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Abstract: This article presents a new model for forecasting the sugarcane yield that substantially
reduces current rates of assessment errors, providing a more reliable pre-harvest assessment tool for
sugarcane production. This model, called the Wondercane model, integrates various environmental
data obtained from sugar mill surveys and government agencies with the analysis of aerial images of
sugarcane fields obtained with drones. The drone images enable the calculation of the proportion of
unusable sugarcane (the defect rate) in the field. Defective cane can result from adverse weather or
other cultivation issues. The Wondercane model is developed on the principle of determining the
yield not through data in regression form but rather through data in classification form. The Reverse
Design method and the Similarity Relationship method are applied for feature extraction of the input
factors and the target outputs. The model utilizes data mining to recognize and classify the dataset
from the sugarcane field. Results show that the optimal performance of the model is achieved when:
(1) the number of Input Factors is five, (2) the number of Target Outputs is 32, and (3) the Random
Forest algorithm is used. The model recognized the 2019 training data with an accuracy of 98.21%,
and then it correctly forecast the yield of the 2019 test data with an accuracy of 89.58% (10.42% error)
when compared to the actual yield. The Wondercane model correctly forecast the harvest yield of
a 2020 dataset with an accuracy of 98.69% (1.31% error). The Wondercane model is therefore an
accurate and robust tool that can substantially reduce the issue of sugarcane yield estimate errors
and provide the sugar industry with improved pre-harvest assessment of sugarcane yield.

Keywords: pre-harvest sugarcane yield forecasting model; reverse-design feature extraction; the
similarity relationship method; data mining

1. Introduction

The agricultural sector is a vital part of the Thai economy because 9.37 million people
are engaged in agriculture. Currently the five main crops of Thailand, in order of economic
importance, are: rice, cassava, sugarcane, rubber, and palm [1]. Sugarcane is one of the
main cash crops in Thailand and many researchers are interested in studying sugarcane
due to its popularity among the farmers, and its price is also profitable and stable when
compared to other local crops like rice, cassava, rubber, and palm. In 2019, Thailand
produced a total of 130.91 million metric tons of sugarcane, worth approximatelyUSD
176 million [2] and as of 2019, the country was the world’s third largest exporter of sugar
after Brazil, and India [3]. In Thailand, approximately 63.63% of the sugarcane fields are
harvested not by the farmers, but rather by sugar mills, under an agreement with the
farmers [4]. In this case the sugar mill needs to survey the field before harvest in order to
estimate the amount of harvesting equipment, human labor, and other resources to allocate
for that field. Accurate yield estimation of unharvested sugarcane has long been a great
challenge, and this issue has expensive consequences when equipment, labor, and other
resources cannot be allocated efficiently. Smart technology for agriculture can provide
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solutions. Sensor systems, advanced data analysis techniques, and big data analytics can
have a real impact on improving sugarcane yield estimation.

Currently, the forecasting of sugarcane yield relies on expert surveyors whose estimate
is based on their own past experiences. The subjectivity of this method makes it prone to
assessment errors, which can result, for example, from the expansion of cultivated areas,
differences in local environmental conditions, or recent cultivation issues, or natural events
such as adverse weather [5]. Thus, sugar mills seek standardized and robust tools that can
assess sugarcane yield more accurately and reliably. At present, various agricultural models
have been developed to forecast crop yields, and these models can generally be divided
into two types: (1) models based solely on environmental data, and (2) models based on
environmental data as well as images. Among the first type, Buket et al. [6], presented a
sugarcane yield forecasting model that uses an artificial neural network. Hammer et al. [7],
developed a sugarcane yield forecasting model that uses the Random Forest algorithm
together with Crop Simulation. Srikamdee et al. [8] created a sugarcane yield forecasting
model using deep learning. Among the second type of model that has been previously
developed (models incorporating both environmental data and images) some use satellite
images and others use drone images.

The following studies utilize satellite images. Adisa et al. [9] presented a corn
yield forecasting model that uses a vegetation index calculated from satellite images
together with an artificial neural network. Prathumchai et al. [10] created a sugarcane yield
forecasting model that employs the Leaf Area Index (LAI), also based on satellite images,
and Rahman et al. [11] developed a sugarcane yield forecasting model utilizing the satellite
image-based green normalization vegetation index (GNDVI).

