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Abstract: Intermediate wheatgrass (IWG) is a perennial forage grass undergoing a rigorous domes-
tication as a grain crop. As a young grain crop, several agronomic and domestication traits need
improvement for IWG to be relevant in current agricultural landscapes. This study genetically maps
six domestication traits in the fourth cycle IWG breeding population at the University of Minnesota:
height, seed length, seed width, shattering, threshability, and seed mass. A weak population structure
was observed and linkage disequilibrium (r2) declined rapidly: 0.23 mega base pairs at conventional
r2 value of 0.2. Broad-sense heritabilities were overall high and ranged from 0.71–0.92. Association
analysis was carried out using 25,909 single SNP markers and 5379 haplotype blocks. Thirty-one SNP
markers and 17 haplotype blocks were significantly associated with the domestication traits. These
associations were of moderate effect as they explained 4–6% of the observed phenotypic variation.
Ten SNP markers were also detected by the haplotype association analysis. One SNP marker on
Chromosome 8, also discovered in haplotype block analysis, was common between seed length and
seed mass. Increasing the frequency of favorable alleles in IWG populations via marker-assisted
selection and genomic selection is an effective approach to improve IWG’s domestication traits.

Keywords: intermediate wheatgrass; perennial crop; domestication; haplotype; genetic mapping;
quantitative trait locus

1. Introduction

Intermediate wheatgrass [IWG, Thinopyrum intermedium (Host) Barkworth & D.R.
Dewey subsp. intermedium, 2n = 6x = 42] is a perennial forage grass species currently under
domestication as a new grain crop [1]. In addition to its grain’s use as human food [2], IWG
offers remarkable ecosystem services such as reduction in soil erosion, surface nutrient
runoff, nutrient leaching to groundwater, and increased carbon sequestration [3–5]. A close
relative of wheat (both belong to the Triticeae tribe), IWG was introduced into the United
States from the Maikop region of Russia in 1932 [6]. The crop was recently adopted by
multiple breeding programs in an attempt to domesticate it as a food crop.

The University of Minnesota (UMN) started its IWG domestication program in 2011
from 2,560 individuals that were derived 66 mother plants of the third recurrent selection
cycle at The Land Institute in Salina, KS, USA [7]. The main goals of the breeding program
are to improve grain yield and yield component traits, domestication traits such as seed
shatter, free threshing grain, and seed size as well as other agronomic characteristics such
as height, resistance to lodging, uniform flowering and maturity, and disease resistance.
Between 2011 and 2020, the UMN IWG breeding program has completed four selection
cycles and extensive progress has been made in improving these traits. This progress
throughout the years enabled the breeding program to release the first synthetic IWG
cultivar for grain production, MN-Clearwater, in 2019 [8].

Despite the progress made in improving IWG germplasm, IWG is still in the early
stages of domestication. Several key traits need major improvement to help improve the
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crop’s agronomic performance. A set of traits, commonly known as the “domestication
syndrome”, distinguishes most food crops from their wild progenitors as they essentially
inspired humans to adopt plant cultivation [9,10]. Examples of domestication traits include
larger seed size (mass and dimensions), reduced seed shattering, better grain threshing,
i.e. de-hulled state, and short plant height. Intermediate wheatgrass was selected out
of 100 other perennial grain species because of its easily threshed seeds, relatively large
seeds, and resistance to shatter [1]. Yet, after nearly four decades of selection, further
improvement of these traits is still needed to ensure the crop’s success in the future.

One approach to improve traits of interest is by recurrent phenotypic selection. This
was the primary method of IWG germplasm improvement until the mid-2010s when
Zhang et al. [7] optimized a genomic selection-based breeding approach in IWG. Vital
to the success of genomic as well as marker-based selection methods is the availability
of genome-wide markers that provide adequate coverage of loci controlling the traits of
interest [11]. Discovery of markers in strong linkage with trait loci can assist in marker-
assisted selection of suitable genotypes as well as in discovery of candidate genes [12].
Such marker-trait associations (MTAs) are generally uncovered by association mapping
studies or genome-wide association studies that evaluate large populations for traits of
interest and regress the trait data on marker information to identify the MTAs. As the
significance of MTAs can confound with allelic frequency due to population structure, it
is important to correct for existing population structures to avoid false associations [13].
In recent years, association studies have increasingly used mixed models with genetic
relationships as cofactors to correct for population structure to lower the number of false
signals [14]. When paired with high-throughput marker systems, association studies report
higher levels of marker polymorphism and allelic variation, thus aiding the discovery of
useful, novel alleles associated with the traits [15,16].

Single nucleotide polymorphism (SNP) markers are the widely preferred high-throughput
marker system for genomic studies including gene mapping approaches. They are abundant
in most genomes, offer better discriminatory power relative to other marker types, and are
easily converted to molecular markers for wet-lab assays [17]. SNP markers discovered via
partial or whole-genome sequencing also enable the discovery of population-specific SNPs
free of ascertainment bias at a low cost per data point [18–20]. In most methods of association
analysis, SNP markers are independently tested for their association with the trait, but this can
be problematic for complex traits controlled by several genomic loci [21,22]. In addition, a single-
SNP model might not be able to capture the true allelic diversity given their usual bi-allelic
nature [23]. Testing multiple SNP markers, either with a multi-locus model that simultaneously
evaluates adjacent markers or with haplotype blocks where tightly linked markers are converted
to a single multi-locus haplotype block, is proposed to better represent the genetic architecture
of complex traits [24,25].

