
agriculture

Article

Quantitative Evaluation of Color, Firmness, and Soluble Solid
Content of Korla Fragrant Pears via IRIV and LS-SVM

Yuanyuan Liu 1,2,*, Tongzhao Wang 1,2, Rong Su 1,2, Can Hu 1,2, Fei Chen 1,2 and Junhu Cheng 3

����������
�������

Citation: Liu, Y.; Wang, T.; Su, R.; Hu,

C.; Chen, F.; Cheng, J. Quantitative

Evaluation of Color, Firmness, and

Soluble Solid Content of Korla

Fragrant Pears via IRIV and LS-SVM.

Agriculture 2021, 11, 731. https://

doi.org/10.3390/agriculture11080731

Academic Editor: Isabel Lara

Received: 21 June 2021

Accepted: 26 July 2021

Published: 31 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Mechanicaland Electrical Engineering, Tarim University, Alar 843300, China;
Wtz080921@163.com (T.W.); 10757202211@stumail.taru.edu.cn (R.S.); 120140004@taru.edu.cn (C.H.);
10757192126@stumail.taru.edu.cn (F.C.)

2 Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur
Autonomous Region, Tarim University, Alar 843300, China

3 College of Light Industry and Food Sciences, South China University of Technology,
Guangzhou 510641, China; fechengjh@scut.edu.cn

* Correspondence: 120080015@taru.edu.cn

Abstract: Customers pay significant attention to the organoleptic and physicochemical attributes of
their food with the improvement of their living standards. In this work, near infrared hyperspectral
technology was used to evaluate the one-color parameter, a*, firmness, and soluble solid content
(SSC) of Korla fragrant pears. Moreover, iteratively retaining informative variables (IRIV) and least
square support vector machine (LS-SVM) were applied together to construct evaluating models for
their quality parameters. A set of 200 samples was chosen and its hyperspectral data were acquired
by using a hyperspectral imaging system. Optimal spectral preprocessing methods were selected to
obtain out partial least square regression models (PLSRs). The results show that the combination
of multiplicative scatter correction (MSC) and Savitsky-Golay (S-G) is the most effective spectral
preprocessing method to evaluate the quality parameters of the fruit. Different characteristic wave-
lengths were selected to evaluate the a* value, the firmness, and the SSC of the Korla fragrant pears,
respectively, after the 6 iterations. These values were obtained via IRIV and the reverse elimination
method. The correlation coefficients of the validation set of the a* value, the firmness, and the SSC
measure 0.927, 0.948, and 0.953, respectively. Furthermore, the values of the regression error weight,
γ, and the kernel function parameter, σ2, for the same parameters measure (8.67 × 104, 1.21 × 103),
(1.45 × 104, 2.93 × 104), and (2.37 × 105, 3.80 × 103), respectively. This study demonstrates that the
combination of LS-SVM and IRIV can be used to evaluate the a* value, the firmness, and the SSC of
Korla fragrant pears to define their grade.

Keywords: IRIV; LS-SVM; Korla fragrant pear; quality parameter; evaluation

1. Introduction

Korla fragrant pears are very popular among customers due to their thin skin, juicy,
sweaty taste, and delicate flesh [1,2]. Nowadays, customers pay significant attention to
both the organoleptic and physicochemical attributes of fruits with the improvement of
their living standards. The organoleptic parameter, color of skin, is related to maturity
of Korla fragrant pear. The sunward side of most mature Korla fragrant pears has blush
which is also distinctive in all kinds of pears. However, only physicochemical parameters
are used as quality evaluation attributes to grade Korla fragrant pears.

Several non-destructive studies have been carried out to evaluate the soluble solid
content (SSC) of Korla fragrant pears [3,4]. Zhu et al. [5] used hyperspectral imaging and
support vector regression to define this parameter. The correlation coefficient (RC) and
the root mean square error (RMSEC) in their calibration set measured 0.986 and 0.186%,
respectively. In their validation set the correlation coefficient (RV) and the root mean square
error (RMSEV) measured 0.946 and 0.403%. Zhan et al. [6] quantitatively determined the
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SSC of Korla fragrant pears via least square support vector machine (LS-SVM) and partial
least square regression (PLSR). The RV and RMSEV reported in this study measure 0.851
and 0.291%, respectively.