Previously introduced models that use drone images include that of Matese et.al. [12]
whose analyses of plant diseases in vineyards use drone images based on NDVI. Mink
et al. [13] developed a weed detection model for maize and sugar beet using drone im-
ages based on GNDVI. RGB color images from a drone are combined with environmental
data to develop the pre-harvest sugarcane yield forecasting model of Som-ard et al. [14]
That model uses Object-Based Image Analysis (OBIA) with a Gray-Level Co-occurrence
Matrix (GLCM). Sanches et al. [15] created a sugarcane yield forecasting model that
uses a Green–Red Vegetation Index (GRVI) and a Leaf Area Index (LAI) that are both
drone image based. Both of the studies by Som-ard et al. [14] and and Sanches et al. [15]
demonstrated how RGB color image analysis can be applied to estimate sugarcane yield.
Som-ard et al.’s study [14] resulted in a highly accurate (OA) estimate (92% accuracy) for
a small number of fields with a large total area (2 fields with a total area of approximately
36,000 square meters). On the other hand, Sanches et al.’s study [15] used more fields
with a smaller total area (15 fields with a total area of approximately 1800 square meters),
and its estimate accuracy (also OA) was lower (90% accuracy). The methods of Som-ard
et al. [14] and Sanches et al. [15] can be applied to forecast the yield of sugarcane fields
in some parts of Thailand.

Kamphaeng Phet Province is one of the Thai provinces where sugarcane is most widely
cultivated. It is located the Northern Region of Thailand (Latitude: 16.4183581 Longitude:
99.6111616). The total area of the province is 8512 km2, and its sandy soil is suitable for
growing a variety of crops. The major agricultural crops of Kamphaeng Phet Province are
rice, cassava, maize, sugarcane, banana, and tobacco. The climate in Kamphaeng Phet is
characterized by high temperatures throughout the year, with alternating rain and drought,
as well as storms that cause damage to agricultural crops. Annual temperatures and annual
rainfall of Kamphaeng Phet are shown in Figure 1.
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Figure 1. Annual temperatures and annual rainfall in Kamphaeng Phet Province [16].

Sugarcane has been popular with farmers in Kamphaeng Phet because sugarcane can
resist intense storms better than other plants. Total sugarcane cultivation in the province
covers 0.29 million acres. A defect detection model previously developed by the current
authors is able to assess sugarcane defects caused by adverse conditions, such as sugarcane
that collapses in a storm or sugarcane that does not grow due to drought (Tanut et al. [17]).
That defect detection model based on the analysis of high-resolution color images obtained
by the drone has an accuracy of 92.95% compared to expert evaluation.

The current study introduces a new sugarcane yield forecasting model called the
Wondercane model, which is based on both sugarcane defect assessment and environmental
factors. The defect assessment, which comes from analysis of field images obtained by
drone, is used to account for unique characteristics of each sugarcane field that are caused
by adverse conditions and which affects the final yield. The environmental factors, obtained
from sugar mill field surveys and from government agencies, consist of rainfall, sugarcane
variety, ratoon cut count (RCC), planting distance, and soil group. Another vital kind of
data obtained from sugar mill surveys is the actual yield of past harvests. An important
principle in the Wondercane model is that predicted yield is determined not through data
in regression form (continuous variables) but rather through data in classification form
(categorical variables). This is because the classification model takes a shorter modeling
time than the regression model (since it does not require training data for several years),
it can be predicted at the farming scale, and it is easily integrated with image analysis
data. The feature extraction process of this model uses data mining and the concept of
reverse design, together with the Similarity Relationship Method. This provides three
important components necessary for the development of the model: Input Factors (IFs),
Target Outputs (TOs), and Target Output relationships (TORs). The characteristics of the
Wondercane model enable it to effectively reduce errors in yield assessment and optimize
the allocation of sugar mill resources.

2. Materials and Methods

The Wondercane model is developed using three kinds of software: (1) MATLAB
2015B software to build and test the model, (2) Google Earth Editor for creation of virtual
farm areas, and (3) ArcGIS software for mapping the farm into geographical areas. The
hardware used is a the DJI Phantom 4 RTK (DJI-P4RTK) for capturing aerial photos. The
DJI Phantom4 [18] is capable of flying for up to 30 min, with a wind resistance of 10 m/s,
and it is equipped with an ultra-high-definition camera with a resolution of 20,962 cm2

calculated from 72 dpi. Figure 2 shows a conceptual framework of the Wondercane pre-
harvest sugarcane yield forecasting model with its four main processes: data collection,
feature extraction, model creation and testing, and application development. Each of these
processes is explained below.
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Figure 2. Conceptual framework of the Wondercane model.

2.1. Data Collection

The dataset for Wondercane comes from three sources: the local sugar mill that will
harvest the cane, the Meteorological Department of Thailand (Ministry of Digital Economy
and Society), and the Land Development Department (Thai Ministry of Agriculture and
Cooperatives). Data on sugarcane variety, RCC, planting distance, and yield comes from
the sugar mill. In this study the sugar mill was Nakornphet Sugar Company in Kamphaeng
Phet City. Data on rainfall [19] and soil groups [20] were requested from the Meteorological
Department and Land Development Department, respectively. In order to incorporate
rainfall information into this study, the centroid (a Shapefile file format) of the sugarcane
fields was mapped to the districts of Kamphaeng Phet Province using intersection tools
of ArcGIS software [21]. In the same way, the centroid of the sugarcane fields also was
mapped to the soil group data. The dataset which was collected during the harvesting
phase in 2019 was used to train the model. Then the developed model was tested for its
forecasting accuracy with the 2020 actual harvest dataset. A diagram of the data collection
process is shown in Figure 3.