This research study was therefore carried out with the following objectives: (i) discover
genome-wide markers and describe the haplotype distribution in the fourth cycle IWG
breeding population at the University of Minnesota; (ii) evaluate trait relationships and
heritabilities, linkage disequilibrium, and population structure; and (iii) use single SNPs
and multi-allelic haplotypes to characterize genomic regions controlling six important
domestication traits: plant height, seed length, seed width, shattering, and threshability.

2. Materials and Methods
2.1. Plant Population

The population used for association analysis in this study is the fourth recurrent
selection cycle (C4) at the University of Minnesota (UMN_C4 hereafter). This population
was obtained by crossing 73 cycle 3 (UMN_C3) IWG genets selected based on their superior
genomic estimated breeding values (GEBVs) obtained from genomic selection models
trained on the UMN_C3 field data collected during 2017–2019. A genet is defined as a
genetically unique organism and refers to individual plants in an outcrossing species such
as IWG [7]. These 73 parental genets were selected mainly for larger seed size, better
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threshability, and reduced seed shattering, while strong selection pressure was also placed
on higher grain yield and reduced plant height. The parental genets were vernalized at 4 ◦C
for 8 weeks during November-December 2017 and intercrossed in a greenhouse during
January-March 2018. From each mother plant, nine random seeds were germinated in June
2018, cloned into two replicates in August 2018, and transplanted in the field in September
2018 at two MN locations: Crookston and St. Paul. Transplanted clones were planted
approximately 0.91 m (3 ft) apart and IWG border plants surrounded the plots on all sides.
In both cropping years (2019, 2020), 45 kg ha−1 of N was applied in April in St. Paul and in
May in Crookston. Weed control in the plots was done with mechanical cultivation and
manual labor. The herbicide Dual II Magnum (S-Metolachlor 82.4%, Syngenta) was applied
in April of both years at a rate of 1.2 L ha−1. After harvesting the grain, plants were mowed
to 15–20 cm. In the final association analysis, 637 genets were used after discarding genets
that were lost due to plant death or poor genotypic data.

2.2. Genotyping

DNA was extracted from 10–15 cm long leaf tissue using the BioSprint 96 DNA Plant
Kit (QIAGEN, Valencia, CA). Extracted DNA was quantified using picogreen, normalized
to 10 ng/µL, and digested with the enzymes PstI and MspI. Samples were pooled at 192-plex
to form sequencing libraries that were sequenced on Illumina’s Novaseq 600. Generated
read sequences were passed through a quality filter of Q > 30 and de-multiplexed to obtain
reads for each genet. Reads were aligned to the IWG reference genome v2.1 [26] using ‘bwa
mem’ [27], and SNP-calling was done with ‘samtools mpileup’ and ‘bcftools’ [28]. SNPs
with minor allele frequency (MAF) of less than 3% and more than 20% missing data were
removed which resulted in 25,909 high quality SNPs. This SNP-set was imputed in Tassel
version 5.2.71 [29] with the LD-kNNi method [30] using 30 nearest neighbors. To estimate
imputation accuracy, known genotypes of 20% alleles in the input file were masked before
imputation then compared with allelic predictions of the masked genotypes. Forced-
imputation was not carried out if the missing genotype of a locus could not be resolved.

2.3. Phenotyping and Statistical Analysis

The UMN_C4 IWG population was evaluated at Crookston, MN and St. Paul, MN
in 2019 and 2020 for multiple agronomic and domestication traits, of which we focus
our association analysis on six important domestication traits: (1) plant height, (2) seed
length, (3) seed width, (4) shattering, (5) free grain threshing (threshability hereafter), and
(6) seed mass measured in terms of thousand kernel weight (TKW). To measure these
traits, 10 mature spikes were harvested per plant and dried at 32 ◦C for 72 h. Plant height
was measured 1–7 d before harvest by measuring the length from base (ground) to the
tallest inflorescence. Shattering was measured as the percentage of seed, spikelets, and
occasionally a portion of the spike itself that broke off from the spike. It was measured
on a 0–9 scale where 0 is no shattering observed and 9 is 90% or more shattering. Spikes
were threshed using a Wintersteiger LD 350 (Wintersteiger Inc, Salt Lake City, UT, USA),
and threshability was measured on a 0–9 scale where 0 was assigned to completely hulled
grain and 9 for 90% or more de-hulled (naked) grain. Approximately 100–300 de-hulled
grain of each genet were scanned using a Marvin seed analyzer (MARViTECH GmbH,
Wittenburg, Germany) to obtain seed dimensions. The same imaged seeds were weighed
to obtain TKW.

A mixed model in the R package ‘lme4’ was used to correct the trait data for trial effect
(i.e., environmental variability) and obtain the best linear unbiased estimate (BLUE) for each
genet. Specifically, BLUEs were obtained by removing the fixed effect estimate for each en-
vironment from the trait value for each genet in that environment. Broad-sense heritability
(H) of each trait was calculated on a genet-mean basis using the following formula:

H = σg
2/(σg

2 + σgl
2/l + σgy

2/y + σe
2/ly),
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where σg
2 is the genetic variance, σgl

2 is the genotype x location variance, σgy
2 is the

genotype x year variance, σe
2 is the residual variance, l is the number of locations, and y is

the number of years.

2.4. Linkage Disequilibrium and Population Relatedness

Pairwise linkage disequilibrium (LD) among the markers was calculated in Tassel
5.2.71 with a sliding window of 50 markers. Obtained LD (r2) values were plotted against
the physical distance obtained from IWG v2.1 reference genome and a locally weighted
polynomial regression (LOWESS) curve was fitted to display the LD decay. Decay distance
of LD was estimated using the method of Hill and Weir [31], and assessed at the convention-
ally accepted r2 value of 0.2 [32]. Genetic relatedness among the genets was estimated in
Tassel 5.2.71 using the Centered_IBS method with default parameters. Population structure
was analyzed using principal component (PC) analysis with the function prcomp in R.