Other researchers investigated the firmness of Korla fragrant pears vie quantitative
predictions. For instance, Sheng et al. [7] used near-Infrared (NIR) spectroscopy together
with different variable selecting methods to construct a set of partial least square models to
describe firmness. Yu et al. [8] predicted both the firmness and the SSC by developing a deep
learning method based on Vis/NIR hyperspectral reflectance imaging. Their combination
model of a series of stacked auto-encoders and a fully connected neural network achieved
a reasonable prediction performance with RV and RMSEV values of 0.9434 and 1.81 N,
respectively.

However, no investigation reported results on the simultaneous measurement of the
organoleptic and physicochemical attributes on Korla fragrant pears. According to the
requirements of the latest group standard on Korla fragrant pears [9], organoleptic and
physicochemical attributes appear to have the same importance in the grade definition.
The skin color of Korla fragrant pears changes from green to red-yellow, as the fruit ripes.
The a* value represents the color change from red to green in chromatic aberration data.
Therefore, the organoleptic quality of the samples can be defined according to their a*
values. The firmness and the SSC are the most significant edible quality parameters in
Korla fragrant pears, and they are directly related to consumers’ satisfaction [10]. Thus,
the three parameters, a*, firmness, and SSC, must be carefully evaluated to determine the
influence of the postharvest storage period on the fruit quality control process.

Both quality and safety parameters can be accurately evaluated via hyperspectral
imaging [11–13], although the hyperspectral approach requires expensive equipment and
complex data analysis Compared with other nondestructive testing methods [14]. However,
in order to define simple predicting models and improve their prediction efficiency, a
set of wavebands have to be selected. These wavebands can be related with several
important chemical bonds, which can be used to discriminate the samples based on their
quality and safety parameters. Successive projection algorithms (SPAs) [15–18], competitive
adaptive reweighting sampling (CARS) [19,20], and uninformative variable elimination
(UVE) [21,22] have been used by to choose such wavebands. Despite these selection
methods are quite effective, they do not account for the combination effects among the
wavebands. The iteratively retaining informative variables (IRIV) method ensures that
each variable has the same probability to take part into the selection process and increases
filtering speed by using a set of binary mixing filters [23,24].

To this date, the combination of IRIV and LS-SVM has not been investigated to
quantitatively predict the quality parameters of Korla fragrant pears. In this work, IRIV-LS-
SVM is used to (1) obtain the a* value, the firmness, and the SSC of Korla fragrant pears, (2)
analyze the spectral features of Korla fragrant pears in the 945–1670 nm wavelength range,
(3) select the optimal wavebands related to the C-H, N-H, and O-H chemical bonds, and
(4) construct a set of predicting models to define the quality parameters for Korla fragrant
pears.

2. Materials and Methods
2.1. Korla Fragrant Pears and Pretreatment

Korla fragrant pears were collected from a plantation located near Tarim University
(80◦30′–81◦58′ E, 40◦22′–40◦57′ N) from September 11th to September 15th 2019. A set of
200 samples with a uniform shape, a single fruit weight of 120 ± 10 g, and intact epidermis
was selected. The side of each Korla fragrant pear, which was exposed to the sunlight, was
labeled.

The samples were sprayed with a special fruit cleaning agent (Almawin, Germany),
soaked in water for about 30 s, and then rinsed with distilled water twice. The cleaned
pears were dried at room temperature (20 ◦C), and then stored in a preservation box at
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4 ◦C. The samples were placed on the desk at room temperature for 30 min to eliminate the
influence of the temperature change before the hyperspectral image data acquisition.

2.2. Hyperspectral Imaging System and Diffuse Reflectance Spectrum Data Acquisition

The hyperspectral imaging system used in this study is shown in Figure 1. It consists
of a push-broom scanning system composed of a spectrograph (N17E, Spectral Imaging
Ltd., Oulu, Finland), an enhanced near-infrared hyperspectral camera (Xeva-1.7-320, Xenics
Infrared Solutions, Leuven, Belgium), four halogen light sources with a maximum power
of 150 W each, a stepper-motor-driving stage, a dark box, and a computer.
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Figure 1. Schematic diagram of the hyperspectral imaging system.