Figure 3. Diagram of the data collection process.

Images of the sugarcane field were collected from October to January in both 2019
and 2020, which are the months of the sugarcane maturity phase, when the drone can
capture images showing defects in the field. The sampling images were collected and
then analyzed for four different field factors: sugarcane variety, RCC, yield level, and soil
group. The number of possible values in each of these field factors is as follows: 3 possible
sugarcane varieties, 3 possible RCCs, 3 possible yield levels, and 22 possible soil groups.
The Cartesian product [22] of the four field factors with all their possible values generated
a total of 594 possible combinations of field factor values (i.e., 3 × 3 × 3 × 22). In this study,
each possible combination of field factor values will be called a field profile. Ten examples
of field profiles are shown in Table 1.
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Table 1. Ten examples of field profiles.

Example No. Sugarcane Variety Ratoon Cut Count Yield Level Soil Group

1 Lk-92-11 12 Low 40
2 Khon Kaen 3 18 Low 40
3 U Thong 11 12 Low 16
4 Lk-92-11 12 Medium 15
5 Khon Kaen 3 12 Medium 21
6 Lk-92-11 18 Medium 6
7 Lk-92-11 12 High 49
8 Khon Kaen 3 15 High 36
9 U Thong 11 12 High 38

10 Lk-92-11 12 High 40

Figure 4 shows a silhouette of Kamphaeng Phet Province and its subdistricts, with red
dots indicating the location of sugarcane fields surveyed by local sugar mills in 2018–2019
and 2019–2020.

Figure 4. Silhouette of Kamphaeng Phet Province and its subdistricts, with red dots indicating the location of sugar cane
fields surveyed by local sugar mills: (a) 2018–2019 and (b) 2019–2020.

To correctly survey the field, images need to be captured with three specifications: the
drone must be 200–300 m above the ground, the images must be taken during daylight,
and the resolution needs to be 3078 × 5472 pixels. After the aerial survey, it was found that
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the 2018–2019 data produced 90 images, and the 2019–2020 data produced 72 images. To
find the defect rate, all of these images were analyzed by the Sugarcane Defect Detection
Program (SDDP) [17]. The sugarcane defect detection program’s defect analysis results are
shown in Figures 5 and 6.

Figure 5. The sugarcane defect detection program’s defect analysis for images in 2018–2019.
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The text under each individual image in Figures 5 and 6 has three parts (from left to
right): (1) the eight-digit code is the farm ID, (2) the number in parenthesis is the defect
rate percentage, and (3) the number in brackets is the field profile of the image.

Figure 6. The sugarcane defect detection program’s defect analysis for images in 2019–2020.
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The current study’s dataset includes environmental data and images collected during
those surveys. Specific quantified information regarding the surveys and the resulting data
used is shown in Table 2.

Table 2. Information on the field surveys and the resulting data used.

C.P
No.O No.H C.R Dataset

Ground (Fields) Aerial (Fields) (Fields) (Records) T.V (Records) Testing (Records)

2018–2019 3442 90 1711 745 616 129
2019–2020 8117 72 2869 821 - 821

C.P: Cultivation period; No.O: No. of observations; No.H: No. of the harvested fields; C.D: Composite records; T.V: Training and
Validation.

After the harvesting season, records from the environmental data of the surveys and
records from the defect rate analysis of the aerial images were matched, and each matched
pair of records was then merged to form only one combined record for each farm, called a
composite record. It is these composite records that were used to develop the Wondercane
model. A total of 745 composite records came from 2018–2019, of which 616 were used for
model training and result validation (Raw Data Subset A) and the remaining 129 were used
for testing (Raw Data Subset B). A total of 821 composite records came from 2019–2020, all
of which were used for testing the model (Raw Data Subset C). All composite records were
used for initial feature extraction.

2.2. Feature Extraction

In the Wondercane model, feature extraction of the datasets is accomplished by em-
ploying the concept of reverse design. The purpose here is to extract and optimize the
Target Outputs (TOs), Target Output relationships (TORs), and input factors (IFs). A
conceptual framework of this process is shown in Figure 7.

Figure 7. Conceptual framework of the feature extraction process (TO = Target Output, TOR = TO
Relationship, TOC = TO Cluster, TOCG = TOC Group, IF = Input Factor).