2.5. Haplotype Construction

Haplotype blocks were constructed for each chromosome separately using HAPLOVIEW
4.2 [33]. Block construction was done based on the confidence interval algorithm of Gabriel
et al. [34] that considers LD (D’) among the markers or loci within and outside a proposed block.
SNP markers were considered to be in strong LD if the lower boundary confidence interval
of D’ was ≥0.80 and the upper boundary was ≥0.98. Haplotype blocks were converted into
multi-allelic markers by considering allelic combinations within each block as independent
alleles. Thus, haplotype blocks were numbered in ascending order (1,2,3 . . . n) if a block was
not observed before [35]. Singletons, i.e., haplotypes defined by a single SNP, were not used in
the association analysis that used multi-allelic haplotype markers.

2.6. Association Analysis

Association analysis was carried out using the trait BLUEs, as described above. Single
SNP analysis was done using the ‘FarmCPU’ model in the R package ‘GAPIT’ [36,37].
FarmCPU is a multi-locus mixed linear model and is known to control false positive and
false negative associations. Association analysis using multi-allelic haplotype data was
done in Tassel 3 with the mixed linear model [29]. Because of a weak population structure,
PC values were not included in the model for association analyses. In both association
analyses, significant quantitative trait loci (QTL) were declared at default Bonferroni
thresholds at α = 0.05, i.e.,

i. For single SNP markers: at α/no. of observations = 0.05/25909 = p value of
1.93 × 10−06 or LOD equivalent of 5.71, and

ii. For multi-allelic haplotype blocks: at α/no. of observations = 0.05/5379 = p value
of 9.30 × 10−06 or LOD equivalent of 5.03

In both analyses, the percentage of phenotypic variation explained by the significant
markers (R2) were estimated following the method of Sen and Churchill [38] as imple-
mented in the R package ‘qtl’ [39]. Favorable alleles in this study are defined as alleles
that contribute towards the improvement of trait values for seed length, seed width, thre-
shability, and thousand kernel weight (TKW) and that reduce trait values of plant height
and shattering.

3. Results
3.1. Genotyping and Population Properties

Allele calling using the IWG reference genome v2.1 resulted in discovery of
4,782,922 genome-wide SNP markers in the UMN_C4 population. After discarding
SNP markers with minor allele frequency lower than 3%, 1,820,973 remained, which
subsequently reduced to 25,909 after removing markers with missing allele proportion
of >20%. The average marker distribution per chromosome was 1234 and ranged from
588 (Chromosome 21) to 2177 (Chromosome 20). Missing allelic information was im-
puted using the LD-kNNi method in Tassel using 30 nearest SNPs. Imputation accuracy
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on this set of 25,909 SNPs was 94.7%. The imputation step also lowered the highest
missing allele proportion from 20% to 3.1%. The overall population heterozygosity
was 34%.

A weak population structure was observed among the genets in UMN_C4 as the first
two principal component (PC) axes explained 5.1% of the total genetic variation (Figure 1A);
the first 10 PC axes explained <16% of the total genetic variation. Mean genome-wide LD
(r2) value was 0.05 and ranged from 0.04 (Chromosome 21) to 0.06 (Chromosome 11). The
physical distance at which LD reduced to half its value at conventional r2 = 0.20 was found
to be 0.23 mega base pairs (Mbp) (Figure 1B).
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Figure 1. Scatter plots showing principal component 1 (PC1) plotted against principal component
2 (PC2) (Panel A) and squared allele-frequency correlations (r2) plotted against physical distance
(mega base pairs, Mbp) in the UMN_C4 intermediate wheatgrass population (Panel B). The decline
of linkage disequilibrium is shown by plotting the LOWESS curve in blue color. To improve the
visibility of the curve, the x-axis shows LD decline within 20 Mbp only; a plot with a full range of
genome-wide distances is shown in Figure S1.

3.2. Haplotype Distribution

Haplotype construction using HAPLOVIEW resulted in the placement of 14,951 (58%)
out of 25,909 SNP markers in 5379 haplotype blocks (Table 1). On average, each chromo-
some housed 256 haplotype blocks with the least number of blocks (127) on Chromosome
21 and the highest number of blocks (453) on Chromosome 20. The average number of
unique haplotype blocks per chromosome was 8. Most haplotype blocks were formed with
2 SNP markers (58%) followed by 3 (23%). The maximum number of SNP markers in the
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blocks was 11 (<0.5%). Haplotypes were converted to multi-allelic markers by considering
allelic combinations within each block as independent alleles. The number of alleles (i.e.,
nucleotide base calls) in these multi-allelic markers ranged between two and 68 per block,
with an average of 11 alleles (median = 7). The most frequent haplotype block consisted of
seven allelic combinations (10%), followed by four and six (both at 9% frequency).

Table 1. Distribution summary of SNP markers and haplotype blocks in the UMN_C4 intermediate wheatgrass population.