Before data acquisition, the system was preheated for about 30 min to ensure its
temperature stability. A sample with a uniform shape and a moderate weight was placed
on the stage to adjust the calibration parameters of the instrument. In order to ensure
the hyperspectral image integrity of the samples, the distance between the bottom of the
spectrograph and the stage was set to 310 mm and maintained fixed. Moreover, the focal
length was adjusted by rotating the aperture until sharp reflection peaks appeared. The
moving speed of the platform and the exposure time of the camera were set to 18 mm/s
and 20 ms, respectively.

A strip-shaped standard reflecting whiteboard was placed under the spectrograph to
obtain the white and the black references separately by opening and closing the lens cover.
The long axis of a Korla fragrant pear sample was positioned along the moving direction
of the stage to ensure a uniform irradiation. The sunward side of each Korla fragrant pear
was placed upside in order to reduce the influences on spectral data and measured quality
parameter values of the sunward side and nightside. The sample hyperspectral image
data were corrected by taking into account the black and white references to eliminate the
influence of the light source intensity differences and the camera dark current noise, as
described in Formula (1).

I = (Io − Ib)/(Iw − Ib) (1)

Here, Io corresponds to the original hyperspectral image data, Ib to the black reference
data collected when the lens cover is closed, Iw refers to the white reference image data of
the strip-shaped standard reflecting whiteboard when the lens cover is open.
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The spectral data of the region of interest (ROI) were extracted by using the ENVI 5.1
software (Exelis Visual Information Solutions, Boulder, Colorado, USA). The shape of the
ROI was rectangular, and its center was located near the intersection between the long axis
and the equator of the pear. The corresponding pixel numbers of each ROI were 90 along
the long axis and 70 along the equator.

2.3. Measurement of the Sensory and Physicochemical Parameters

The sensory and physicochemical parameters of the Korla pears were measured after
the hyperspectral image data acquisition. The sensory parameter a* was obtained by
employing a precision chromatic aberration meter (HP-C220, Shenzhen HanPu Testing
Instrument Co., Ltd., Shenzhen, China). Each measurement consisted of an average of five
points randomly selected on the ROI surface.

The firmness was obtained by averaging the values collected at five different locations
of the pears. They were set at 12 mm center distance between two adjacent ROIs and were
measured by a firmness tester (GY-4 with a probe diameter of 7.9 mm, Top instrument). The
SSC was measured by using a digital refractometer (PAL-1, ATAGO, Tokyo, Japan). Before
the measurement, the refractometer was calibrated with distilled water. Three small pieces
of pulp of about 5 g each were cut out from the ROI. Their liquid content was dropped into
a sample tank by manual extrusion. The average value of the solid content of the three
pulp samples was taken as the measurement value.

2.4. Spectral Preprocessing

The standard normal variable transformation (SNV) is a normalization, which is
sometimes employed in near infrared spectroscopy [25,26]. This preprocessing algorithm
can center and scale each spectrum. Multiple scatter correction (MSC) is used to compensate
for the non-uniform scattering effects in spectral data, when heterogenous sample sizes,
irregular distributions, and other physical effects are present [27]. Whereas the Savitsky-
Golay (S-G) algorithm can be used to improve smoothness of spectral curves. The different
preprocessing effects obtained with MSC, SNV, MSC-SG, and SNV-SG were compared to
evaluate the characteristics of the PLSR models.

2.5. Division Calibration Set and Validation Set

The sample set partitioning method based on the joint x-y distance algorithm (SPXY)
was proposed by Galvão et al. [28]. This algorithm considers the reflection spectrum distri-
bution and the standard value distribution equally important in the data characterization
process by increasing the representativity of both the calibration and validation set. In this
study, the calibration set and the validation set were grouped by SPXY with a 3:1 ratio.

2.6. Selection of Important Wavelengths

The principal components were determined by using the partial least square regres-
sion (PLSR) models established via the 5-fold cross-validation method to select the most
significant wavelengths in different iterations. The process of selecting the important
wavelengths for one quality parameter in Round I is shown in Figure 2.

Here, Spec(I-1)in corresponds to the matrix of the spectral data, which is composed
of the set of wavelengths selected during the last iteration, Yk refers to the measurement
value matrix of the kth quality parameter. NI, and CI in the figure correspond to the binary
matrix lines in the Ith iteration, and the optimal wavelengths selected in the (i-1)th iteration,
respectively, Num_totalI is the total number of uninformative and interfering wavelengths.