The purpose of the feature extraction process is to determine two things: the Target
Outputs and the Input Factors. The Target Output design process uses the six composite
environment factors (rainfall, sugarcane variety, ratoon cut count (RCC), planting distance,
soil group, and defect rate) to determine the TORs, based on similarity of the environmental
factor profiles of all the TOs, and then finds the optimal set of TOs with the least errors. The
results from the Target Output design process are used in the Input Factor design process,
which will find the optimal set of IF set that are most related to the optimal TOs from the
previous process. All three critical components (TOs, TORs, and IFs) resulting from the
feature extraction process are then used to create the model. More specific information on
each stage of the feature extraction process follows.

2.2.1. The Target Output Design Process

In the first stage of the TO Design Process, the TOs are determined one by one using
numbers with 2n, for example 21, 22, 23, . . . , 2n where n = 1, 2, 3, ..., n. It is important
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to understand that as each TO is determined, it will travel through the entire TO Design
Process from beginning to end before the next TO is then determined and follows the same
path. As will be explained later, at one point it will become clear that the last useful TO has
been reached. At that point, further TO determination will cease.

The second stage of the Target Output Design Process consists of many steps. All
of these steps together constitute a new method called the Target Output Similarity Rela-
tionship (TOSR) Method, which is shown in Figure 8. During the TOSR method, all six
composite record factors have to be considered: rainfall, soil group, planting distance, RCC,
sugarcane variety, and defect rate.

Figure 8. Conceptual framework of the Target Output Similarity Relationship Method (TO = Target
Output, TOC = TO Cluster, TOR = TO Relationship).

In the Clustering Section of the TOSR Method, the K-Means Algorithm [23] is used
to group the composite records (specifically 90% of Raw Data Subset A) around the one
determined TO that is traveling through. This creates TO Clusters (TOCs) for that TO. The
TORs are then calculated from the average actual yield of each TOC.

In the Classification Section of the TOSR Method, the K-Nearest Neighbor Algorithm [24]
(with Neighbor set at 3) is run to classify the similarities of the composite records in 10% of
Raw Data Subset A using the TOCs. The result is Predicted TOCs. Those Predicted TOCs are
then used with the TORs from the Clustering Section to calculate Predicted Yield. Next, the
Predicted Yields are compared with the actual yields to calculate the Accuracy of Predicted
Yield (APY%). At the end of the Classification Section of the TOSR Method, 10-fold cross-
validation [25] is used to select the TOC data with the highest Accuracy of Predicted Yield
(APY%), hereafter referred to as the Highest Accuracy TOC data (HATOC data). These can be
thought of as optimized TOCs.
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The Testing Section is the last part of the TOSR Method. Here, the KNN Algorithm
classifies the similarities of the composite records (Raw Data Subset B) using the HATOC
data to obtain new Predicted TOCs. Predicted Yield is again calculated, and finally the
Predicted Yield is compared to Raw Data Subset B Actual Yield to determine the Predicted
Yield Error rate (PYE%). As a result, a TOC Group (TOCG) is created. Note that one original
TO became one TOCG. The TOCG contains a list of TOCs, and the TOCG is identified
by the number of TOCs in its list. For example, TOCG-64 has 64 TOCs inside. Thus the
TOCG has qualities of list, but it also has qualities of a counter, indicating how many TOCs
it represents. Creation of one TOCG for each TO traveling through is the ultimate goal
of the TOSR Method. Thus ends the TOSR Method and also the second stage of the TO
Design Process.

In the third stage of the TO Design Process, the TOCG identifying number (i.e., 2 for
TOCG-2, 4 for TOCG-4, 8 forTOCG-8, etc.) of each TOCG that arrives from the previous
stage (i.e., from the TOSR Method), along with its corresponding PYE rate (each TOCG
has one PYE%), is plotted in a cumulative trend graph where each arriving TOCG will be
added. Two big tasks remain here in the third stage. First, we must figure out when to
stop adding new TOs (and new TOCGs). Second, we must find the one optimal TOCG that
will result in a minimum error rate. Since one aspect of a TOCG is to function as a counter
of the TOCs inside it, determining the optimal TOCG will also reveal how many TOCs
will be used for optimum effect. However, as mentioned we must first look for the right
moment to stop adding new TOs (and new TOCGs). As each TOCG arrives and is plotted
in the cumulative trend graph, there will come a time when the latest TOCG to arrive will
have a PYE% that is dramatically higher than the others. That newly arrived TOCG with a
dramatically higher PYE% is the sign that this TOCG is the last TOCG to include in the
graph, and thereafter no more TOs should be inserted into the beginning of the TO Design
Process. The graph is now full.