Haplotype Blocks

Chromosome No. of SNPs SNP Position Range (bp) Total No. of SNPs

1 1400 1,326,898–507,102,603 294 825
2 1617 300,679–433,297,397 325 928
3 1065 2,940,432–513,687,187 224 626
4 1133 115,039–267,218,805 234 626
5 850 1,020,684–434,249,891 197 515
6 1377 1,845,863–570,323,785 267 747
7 1173 364,376–520,161,072 231 645
8 1472 678,201–432,546,992 325 910
9 1111 42,820–473,689,827 240 647

10 961 811,258–512,842,958 185 514
11 789 70,253–250,601,048 163 457
12 819 1,201,293–434,811,611 175 469
13 1311 1,606,077–385,563,675 274 777
14 1252 265,147–524,672,644 246 695
15 1573 359,226–611,692,208 329 928
16 985 949,133–400,595,591 205 584
17 979 1,637–337,127,221 205 531
18 1372 49,467–560,298,643 283 776
19 1905 2,330,783–801,761,017 397 1117
20 2177 276,951–676,545,699 453 1290
21 588 134,660–169,591,600 127 344

Mean 1234 – 256 712
Total 25,909 – 5379 14,951

3.3. Trait Distribution, Correlation, Heritability

A broad range of phenotypic variation was observed in the UMN_C4 IWG population
for the traits plant height, shattering, threshability, seed length, seed width, and seed mass
(measured as thousand kernel weight, TKW) (Figure 2). The mean plant height was 132 cm
with the shortest plant measuring 64 cm and the tallest plant measuring 162 cm. The
average shattering score was 3, with a majority of the population, i.e., 431 genets (68%)
exhibiting high resistance to seed shatter (≤30% shatter). The average threshability score
was 6, and a majority of the population, i.e., 407 genets (64%), had a high proportion of
de-hulled grain (≥60% de-hulled). The shortest seed length and seed width were 5.2 mm
and 1.5 mm, respectively; the longest seed length and seed width were 7.5 mm and 2.0 mm,
respectively. Population means for seed length and seed width were 6.2 mm and 1.7 mm,
respectively. The smallest seed mass (TKW) was 5.7 g and the largest was 12.3 g with an
average of 8.3 g.

Pairwise trait correlations varied by trait pairs (Table 2). The strongest positive
correlation was observed between seed length and TKW with the coefficient of correlation,
r = 0.67 followed by seed width and TKW (r = 0.66) and shattering and seed width
(r = 0.34). The strongest negative correlation was observed between seed width and
threshability (r = −0.42), followed by shattering and threshability (r = −0.37). Threshability
was negatively correlated with all other domestication traits. Plant height was moderately,
yet significantly, correlated with seed length (r = 0.20), seed width (r = 0.11), and TKW
(r = 0.20).
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Table 2. Pearson correlation coefficients among domestication traits in the UMN_C4 intermediate wheatgrass population.
The symbol * next to the correlation coefficient values indicates significance at α = 0.05.

Trait Height (cm) Shattering Threshability Seed Length (mm) Seed Width (mm)

Shattering 0.13 *
Threshability −0.07 −0.37 *

Seed Length (mm) 0.20 * 0.15 * −0.05
Seed Width (mm) 0.11 * 0.34 * −0.42 * 0.30 *

TKW (g) 0.20 * 0.19 * −0.06 0.67 * 0.66 *

Overall, high estimates of broad sense heritability (H) were obtained for all traits
(Table S1). The highest H was observed for seed length (0.92), and the lowest was for
shattering (0.71). The estimate of H was 0.73 for plant height, and 0.79 for both threshability
and TKW.

3.4. Association Analysis

Association analysis using the FarmCPU method with single SNP markers resulted in
detection of 31 significant marker-trait associations (MTAs) in 14 chromosomes (Table 3,
Figure 3 and Figure S2). The greatest number of MTAs were detected in Chromosome
20 (7). Five MTAs were discovered for plant height and explained a total of 23% of
observed phenotypic variation. Two of the five MTAs contributed favorable alleles, i.e.,
they conditioned for shorter plant height with the largest favorable allele contributed by
the marker S20_613713856. Seed length had the most MTAs identified, with eight, and were
distributed in seven chromosomes; these eight MTAs explained a combined phenotypic
variation of 36.6%, and three contributed favorable alleles. Five MTAs were discovered
for seed width on four chromosomes (2, 3, 5, 9) that explained 23% of the phenotypic
variation and alleles of three of the five significant markers had positive phenotypic effect.
Four MTAs were discovered for shattering in four chromosomes that explained a total of



Agriculture 2021, 11, 667 8 of 15

18.6% of the phenotypic variation. Alleles from all but one SNP marker were favorable and
contributed towards reduction in seed shatter. Six MTAs were discovered for threshability
in five chromosomes that explained a total of 26.6% of the phenotypic variation. Of the six
MTAs for threshability, alleles of four SNP markers contributed toward better threshability
and two against. Seed mass (TKW) had the least number of MTAs identified at three in
three chromosomes that explained 14% of the total observed phenotypic variation in the
UMN_C4 population. Only one out of the three significant SNP markers had a favorable
allele. MAF for all observed MTAs ranged from 7.2% to 44.4%. No large-effect QTL were
observed as all MTAs accounted for phenotypic variation in the range of 4.0–6.5%. The
SNP marker S08_323540788 on chromosome 8 was a common MTA between seed length
and TKW; no other common markers were observed among the remaining traits. The
average minor allele frequency (MAF) of all significant loci was 0.22

Table 3. SNP markers, significantly associated with the domestication traits height, seed length, seed width, shattering,
threshability, and thousand kernel weight (TKW) in the UMN_C4 intermediate wheatgrass population. ‘MAF’ is minor
allele frequency, ‘LOD’ is −log10p-value of association analysis, and ‘R2’ is the proportion of phenotypic variance explained
by the significant haplotype block. Column ‘Hb’ indicates if the SNP marker belongs to a haplotype block, ‘NA’ means the
SNP marker was not binned into a haplotype block.