According to the number of wavelengths selected in the (i-1)th iteration, a binary
matrix shuffler filter, MIin, with CI columns and NI rows for Round I was generated. The
value of MIin(i,j) indicates that Wavelength i is used to construct the predicting quality
model j. The root mean square error RMSECVIin(:,j) for the NI possible wavelength combi-
nations was calculated separately. Each RMSECVIin(:,j) value was set as RMSECVIin(i,j).
The binary matrix MIex was obtained by inverting the elements of MIin, implying a change
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in the including state of the sample spectrum for its corresponding wavelength. A new
PLSR prediction model and its corresponding root mean square error RMSECVIex(i,j) was
calculated when the inclusion state of wavelength j changed into the ith wavelength.
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The values of RMSECVIin(i,j) and RMSECVIex(i,j) of the ith wavelength combination
with and without including the wavelength j were calculated according to the MIin and MIex
values. RMSECVIex(i,j) and RMSECVIin(i,j) were tested via the Mann–Whitney U test with
a significance level of 0.05. The difference between the two values of the wavelength j was
defined as DmeanI(j). The wavelengths were classified into four types with the test level
PI(j) and DmeanI(j), as shown in Table 1. Strongly informative wavelengths can be used
in to drive prediction models, contrarily to weakly informative wavelengths. Interfering
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wavelengths create noise inside the model and lower significantly its performance, whereas
uninformative wavelengths play the same role of interfering wavelengths but have a lower
effect on the model performance.

Table 1. Variable classification rules.

Wavelength Type Classification Rules

Strongly informative wavelength Dmean(j) < 0, P(j) < 0.05
Weakly informative wavelength Dmean(j) < 0, P(j) > 0.05

Uninformative wavelength Dmean(j) > 0, P(j) > 0.05
Interfering wavelength Dmean(j) > 0, P(j) < 0.05

When DmeanI(j) was smaller than 0, its corresponding wavelength was entered
into a new iteration. When the number of uninformative and interfering wavelengths
(Num_totalI) was smaller than 0, the iteration stopped and the RMSECV value was calcu-
lated using the spectra with strongly and weakly informative wavelengths together with
their quality values.

Reverse elimination was then performed. When either a strongly informative wave-
length or a weakly one was eliminated, a new set of PLSR models was established and
the corresponding RMSECV’ values were obtained. If the RMSECV’ was smaller than the
RMSECV, the corresponding wavelength was eliminated and remaining wavelengths were
defined as important ones.

2.7. Modeling Algorithm

The least square support vector machine (LS-SVM) is an improved SVM algorithm
proposed by Suykens [29]. Its operation speed can be significantly improved by solving
a set of linear equations instead of the complex quadratic programming problem of the
SVM. In this work, the radial basis function (RBF) was used as the kernel function, and the
combination of the regression error weight, γ, and the kernel function parameter, σ2, were
optimized via grid search based on the cross-validation model. The quality parameters of
the LS-SVM models were evaluated by using the RMSEC, RC, RMSEV, and RV values. The
results show that the model performs better when RMSEC and RMSEV are small and RC
and RV are large.

3. Results
3.1. Statistics and Analysis of the Sensory and Physicochemical Values

The statistic values of a*, the firmness, and the SSC of Korla fragrant pears are shown
in Table 2. The value of a* lies in the−7.108–3.254 range. When a* is positive the color of the
tested area is red, whereas when a* is negative is green. The firmness lies in the 10.4 × 105–
14.1× 105 Pa range. This value is larger than that measured in other studies [30,31] probably
because, in this work, the skin of the pears was not removed. This method was preferred
since it meets the most common eating habits of the customers, who generally eat the pears
with the skin to increase their uptake of vitamin C. The SSC lies in the 10.0–13.4 ◦Brix range.
Such range is narrower that the one defined by Yu X J et al. and Li J B et al. probably due to
the differences in planting locations. On the other hand, the value ranges in the calibration
set include those in the other set: Both sets, in fact, are representative since the mean values
and dispersion degree of the two sets are similar.
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Table 2. Statistics of the quality parameters in the calibration and validation sets.