Once the graph is ready, the Bisection Method [26] is then applied to find the optimal
TOCG. This means first identifying the lowest predicted yield error rate (PYE%) in the
current graph and then narrowing the range, with a focus on that current lowest PYE%.
An abstract figure of the Bisection Method is shown in Figure 9. For example, when the
lowest PYE in the graph is found to be at f(x3), then the range limits will be narrowed
to be closer to f(x3) point on both sides, left and right. In this example, the new lower
range limit (on the left) is calculated as the midpoint between x2 and x3, and the upper
range limit (on the right) is calculated as the midpoint between x3 and x4. After the range
is thus narrowed, the PYE% is re-calculated using the new TOCG identifying numbers
from the new narrower range. By repeating this process multiple times, the progressively
narrower range eventually converges on the optimal TOCG. This process ends when there
is insufficient range for further division, at which time the optimal TOCG is taken as the
TOCG identifying number with the lowest PYE% in the final iteration of the graph. Once
the optimal TOCG is in hand, the TOCs inside that TOCG will be called the Optimized TOs
(OTOs), and these OTOs will be used going forward.

Figure 9. An abstract example of the Bisection Method in the trend graph for determining the
optimum TOCG having minimum errors.
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2.2.2. The Input Factor Design Process

In the first stage of the IF Design Process, the Input Factor sets are determined by
finding the power set of all six composite record factors (i.e., rainfall, soil group, planting
distance, RCC, sugarcane variety, and defect rate) using the subset method [27]. The result
is 32 IF sets with no empty set, and there is a defect rate in each set. For example, IF set#1
= {defect rate}, IF set#2 = {rainfall, defect rate} IF set#3 = {soil groups, defect rate}, . . . , IF
set#32 = {rainfall, soil groups, planting distance, RCCs, sugarcane varieties, defect rate}.
Every IF set contains composite records, the same total number of composite records being
processed. Each of the 32 IF sets will go through the rest of the IF Design Process one by
one. All 32 sets will go through: no more, no less.

The second stage of the Input Factor Design Process has some pathways that are
analogous to pathways in the second stage of the previous Target Output Design Process
and its TOSR Method. However, many important components are different here, so
a separate Input Factor Similarity Relationship (IFSR) Method is used here, shown in
Figure 10.

Figure 10. Conceptual framework of the Input Factor Similarity Relationship Method (OTO =
Optimal Target Output, OTOC = Optimal TO Cluster, OTOR = Optimal TO Relationship).

In the Clustering Section of the IFSR Method, the K-Means Algorithm is used to group
the composite records (sourced from 90% of Raw Data Subset A) of each IF set around the
one OTO (from the TO Design Process) to create OTO Clusters (OTOCs). Although the IF
set changes each time here, the one OTO does not change. The OTO Relationships (OTORs)
are then calculated from the average actual yield of each OTOC.

In the Classification Section of the IFSR Method, the K-Nearest Neighbor Algorithm
(with Neighbor set at 3) is run to classify the similarities of the composite records of each IF
set in 10% of Raw Data Subset A using the OTOCs. The result is Predicted OTOCs. Those
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Predicted OTOCs are then used with the OTORs from the Clustering Section to calculate
Predicted Yield. Next, the Predicted Yields are compared with the actual yields to calculate
the Accuracy of Predicted Yield (APY%). At the end of the Classification Section of the
IFSR Method, 10-fold cross-validation is used to select the OTOC data with the highest
Accuracy of Predicted Yield (APY%), hereafter referred to as the Highest Accuracy OTOC
data (HAOTOC data).

The Testing Section is the last part of the IFSR Method. Here, the KNN Algorithm
classifies the similarities of the composite records of each IF set (Raw Data Subset B) using
the HAOTOC data to obtain new Predicted OTOCs. Predicted Yield is again calculated,
and finally the Predicted Yield is compared to Raw Data Subset B Actual Yield to determine
the Predicted Yield Error rate (PYE%). This is the end of the IFSR Method and also the end
of the second stage of the IF Design Process.

In the third stage of the IF Design Process, the purpose is find the one optimal IF set
that will result in the minimum predicted yield error rate. To find that optimal IF set, all
the IF sets (i.e., IF set#1, IF set#2, IF set#3, . . . , IF set#32) and corresponding PYE rates (each
IF set has one PYE%) from the end of the previous stage are first plotted in a bar graph.
Then the IF set that has the lowest PYE% in the graph is selected. This will be called the
Optimized IF (OIF) set. The OIF set, OTOs, and OTORs in essence represent the original
Raw Data Sets (A, B, and C) that have now been transformed through classification, so
those will now be referred to as Classified Data Sets A, B, and C. All necessary information
is now ready for creation and testing of the Wondercane model.