Trait SNP Marker Chr Pos (Mbp) Alleles MAF LOD R2 Allelic Effect Hb

Height (cm) S09_398417599 9 398.42 G/T 0.15 5.71 0.04 −3.43 NA
Height (cm) S12_54085941 12 54.09 G/C 0.30 9.18 0.06 3.58 Chr12-Hb.032
Height (cm) S15_384414403 15 384.41 C/T 0.10 5.76 0.04 −3.58 Chr15-Hb.150
Height (cm) S16_293220465 16 293.22 G/C 0.27 6.14 0.04 −2.70 Chr16-Hb.110
Height (cm) S20_613713856 20 613.71 A/G 0.11 5.81 0.04 4.13 Chr20-Hb.395

Seed Length (mm) S01_184375481 1 184.38 C/T 0.09 5.69 0.04 −0.10 NA
Seed Length (mm) S02_360222683 2 360.22 C/G 0.09 7.11 0.05 0.13 Chr02-Hb.254
Seed Length (mm) S08_323540788 8 323.54 C/A 0.30 7.54 0.05 −0.08 Chr08-Hb.228
Seed Length (mm) S09_306672331 9 306.67 C/A 0.42 5.92 0.04 0.06 NA
Seed Length (mm) S15_550008611 15 550.01 T/A 0.14 6.25 0.04 −0.09 Chr15-Hb.298
Seed Length (mm) S20_248288758 20 248.29 C/T 0.17 5.63 0.04 −0.09 NA
Seed Length (mm) S20_440036613 20 440.04 G/A 0.09 5.75 0.04 0.13 NA
Seed Length (mm) S21_139054606 21 139.05 G/A 0.19 7.93 0.06 −0.10 NA
Seed Width (mm) S02_627054 2 0.63 A/C 0.22 6.30 0.04 −0.02 Chr02-Hb.001
Seed Width (mm) S03_324339821 3 324.34 G/C 0.26 7.33 0.05 0.02 NA
Seed Width (mm) S05_229107942 5 229.11 A/G 0.14 6.50 0.05 0.03 Chr05-Hb.076
Seed Width (mm) S05_330687025 5 330.69 T/C 0.30 6.44 0.05 0.02 NA
Seed Width (mm) S09_194463841 9 194.46 G/A 0.12 6.05 0.04 −0.03 NA

Shattering S11_233685188 11 233.69 C/A 0.40 5.71 0.04 0.15 NA
Shattering S15_427773440 15 427.77 C/A 0.44 9.30 0.06 −0.20 Chr15-Hb.183
Shattering S17_89388699 17 89.39 C/T 0.30 5.61 0.04 −0.19 NA
Shattering S20_569949391 20 569.95 A/G 0.18 5.70 0.04 −0.26 NA

Threshability S01_67160311 1 67.16 G/T 0.24 5.74 0.04 −0.40 Chr01-Hb.041
Threshability S03_231083092 3 231.08 A/G 0.13 6.74 0.05 0.51 NA
Threshability S05_156358046 5 156.36 G/T 0.38 6.51 0.05 0.35 NA
Threshability S15_127556933 15 127.56 G/A 0.07 6.05 0.04 −0.69 NA
Threshability S20_568849724 20 568.85 T/C 0.25 5.98 0.04 0.43 Chr20-Hb.349
Threshability S20_583569893 20 583.57 G/C 0.08 6.61 0.05 0.61 Chr20-Hb.361

TKW (g) S06_558612622 6 558.61 T/C 0.22 6.57 0.05 −0.33 Chr06-Hb.258
TKW (g) S08_323540788 8 323.54 C/A 0.30 7.55 0.05 −0.26 Chr08-Hb.228
TKW (g) S20_314990021 20 314.99 A/G 0.25 5.65 0.04 0.32 NA

Association analysis using the haplotype blocks resulted in detection of 17 significant
haplotype-trait associations (HTAs) in 11 chromosomes (Table 4). Chromosome 8 had the
highest frequency (3) of HTAs. Six HTAs were discovered for plant height that explained
a total of 26.4% of observed phenotypic variation; three of which were favorable. Three
HTAs were discovered for threshability that explained a total of 17.4% of phenotypic
variation; two of the three HTAs had favorable alleles, i.e., they contributed towards
improved threshability. Seed length, seed width, shattering, and seed mass (TKW) each
had two HTAs detected and explained a combined phenotypic variation of 11%, 11.7%,
11.9%, and 11.1%, respectively. One of the two HTAs for seed length and seed width had
favorable alleles, whereas both significant alleles within HTAs for TKW were unfavorable
and contributed towards smaller seed mass. No large-effect loci were detected as all HTAs
accounted for phenotypic variation in the range of 4–5%. The haplotype block Chr08-Hb.228
was common between seed length and TKW; no other common blocks were observed
among the remaining traits.



Agriculture 2021, 11, 667 9 of 15

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

Threshability S01_67160311 1 67.16 G/T 0.24 5.74 0.04 −0.40 Chr01-Hb.041 
Threshability S03_231083092 3 231.08 A/G 0.13 6.74 0.05 0.51 NA 
Threshability S05_156358046 5 156.36 G/T 0.38 6.51 0.05 0.35 NA 
Threshability S15_127556933 15 127.56 G/A 0.07 6.05 0.04 −0.69 NA 
Threshability S20_568849724 20 568.85 T/C 0.25 5.98 0.04 0.43 Chr20-Hb.349 
Threshability S20_583569893 20 583.57 G/C 0.08 6.61 0.05 0.61 Chr20-Hb.361 

TKW (g) S06_558612622 6 558.61 T/C 0.22 6.57 0.05 −0.33 Chr06-Hb.258 
TKW (g) S08_323540788 8 323.54 C/A 0.30 7.55 0.05 −0.26 Chr08-Hb.228 
TKW (g) S20_314990021 20 314.99 A/G 0.25 5.65 0.04 0.32 NA 

 
Figure 3. Manhattan plots showing significant SNP markers discovered for each trait by association analysis. Dashed red 
line indicates the Bonferroni threshold at α = 0.05. 