Quality
Parameters Group Min Max Mean Value Standard

Deviation

a*
Correction set −7.108 3.254 −3.459 0.987
Verification set −5.794 2.282 −3.989 0.997

Firmness
(105 Pa)

Correction set 10.4 14.1 12.1 0.760
Verification set 10.8 13.4 11.3 0.637

SSC
(◦Brix)

Correction set 10.0 13.4 12.1 0.693
Verification set 11.5 13.2 12.2 0.443

The a* color space method recommended by the International Commission on illumination (CIE) used “*” in the
expression of three parameters.

3.2. Spectrum Data Processing
3.2.1. Spectral Curves

The spectral curves with the largest distance in most wavelengths are shown in
Figure 3. The measured values of a*, of the firmness, and of the SSC of sample 1 and
sample 2 are 3.194, 13.9 × 105 Pa, and 12.0 ◦Brix and −6.934, 10.4 × 105 Pa, and 10.1 ◦Brix,
respectively. Three reflection valleys can be observed near 1140 nm, 1440 nm, and 1640 nm,
whereas two reflection peaks are located at 960 nm and 1270 nm. A water absorption band
exists near 960 nm [32]. The reflection valleys near 1140 nm and 1640 nm may correspond
to the first and second overtones of the C-H group, respectively [33]. The strong reflection
valley at 1440 nm can be assigned to the first overtone of the O-H and N-H bonds [34]. The
reflection peaks near 1270 nm may be related to the second overtones of the O-H and C-H
bonds, respectively [35].
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Figure 3. Reflective spectral curves.

3.2.2. PLSR Models for the Quality Parameters and Optimization of the Principal
Components Based on the Full Spectral Analysis

The PLSR models for the a* value, the firmness, and the SSC of Korla fragrant pears
were obtained by analyzing the spectral data after different spectral pre-processing pro-
cesses. The spectra after pretreatment with MSC-SG are shown in Figure 4. The selection
process of the numbers of principal components is shown in Figure 5. The principal com-
ponents to determine the a* value, the firmness, and the SSC are 10, 8, and 9, respectively.
The prediction results are listed in Table 3. The results show that the PLSR models with
MSC-SG pretreatment exhibit the highest evaluating ability. The RC and RMSEC values
obtained for a* measure 0.907 and 0.448, respectively, in the case of the calibration set,
whereas RV and RMSEV measure 0.894 and 0.402 when the validation set is used. The
RC and RMSEC values of the firmness are 0.914 and 0.352 × 105 Pa, respectively, for the
calibration set and the RV and RMSEV values of 0.903 and 0.317 × 105 Pa, respectively,
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are obtained from the validation set. The RC and RMSEC of the SSC measure 0.925 and
0.314 ◦Brix, respectively, when the calibration set is considered, whereas RV and RMSEV
measure 0.912 and 0.301 ◦Brix, respectively, in the case of the validation set.
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Figure 5. Selection process of principal components based on MSC-SG. (a) Selecting process to
estimate the a* value. (b). Selecting process to estimate the firmness. (c) Selecting process to estimate
the SSC.

Table 3. Modeling results to estimate the quality parameters for Korla pears.

Quality
Parameters

Preprocessing
Algorithm RC RMSEC RV RMSEV

a*

MSC 0.875 0.552 0.867 0.522
SNV 0.872 0.551 0.873 0.568

MSC + S − G 0.907 0.448 0.894 0.402
SNV + S − G 0.896 0.437 0.882 0.484

Firmness
(105 Pa)

MSC 0.892 0.357 0.898 0.338
SNV 0.898 0.399 0.881 0.322

MSC + S − G 0.914 0.352 0.903 0.317
SNV + S − G 0.906 0.397 0.894 0.379

SSC
(◦Brix)

MSC 0.914 0.410 0.903 0.480
SNV 0.894 0.415 0.883 0.482

MSC + S − G 0.925 0.314 0.912 0.301
SNV + S − G 0.915 0.339 0.902 0.322

The a* color space method recommended by the International Commission on illumination (CIE) used “*” in the
expression of three parameters.