2.2.3. Model Creation and Model Testing

The Model Foundation Data specifically from the 2019 harvest (745 records) was
used to trial six candidate algorithms in order to compare the effectiveness of these algo-
rithms at recognizing OTOCs and accurately predicting yield. This will identify the best
algorithm to ultimately select for model creation. The six algorithms in this experiment
were: K-Nearest Neighbor (KNN) (K = 3) [28], Random Forest (FOR) (batch size = 100) [29],
Random Tree (RTR) (batch size = 100) [30], Reduced Error Pruning Tree, a.k.a. REP Tree
(REP) (batch size = 100) [31], Decision Tree (DEC) (batch size = 100) [30], and Multilayer
Perceptron (MLP) (ANN = 5:18:32, L = 0.3, M = 0.2, Epoch = 500) [32]. Each of these
algorithms was used separately in turn to train and test the model, as follows. First,
Classified Data Subset A was used with the 10-fold validation method to both train and
test the model. Nine folds (subsamples) were used for training and one fold was used
for testing. After that, Classified Data Subset B was then used to further test the model
using the blind test method [33]. WEKA software [34] is the environment where these
training and testing procedures were carried out in search of the algorithm with the best
OTO recognition and the closest actual yield prediction. Once the optimal algorithm was
determined, the completed model was used on Classified Data Subset C as an additional,
final test to confirm that the model works correctly on any data from any year. The results
obtained from this final test will verify how effective the model is at forecasting yield.

2.2.4. Application Development

The Wondercane model will be developed into a user application that can run on any
company’s internal website. Wondercane works in conjunction with the Sugarcane Defect
Detection Program (SDDP) previously developed by the current authors [17], because
defect percentages are required to characterize the environment and cultivation issues of
the sugarcane fields being analyzed.

3. Results
3.1. Target Output Design Process Experiment Results

After the TOCGs and their corresponding PYE rates were determined in Stage 2 of
the Target Output Design Process, the TOCGs were loaded one by one into a trend graph,
looking out for a dramatic increase in PYE%, which would be the signal that all relevant
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TOCGS had been loaded into the graph and new TO determination should stop. That
dramatic increase in PYE% happened where n = 9, corresponding to the addition of TOCG-
512. Figure 11 shows that initial instance of the fully populated trend graph. After that, the
bisection method was applied to zoom in on the exact TOCG with the lowest PYE%.

Figure 11. Initial instance of the fully populated trend graph of TOCG numbers and corresponding
PYE rates, before the start of the bisection method.

Table 3 summarizes the results of applying the bisection method to the fully populated
trend graph. There were a total of six rounds. Each round represented a consecutive
narrowing of the range in the trend graph.

Table 3. Results of the bisection method used to complete the last part of the TO design process.

Round Starting Range Ending Left TO Ending Right TO

1 2,4,8,16,32,64,128,256,512 16 64
2 16,32,64 24 48
3 24,32,48 28 40
4 28,32,40 30 36
5 30,32,36 31 34
6 31,32,34 32 33

In the first round of bisection, the initial instance of the trend graph (Figure 11)
suggested that 32 TOs (TOCG-32) with a PYE% of 13.15 had the minimal error rate when
compared with the other options. However, we cannot know for sure what the optimal
number of TOs is without first drilling down to the left and right of the current minimum
PYE% to calculate the PYE%s of the other nearby TO numbers. A close neighbor might
actually have a lower PYE% than 32 TOs. The starting range of Round 1 has too many
possible TOCGs to narrow the range using a formula (because the formula requires that
there be only 3 TOCGs), so just for Round 1 the new narrower range of 16-64 TOs (new
ending left TO = 16, new ending right TO = 64) was selected visually, based on the current
lowest PYE% (32 TOs) and the TOCGs directly to the right and left. The PYE%s were then
recalculated for that new narrower range before proceeding to Round 2.

Beginning in Round 2, the range was narrowed by formula. Specifically, the new
Ending Left TO was determined by this calculation: (16 + 32)/2 = 24 (i.e., 24 TOs). The
new Ending Right TO was determined by this calculation: (32 + 64)/2 = 46 (i.e., 46 TOs).
Each subsequent round proceeded similarly, except that in Round 6, only the Ending Right
TO was calculated by formula, because on the left side (31 + 32)/2 = 31.5, and only whole
number answers are applicable. Round 6 was the final round, because at the end of Round
6 there was nothing left to bisect. Figure 12 shows the previously known PYE%s plus all
the new PYE%s gleaned from 6 rounds of range narrowing.
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Figure 12. All PYE%s resulting from the TO design process.

The results of the TO design process experiments revealed 32 TOs to be the best
solution, yielding the lowest predicted yield error rate (PYE%) of 13.15%. Therefore,
these 32 optimized TOs (OTOs) were sent to the Input Factor Design Process for the
subsequent experiments.

3.2. Input Factor Design Process Experiment Results

At the final culmination of the Input Factor Design Process, all the IF sets (i.e., IF set#1,
IF set#2, IF set#3, . . . , IF set#32) and their corresponding PYE rates from the previous stages
of the IFDP were plotted in a bar graph in order to find the optimal IF set with the lowest
PYE rate. The completed graph is shown in Figure 13.

Figure 13. IF sets and PYE rates from the IF Design Process. IF set#27 had the lowest PYE rate.