Association analysis using the haplotype blocks resulted in detection of 17 significant 
haplotype-trait associations (HTAs) in 11 chromosomes (Table 4). Chromosome 8 had the 
highest frequency (3) of HTAs. Six HTAs were discovered for plant height that explained 
a total of 26.4% of observed phenotypic variation; three of which were favorable. Three 
HTAs were discovered for threshability that explained a total of 17.4% of phenotypic var-
iation; two of the three HTAs had favorable alleles, i.e., they contributed towards im-
proved threshability. Seed length, seed width, shattering, and seed mass (TKW) each had 
two HTAs detected and explained a combined phenotypic variation of 11%, 11.7%, 11.9%, 
and 11.1%, respectively. One of the two HTAs for seed length and seed width had favor-
able alleles, whereas both significant alleles within HTAs for TKW were unfavorable and 
contributed towards smaller seed mass. No large-effect loci were detected as all HTAs 
accounted for phenotypic variation in the range of 4–5%. The haplotype block Chr08-
Hb.228 was common between seed length and TKW; no other common blocks were ob-
served among the remaining traits. 

  

Figure 3. Manhattan plots showing significant SNP markers discovered for each trait by association analysis. Dashed red
line indicates the Bonferroni threshold at α = 0.05.

Table 4. Haplotype blocks in significant association with the domestication traits height, seed length, seed width, shat-
tering, threshability, and thousand kernel weight (TKW) in the UMN_C4 intermediate wheatgrass population. ‘LOD’
is −log10p-value of association analysis, and ‘R2’ is the proportion of phenotypic variance explained by the significant
haplotype block. ‘SigSNP’ indicates SNP markers within the significant haplotype block that were also significant in the
single marker analysis; ‘NA’ means no SNP marker was binned into the haplotype block.

Trait Hb SNPs in Block Chr LOD R2 Allelic Effect SigSNP

Height (cm) Chr01-Hb.224 3 Chr01 6.71 0.05 3.46 NA
Height (cm) Chr08-Hb.197 2 Chr08 5.08 0.04 −10.02 NA
Height (cm) Chr12-Hb.032 2 Chr12 6.97 0.05 6.29 S12_54085941
Height (cm) Chr14-Hb.107 4 Chr14 6.08 0.04 −24.63 NA
Height (cm) Chr15-Hb.150 3 Chr15 5.82 0.04 −8.44 S15_384414403
Height (cm) Chr18-Hb.267 3 Chr18 6.75 0.05 7.44 NA

Seed Length (mm) Chr02-Hb.254 2 Chr02 5.85 0.04 0.02 S02_360222683
Seed Length (mm) Chr08-Hb.228 4 Chr08 5.18 0.04 −0.14 S08_323540788
Seed Width (mm) Chr02-Hb.001 2 Chr02 5.34 0.04 −0.10 S02_627054
Seed Width (mm) Chr05-Hb.076 5 Chr05 6.41 0.05 0.08 S05_229107942

Shattering Chr11-Hb.134 7 Chr11 5.95 0.04 0.42 NA
Shattering Chr15-Hb.183 4 Chr15 5.90 0.04 −0.22 S15_427773440

Threshability Chr06-Hb.180 4 Chr06 5.14 0.04 −1.66 NA
Threshability Chr20-Hb.349 3 Chr20 5.60 0.04 0.68 S20_568849724
Threshability Chr20-Hb.361 2 Chr20 6.69 0.05 0.84 S20_583569893

TKW (g) Chr06-Hb.186 2 Chr06 6.01 0.04 −3.77 NA
TKW (g) Chr08-Hb.228 4 Chr08 5.09 0.04 −0.47 S08_323540788

3.5. Comparison of Mapping Results between Marker Types

Few SNP markers discovered in the single marker association analysis were also
discovered in haplotype analysis. Of the 31 single significant markers, 14 were binned into
14 haplotype blocks in nine chromosomes (Table 3). The haplotype block Chr08-Hb.228
housed the SNP marker S08_323540788, a common MTA between seed length and TKW.
Of the 17 HTAs, 10 blocks had SNPs that were also significant in single SNP association
analysis (Table 4). For these 10 common SNPs, pairwise correlation coefficients for their
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p-values of marker-trait associations, percentage of phenotypic variation explained (R2),
and additive allelic effect were 0.25, 0.41, and 0.99, respectively.

For the six domestication traits, more MTAs were discovered relative to HTAs, i.e.,
31 MTAs and 17 HTAs. Cumulative R2 values of the MTAs were therefore larger than
cumulative R2 values of HTAs for all traits except plant height (Figure 4). For plant height,
the HTAs explained 27% of the observed phenotypic variation whereas the MTAs explained
22%. For remaining traits, R2 values for MTAs exceeded BTA R2 by 58% on average. The
largest difference was observed for seed length where MTAs explained 36% of observed
phenotypic variation whereas the HTAs explained only 8%.

Agriculture 2021, 11, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 4. Comparison between the cumulative phenotypic variance explained (R2) by significant 
SNP markers and haplotype blocks domestication traits in the UMN_C4 intermediate wheatgrass 
population. Error bars represent standard deviations. 

