of the accuracies and represents the average level of the accuracies. The upper and lower
limits of the box are the upper quartile and the lower quartile of the accuracies. Above and below the
box, two lines represent the maximum and minimum values, respectively.
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Table 1. Analysis of classification accuracies when constant a was selected from 1 to 10.

Constant a 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 92.61 92.66 93.22 94.26 94.36 93.67 95.32 95.07 94.17 93.81

SD (%) 4.32 4.56 4.23 3.76 3.94 4.51 3.42 4.28 5.09 5.14
Note: “SD” represents the standard deviation, %.

From all the boxes in Figure 8, the classification accuracy for empty mode is the highest
(>98%). It is due to the fact that color distribution of the contour maps of empty mode
is relatively monotonous, which is obviously different from the contour maps of other
modes. In addition, the aeration is the lowest (82–89%), which is due to the fact that color
distribution of the contour maps of aeration mode is influenced by many factors, such as the
aeration time, the location of grain warehouse, the external air temperature during aeration
and so on. Thus, temperature contour maps of aeration mode are so different that the
accuracies are the lowest. The accuracies for new grain addition, self-heating and normal
mode range between 89% and 98%, and the mean accuracies are about 93.9% in Figure 8.
From the upper and lower limits of all boxes in Figure 8, it can be seen that the height of
box is the smallest for empty mode and the highest for new grain addition, which means
that the fluctuation of accuracies was the smallest for empty mode and highest for new
grain addition. The reason that caused the accuracies fluctuated greatly is that the training
samples were reselected as the number of hidden layer neurons reset (since constant a
was reset from 1 to 10). The color distribution of the contour maps of empty mode was so
different from that of other modes that the training samples of empty mode, selected before
and after, had less effect on the classification accuracy (smallest fluctuation). The contour
maps of new grain addition were quite different from each other, which is due to the time
and method for grain loaded into the warehouse, thus the training samples selected before
and after were very different, which lead to a large fluctuation of classification accuracies.

Table 1 demonstrates that different a make classification accuracies and standard
deviations of five modes of the BP neural network different. Among the results, when
constant a was 1, the average of classification accuracies of five modes was the lowest at
about 92.61%. In addition, when constant a was 7, the average of classification accuracies
was the highest at about 95.32%, and the standard deviation was smallest (about 3.42%).
Thus, constant a was set as 7. Then the most suitable number of hidden layer neurons was
20. When constant a was 7, the BP neural network owned the best classification effect with
accuracies of 99.10%, 88.91%, 95.37%, 96.59% and 96.62% for the five modes. Examples of
the inaccurate classification are shown in Figure 9.
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Figure 9. Examples of temperature contour maps misconceived. (a) Temperature contour map of empty mode, (b) tempera-
ture contour map of aeration mode, (c) temperature contour map of new grain addition, and (d) temperature contour map
of self-heating mode.

All the temperature sensors measured similar air temperatures when the warehouse
was empty. That formed temperature contour maps with a uniform color (Figure 9a). This
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uniform pattern could be easily identified, resulting in a high accuracy. Some temperature
contour maps for aeration (Figure 9b) were similar to the empty mode, which lead to
misclassification of the aeration to the empty mode, and vice versa. A temperature contour
map of new grain addition may be misclassified as self-heating (Figure 9c) since tempera-
tures of new grain could be higher than 35 ◦C at the time when grain was just loaded into
the warehouse in the summer. The temperature contour map (Figure 9d) of self-heating
mode was misidentified as that of new grain addition. The reason is that grain temperature
was still very high (beyond 35 ◦C) one month after grain loaded, and temperature contour
maps at the time were similar with that of new grain addition.

3.3. Comparative Experimental Results

The classification results with the SVM are shown in Table 2 to compare with the
results of the BP network.

Table 2. Classification results with the SVM.

Kernel
Function

Empty (%) Aeration (%) New (%) Self-Heating (%) Normal (%) Overall (%)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Linear 88.6 1.2 76.0 2.0 68.4 2.8 80.9 3.0 78.6 0.6 80.2 0.8
Radial basis 94.0 1.1 91.3 0.8 87.2 1.5 92.3 1.6 91.1 0.6 91.6 0.6
Polynomial 93.1 1.4 92.3 1.8 87.7 2.7 92.5 1.9 93.4 0.4 92.6 0.6

Note: Linear, polynomial and radial basis represent the kernel function of support vector machine [55]. “SD” represents the standard deviation.

Classification accuracies of the SVM with the linear kernel function were lower than
90% for all five modes, and the polynomial and radial kernel functions resulted in classifica-
tion accuracies around 91.6% and 92.6%, respectively. Through comparison with Figure 8,
accuracies of the BP neural network (overall accuracy about 93.9%) were higher than that
of the SVM, except for the aeration mode when the polynomial and radial kernel functions
were used. The training time and prediction time of SVM were 25.6 and 5.02 s, respectively.
Then, the training time of the BP neural network (320 s) was longer than that of SVM, and
prediction time (0.12 s) shorter than that of SVM.

Considering the accuracy, training time and prediction time, the BP neural network
needs to obtain a large number of image samples in advance and complete the training of
the network before application. After arriving at the detection site, the trained network
can be directly used, which can save training time and possess a higher accuracy. In
addition, grain temperatures data in this study were obtained from 37 flat grain storage
warehouses. Since China’s grain depots are widely distributed, temperature contour maps
in the different regions are different. In the future, more grain temperature data could
be obtained to generate more temperature contour maps in order to test or improve the
accuracy of the BP neural network.

4. Conclusions

A back propagation (BP) neural network was presented to classify the grain conditions,
including inventory changes and routine operations performed (aeration), based on the
temperature contour map of the stored grain. The grain inventory modes were categorized
into five modes, namely, empty (no grain in storage), aeration, new grain addition, self-
heating and normal conditions, with which the temperature contour maps sample set
was established. The color coherence vector (CCV), texture feature vector (TFV) and
smoothness feature vector (SFV) of the temperature contour map were extracted and
combined as the input of the BP neural network, and the five modes were used as the
output vector. The experimental results showed that classification accuracy for the empty
mode was the highest (>98%) and the aeration the lowest (82–89%). The accuracies for the
new grain addition, self-heating and the normal mode ranged between 89% and 98%, with
a mean accuracy about 93.9%. The results also showed that the BP neural network with
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CCV&TFV&SFV or CCV&TFV as input possessed better accuracy, and its training time
and prediction time were about 320 and 0.12 s, respectively. Comparative experimental
results showed that the BP neural network had slightly better classification accuracies than
the SVM (93.9% vs. 92.6% on average) and a shorter prediction time (0.12 vs. 5.02 s), but
a longer training time (320 vs. 25.6 s). In the future, more grain temperatures from more
different grain depots could be collected to generate more temperature contour maps in
order to improve the accuracy of the BP neural network.
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