Of the 32 IF sets, the best result came from IF set#27, which had the lowest PYE rate at
11.41%. The IF set#27 contains five factors: rainfall, soil group, planting distance, RCC, and
defect rate. (Sugarcane variety is not part of this particular IF set). These five factors were
therefore used in the model creation process.

3.3. Model Creation Process Experiment Results

When the six candidate algorithms were trialed using WEKA Program during model
creation in order to compare their effectiveness at recognizing OTOs and accurately predict-
ing yield, the six confusion matrices shown in Figure 14 were produced. These confusion
matrices represent the effectiveness of each algorithm at recognizing OTOCs.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. The confusion matrices resulting from the six trialed algorithms: (a) K-Nearest Neighbor,
(b) Random Forest, (c) Random Tree, (d) Reduced Error Pruning (REP) Tree, (e) Decision Tree, and
(f) Multilayer Perceptron.

After all of the algorithms in Figure 14 were tested using the Classified Data Subset A,
two efficiency indicators (Overall Accuracy (OA) and Root Mean Squared Error (RMSE))
were calculated from the confusion matrix data of each of algorithm, and the results are
shown in Table 4.

Table 4. The efficiency indicator results of each algorithm used during model creation.

Indicators/Algorithms KNN FOR RTR REP DEC MLP

OA 90.42 98.2143 97.4026 93.9935 97.2403 95.2922
RMSE 0.06 0.0326 0.0403 0.0533 0.0396 0.047

The efficiency indicator results revealed that the Random Forest (FOR) algorithm had
the best performance among the six algorithms. This is because Random Forest had the
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highest OA (98.2143) and the lowest RMSE (0.0326) of all six algorithms. The details of the
Overall Accuracy indicator of the Random Forest algorithm were as follows: True Positive
(TP) Rate = 0.983, False Positive (FP) Rate = 0.002, Recall = 0.982, F1-Measure = 0.982,
and Receiver Operating Characteristics (ROC) Area = 0.998. The fact that the ROC Area
was close to 1.00 shows that the Random Forest algorithm recognized the relationships
between the OIFs and the OTOs with high precision. In order to validate these results
via an alternative method, these five figures were recalculated using 1000 bootstraps. All
five results from bootstrapping matched the original results. The Wondercane model
was therefore constructed with the Random Forest algorithm at its heart. After that, the
model was tested using Classified Data Subset B. WEKA software indicated that the model
classified the TOs of Classified Data Subset B with an accuracy of 95.42%. Next, the
predicted yields of Classified Data Subset B were determined by the model, and these were
compared with the actual yields. The results of that experiment are shown in Figure 15.

(a)

(b) (c)

Figure 15. Test results when the finished model was run on Classified Data Subset B: (a) The
difference between each predicted yield and actual yield is displayed as a line. (b) The correlation
between predicted yield and actual yield. (c) Total predicted yield compared with total actual yield.

When the Correlation Coefficient was calculated between the predicted and actual
yields across all 129 sugar fields, the value was R = 0.88 (p < 0.01), indicating a strong
positive correlation that is statistically significant. The model predicted the total yield with
an accuracy of 89.58% across the total area of 871 acres.

Finally, the Wondercane model was re-tested with Classified Data Subset C (821
Records) in order to confirm its accuracy. The experiment results are shown in Figure 16.
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(a)

(b) (c)

Figure 16. Test results when the finished model was run on Classified Data Subset C: (a) The
difference between each predicted yield and actual yield is displayed as a line. (b) The correlation
between predicted yield and actual yield. (c) Total predicted yield compared with total actual yield.

When the Correlation Coefficient was calculated between the predicted and actual
yields this time across all 821 sugar fields, the value was R = 0.80 (p < 0.01), very similar to
the previous R = 0.88 for Classified Data Subset B. This correlation coefficient value again
indicates a strong positive correlation that is statistically significant. The model predicted
the total yield with an accuracy of 98.69% across the total area of 5483 acres.

3.4. Application Development

The Wondercane model was developed into a user application that can run on any
company’s internal website. Figure 17a shows the main screen of the Wondercane Sug-
arcane Yield Forecasting Program. Figure 17b shows the companion Sugarcane Defect
Detection Program (SDDP), which is used to upload the user’s sugarcane field image and
select the area of the field to analyze for defects.

To begin, the user opens the SDDP and on its main screen uploads the drone image of
the sugarcane field that they wish to analyze. Then using a selection tool, the user indicates
to the program which portion of the image to analyze for defects. Objects like trees can
be excluded from the selection. Once the selection is ready, clicking the Process button
initiates defect analysis. The defect results are then displayed as an area percentage in the
upper right corner of the program window. After that, the Upload button saves the results
and sends them to the Wondercane program, which opens automatically in a new tab. In
the Wondercane program, the user fills in the requested environmental data and the total
area. The final yield forecast is then displayed in two formats: as Yield Rate (tons per acre),
and as Total Yield (tons).
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(a)

(b)

Figure 17. Sample screenshots of (a) the Wondercane sugarcane yield forecasting program working
with (b) the sugarcane defect detection program.