4. Discussion 
4.1. IWG Population, Trait Properties, and Association Mapping 

In this study, we used the IWG breeding germplasm from the fourth recurrent selec-
tion cycle at the University of Minnesota (UMN_C4) to analyze population properties and 
carry out marker-trait associations. Similar to our third cycle breeding germplasm 
(UMN_C3), UMN_C4 also showed a rapid decline in LD with decay at 0.23 Mbp when r2 
= 0.2 [40]. Also similar to UMN_C3, UMN_C4 lacked strong population stratification as 
the first two PC axes explained only 5.1% of the variation; this value was 3.9% in 
UMN_C3. In another study that combined several IWG populations from the University 
of Minnesota and The Land Institute (Salina, KS, USA), the first two PC axes explained 
4.9% of the genotypic variation [41]. This lack of a strong population structure in IWG 
breeding populations is likely due to the limited number of founder parents [1]. Yet, pop-
ulation divergence could occur in future populations as breeding programs impose dif-
ferential selection pressure on various agronomic and local adaptation traits. 

We evaluated six important domestication traits, plant height, seed length, seed 
width, shattering, threshability, and seed mass expressed in terms of thousand kernel 
weight (TKW), in the UMN_C4 IWG breeding population and mapped genomic loci con-
trolling these traits. Heritability estimates for these traits were in general high and agreed 
with previous studies [40,42,43]. Most traits had moderate to strong correlations among 
each other with few notable exceptions, e.g., r = −0.07 between height and threshability 
and r = −0.05 between seed length and threshability (Table 2). Threshability had significant 
yet negative correlations with shattering (r = −0.37) and seed width (r = −0.42). Negative 
relationships of threshability with shattering and seed dimensions have also been previ-
ously observed in different IWG populations [42,44], and present a unique challenge to a 
breeder. Plants that produce larger seeds with minimal to no shattering and high thresh-
ability are desired to maximize the yield potential of IWG. As threshability is negatively 

Figure 4. Comparison between the cumulative phenotypic variance explained (R2) by significant
SNP markers and haplotype blocks domestication traits in the UMN_C4 intermediate wheatgrass
population. Error bars represent standard deviations.

4. Discussion
4.1. IWG Population, Trait Properties, and Association Mapping

In this study, we used the IWG breeding germplasm from the fourth recurrent selection
cycle at the University of Minnesota (UMN_C4) to analyze population properties and carry
out marker-trait associations. Similar to our third cycle breeding germplasm (UMN_C3),
UMN_C4 also showed a rapid decline in LD with decay at 0.23 Mbp when r2 = 0.2 [40].
Also similar to UMN_C3, UMN_C4 lacked strong population stratification as the first two
PC axes explained only 5.1% of the variation; this value was 3.9% in UMN_C3. In another
study that combined several IWG populations from the University of Minnesota and The
Land Institute (Salina, KS, USA), the first two PC axes explained 4.9% of the genotypic
variation [41]. This lack of a strong population structure in IWG breeding populations is
likely due to the limited number of founder parents [1]. Yet, population divergence could
occur in future populations as breeding programs impose differential selection pressure on
various agronomic and local adaptation traits.

We evaluated six important domestication traits, plant height, seed length, seed width,
shattering, threshability, and seed mass expressed in terms of thousand kernel weight
(TKW), in the UMN_C4 IWG breeding population and mapped genomic loci controlling
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these traits. Heritability estimates for these traits were in general high and agreed with
previous studies [40,42,43]. Most traits had moderate to strong correlations among each
other with few notable exceptions, e.g., r = −0.07 between height and threshability and
r = −0.05 between seed length and threshability (Table 2). Threshability had significant yet
negative correlations with shattering (r = −0.37) and seed width (r = −0.42). Negative rela-
tionships of threshability with shattering and seed dimensions have also been previously
observed in different IWG populations [42,44], and present a unique challenge to a breeder.
Plants that produce larger seeds with minimal to no shattering and high threshability are
desired to maximize the yield potential of IWG. As threshability is negatively correlated
with shattering and seed weight, improving it increases the risk of depreciating trait values
for the other traits. Yet, a large enough breeding population could provide the opportunity
for genotypes with desirable trait combinations to exist, e.g., individuals that have reduced
shattering and high threshability with larger grain. For example, in UMN_C4, there were
59 (9%) out of 657 genets with no more than 30% seed shatter and 70% or higher thresha-
bility with grain width ranging from 1.70–1.90 mm; the widest grain was 2.03 mm in the
population. A careful and strong selection pressure is thus warranted to simultaneously
improve these three traits in IWG.

We carried out association analysis using multi-allelic haplotypes for the first time
in IWG. Ten of 17 (59%) blocks that were significantly associated with our domestication
traits also contained SNP markers discovered using the single marker association analysis
(Tables 3 and 4). Differences between haplotype analysis and single marker analysis are
not uncommon [35,45,46]. These differences are primarily attributed to the differences
in allelic composition and frequencies as well as LD with the causative loci [47,48]. This
difference was evident in our UMN_C4 population as a majority (81%) of the haplotype
blocks were formed with 2–3 SNPs, likely due to a rapid decline in LD (0.23 Mbp). Because
of the inherent differences between the two marker types, multiple studies have suggested
using both single markers and haplotypes as they often complement each-other [45,49].
Our results corroborate that it is best to use both marker types in association analysis to
obtain a better understanding of the genetic control behind complex quantitative traits
in IWG.

4.2. Comparison with Existing IWG QTL

Association analysis of six domestication traits in the UMN_C4 IWG breeding pop-
ulation led to discovery of 31 single marker-trait associations (MTAs) and 17 haplotype
block trait associations (HTAs). The locus S09_398417599 was significantly associated
with plant height in UMN_C4 and falls within the lower (Chr09_370475337) and upper
(Chr09_81355723) bounds of the QTL associated with stem length discovered by Larson
et al. [42]. Larson et al. [42] also reported that their QTL region was proximally aligned to
the barley DENSO (Semidwarf 1) gene [50]. All other MTAs and HTAs discovered for plant
height appear to be unique to our population.