4. Discussion

The results of the Wondercane forecast yields were well aligned with the actual yield,
providing an effective level of accuracy. The model’s strengths lie in how cultivation issues
are incorporated into the defect rate and how the reverse design method is used to find the
optimal target outputs, input factors, and classification method. The Wondercane results
also stand up well against results of the previous studies mentioned in the introduction.
An overview of the Wondercane model in comparison to ten previous studies, looking at
key features as well as final correlation and accuracy, is shown in Table 5.
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Table 5. Overview of the Wondercane model in comparison to ten previous studies, looking at key features as well as final
correlation and accuracy.

Study Crop Scale FC IFs Images Classifier R2 OA(%)

Wondercane:
Sugarcane Farming 821 5 RGB RF 0.80 98.69

Previous Studies:
[6] Sugarcane Region - 8 - ANN - 99.80
[7] Sugarcane Region - 18 - RF 0.43 66.00
[8] Sugarcane Region - 9 - AES - 94.01
[9] Corn Region - 7 Satellite ANN 0.75 93.79

[10] Sugarcane Region - 7 Satellite LAI 0.88 91.70
[11] Sugarcane Region - 1 Satellite GNDVI 0.69 69.00
[12] Vineyard Farming 3 7 Drone: IF+RGB CWSI+NDVI 0.69 80.00
[13] Sugar beet Farming 1 7 Drone: IF+RGB CHM+VI - 80.00
[14] Sugarcane Farming 2 2 Drone: RGB OBIA+GLCM - 92.00
[15] Sugarcane Farming 15 2 Drone: RGB GRVII+LAI 0.79 90.00

FC = Field Count, IFs = Input Factors, R2 = Correlation between predicted yield and actual yield, OA = Overall Accuracy, RF =
Random Forest, ANN = Artificial Neural Network, AES = Adaptive Evolution Strategies, LAI = Leaf Area Index, GNDVI = Green
Normalized Difference Vegetation Index, CWSI = Crop Water Stress Index, CHM = Canopy Height Model, VI = Vegetation Index, OBIA
= Object-Based Image Analysis, GLCM = Grey-Level Co-occurrence Matrix, GRNI = Green-Red Vegetation Index.

Each of the studies compared in Table 4 was based on its own particular environment
and objectives, thus the key features vary. These studies can be divided into two groups:
studies based solely on environmental data ([6–8]), and studies based on environmental
data as well as images ([9] through [15]). Using images is a way to assess crop defects, so
the first group of previous studies lacks the benefit of this perspective, while the second
group is able to account for crop defects such as cane that collapsed during adverse weather,
stunted growth due to excessive weeds, or a variety of other possible cultivation issues.
The regional scale studies that involved images ([9–11]) used satellite images to assess
plant diseases and monitor plant growth. In contrast, when the scale of the study was an
individual farm ([12–15]), drone images were used instead for several reasons. The cost
of operating a drone is much lower than the price of satellite images. A drone also has
easier access to a field for closer range images. Finally, satellite images are vulnerable to
cloud cover, while the drones fly below the clouds. Matese et al. [12] and Mink et al. [13]
used drones equipped to provide not only standard RGB images but also infrared images.
However, the added cost of the infrared capability did not result in increased forecast
accuracy. Som-ard et al. [14] and Sanches et al. [15] used less expensive drones delivering
only RGB images, and the forecast accuracy of their studies was higher than the studies
that also used infrared images. The studies by Som-ard et al. [14] and Sanches et al. [15]
both share similarities with the current study. They applied data from RGB color image
analysis to estimate sugarcane yield. Som-ard’s study resulted in a highly accurate forecast;
however, the amount of data analyzed was small. On the other hand, Sanches’ study
used somewhat more data, but its forecast error was higher. In the current study, the
Wondercane model used much more data than either the Som-ard or Sanches study, and
the overall accuracy was higher than either of those studies. Wondercane stands out for its
ability to incorporate data on adverse weather, defects such as damaged cane, and other
cultivation issues. As a result, the model is able to forecast the total yield from 2020 data
with an accuracy of 98.69%. Looking forward, there is also no reason why the Wondercane
model cannot be further adapted and applied to other farm crops that have a physical
structure similar to sugar cane, such as corn or cassava.

5. Conclusions

By using data mining and the developed reverse design method to integrate environ-
mental data from sugar mills and government agencies with the analysis of aerial images
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from drones, the new Wondercane model is able to correctly forecast total sugarcane har-
vest yield with an accuracy of 98.69%. The Wondercane model is therefore an accurate and
robust tool that can substantially reduce the issue of sugarcane yield estimate errors and
provide the sugar industry with improved pre-harvest assessment of sugarcane yield.
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