More than 60 QTL have been reported for seed length in different IWG popula-
tions [40,42,51]. The SNP marker S08_323540788 and the haplotype block Chr08-Hb.228
(which contained S08_323540788) were significantly associated with seed length in UMN_C4.
This marker is located at a distance of <1 Mbp from the significant marker S08_323540788
for seed length discovered by Bajgain et al. [40] in an association mapping study in the
UMN_C3 population. Likewise, more than 50 QTL have been reported for seed width in
IWG [40,42,51]. All MTAs and HTAs detected in our study were >17 Mbp away from these
previously reported QTL and thus likely are unique to our population. Of the MTAs and
HTAs we discovered for TKW, the significant marker S20_314990021 is located <1 Mbp
away from the QTL Ti_QSws.umn_20.2 reported by Zhang et al. [51]. In Zhang et al.’s
study, the QTL Ti_QSws.umn_20.2 was associated with the traits TKW and seed area in two
different populations and had allelic effect of −0.31 for TKW and −0.21 for seed area. In
our study, this marker had a larger, positive allelic effect (0.32) and explained 5% of the
observed phenotypic variation.
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In this study, we discovered five unique associations (between MTA and BTA) on
chromosomes 11, 15, 17, and 20 for shattering. In various IWG populations, more than
50 QTL have been reported for resistance to shatter [42,44]. The significant SNP marker
S11_233685188 was located less than 4 Mbp and 2 Mbp from the markers S11_229911033
and S11_231841692 in studies by Larson et al. [42] and Altendorf [44], respectively. It is
therefore likely that these three markers represent the same locus/gene. The significant
marker S05_156358046 for threshability was also discovered in a nested association map-
ping population created from genets of the UMN_C2 population [44]. The SNP marker
S05_156358046 explained 5% of the phenotypic variation (R2) and had an allelic effect of
0.35 in our study whereas in Altendorf’s study, this marker had a larger R2 value depend-
ing on the environment (10.4–13.8%) yet smaller allelic effect (0.008–0.011). Another SNP
marker, S20_583569893, is located more than 7 Mbp away from the marker S20_590832266
discovered by Altendorf et al. [44], and is therefore unlikely to be the same locus.

4.3. QTL Size and Implications in Intermediate Wheatgrass Breeding

For all domestication traits in our UMN_C4 population, we observed high broad-sense
heritability estimates (H ≥ 0.71). This indicates that the variations observed for all traits
were largely under the control of genetic factors. Despite a higher degree of genetic control
over the traits, all genomic loci associated with the traits were of small to moderate effects
(proportion of explained phenotypic variance, R2 = 4–6%). The cumulative phenotypic
variance explained by the MTAs and HTAs are likely a function of number of discovered
loci as previously suggested [35]. Yet, it was interesting to observe higher cumulative R2

for HTAs relative to MTAs. However, the small to moderate effects of the QTL pose a
two-fold problem: (1) the difficulty in combining the loci and using markers associated
with these loci in marker-assisted selection is higher, and (2) improving trait values and
increasing genetic gain from phenotypic selection only can be more challenging because of
the resources required to accumulate many small-effect loci. The problem is exacerbated in a
near-obligate out-crossing species such as IWG with heterogeneous population composition
and many heterozygous loci. Allelic interactions in such populations are likely to dissociate
rapidly with each advancing generation [52], hindering the process of rapid accumulation
of favorable alleles.

A better method to accumulate causative loci and their favorable alleles is an in silico
selection approach, such as genomic selection that evaluates all genome-wide markers to
predict traits of interest [53]. In particular, significant markers from association studies,
when used in genomic prediction models as covariates, are known to improve traits
prediction in self-pollinated as well as cross-pollinated crop species [54–56]. Similar results
have also been observed in IWG where the use of significant markers from association
mapping has improved trait predictive ability of genomic prediction models in disease
and yield component traits [40,57]. When significant markers are fitted as fixed effects, the
model estimates effects of remaining markers, potentially avoiding strong shrinkage due
to medium-large fixed-effect markers and allows the model to predict trait values with
higher accuracy [58,59]. The use of genome-wide markers, including significant markers, in
genomic selection can therefore improve important traits while saving time and resources
compared to phenotypic selection only.

To summarize, IWG is a novel perennial grain crop that offers substantial ecological
benefits, while producing edible grain. Because the domestication timeline of IWG is
very short, with modern genomic tools not applied until recently, the crop still requires
significant improvements of several agronomic and domestication traits. We identified
several genomic loci–31 single markers and 17 haplotype blocks–that control six important
domestication traits in IWG: plant height, seed length, seed width, shattering, threshability,
and seed mass. The accumulation of these loci by increasing the frequencies of their
favorable alleles in IWG breeding germplasm will be instrumental in improving this crop.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11070667/s1, Figure S1: Squared allele-frequency correlations (r2) plotted against
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physical distance (mega base pairs, Mbp) in the UMN_C4 intermediate wheatgrass population. The
decline of linkage disequilibrium is shown by plotting the LOWESS curve in blue color. Figure S2:
QQ-plots generated by FarmCPU model during genome-wide association scan for significant SNP
markers. A: Height (cm), B: Seed length (mm), C: Seed width (mm), D: Shattering, E: Threshability, F:
Thousand kernel weight (TKW, g). Table S1: Variance components for the six domestication traits in
the UMN_C4 intermediate wheatgrass population.
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