3.2.3. Visualization of the Iterative Process and Selection of the Important Wavelengths

In an iterative process, wavelengths can be classified into different groups according to
their P and Dmean values. Figure 6 shows the distribution of the P and D-means values for
each wavelength obtained in the second iteration. The strongly informative wavelengths,
weakly informative wavelengths, uninformative wavelengths, and interfering wavelengths
are 7, 57, 37, and 14 to estimate the a* value, 15, 37, 47, and 7 to define the firmness, and 8,
59, 34, and 13 to calculate the SSC, respectively.
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The number of wavelengths selected for a*, the firmness, and the SSC in different
iterations are shown in Figure 7. Their number in the first three rounds initially decreases
rapidly and then slows down. Both the irrelevant wavelengths and the interference
wavelengths are completely removed after the 6th iteration. The important wavelengths,
which were missed during the process, were selected after reverse elimination. To estimate
the a* value, the firmness, and the SSC, 8, 11, and 16 important wavelengths are necessary.
Selected wavelengths for each parameter are shown in Table 4. The number of important
wavelengths of different quality parameters accounts for 3.9%, 5.4%, 7.9% of the valid
wavelengths, respectively.
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Table 4. Important wavelengths for different parameters.

Quality Parameters Important Wavelengths

a* 1078.70 nm, 1130.32 nm, 1238.28 nm, 1321.41 nm, 1453.38 nm, 1508.33 nm,
1535.98 nm, and 1605.63 nm

Firmness 1114.14 nm, 1185.69 nm, 1254.82 nm, 1341.53 nm, 1392.12 nm, 1405.68 nm,
1453.38 nm, 1477.36 nm, 1529.06 nm, 1570.71 nm, and 1616.14 nm

SSC
1046.67 nm, 1053.06 nm, 1179.15 nm, 1211.93 nm, 1234.98 nm, 1241.59 nm,
1304.69 nm, 1385.35 nm, 1415.87 nm, 1463.65 nm, 1487.67 nm, 1491.11 nm,

1508.33 nm, 1518.68 nm, 1581.17 nm, and 1630.18 nm
The a* color space method recommended by the International Commission on illumination (CIE) used “*” in the
expression of three parameters.

3.2.4. Evaluation of the Quality Parameters Based on the LS-SVM Model

In this study, several evaluation models were established based on the LS-SVM and
the PLSR methods for a set of selected wavelengths. The optimal combinations of the re-
gression error weight, γ, and the kernel function parameter, σ2, are (8.67 × 104, 1.21 × 103),
(1.45 × 104, 2.93 × 104), and (2.37 × 105, 3.80 × 103) for the a* value, the firmness, and the
SSC, respectively. Figure 8a–c shows the results on the 3 quality parameters obtained via
the IRIV-LS-SVM model. The RC and RV values measure 0.932 and 0.927, respectively, in
the case of the a* value; They are 0.954 and 0.948 for the firmness, and 0.955 and 0.953 for
the SSC. The RMSEC and RMSEV value measure 0.426 and 0.475, respectively, for the a*
value, 0.310 × 105 Pa and 0.345 × 105 Pa for the firmness, and 0.319 ◦Brix and 0.346 ◦Brix
for the SSC.

The principal components used in the PLSR models to estimate a*, the firmness, and
the SSC are 8, 8, and 9, respectively. Figure 8d–f shows the results obtained by using the
IRIV-PLSR model. The RC and RV values of a* measure 0.921 and 0.915, respectively, in the
case of the firmness, these values are 0.940 and 0.933, respectively, whereas for the SSC, the
measure 0.951 and 0.942. The RMSEC and the RMSEV of the a* are 0.447 and 0.406, in the
case of the firmness they measure 0.330 × 105 Pa and 0.395 × 105 Pa, whereas for the SSC
0.346 ◦Brix and 0.340 ◦Brix, respectively.

These results show that the IRIV-LS-SVM model provides more accurate results than
the IRIV-PLSR one.
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Figure 8. Scatter plots of the calibration set (*) and prediction set (o) for each quality parameter.
(a) Scatter plots of the LS-SVM mold of the a* value. (b) Scatter plots of the LS-SVM mold of the
firmness. (c) Scatter plots of the LS-SVM mold of the SSC. (d) Scatter plots of the PLSR mold of the
a* value. (e) Scatter plots of the PLSR mold of the firmness. (f) Scatter plots of the PLSR mold of
the SSC.
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4. Discussion

This work demonstrates that hyperspectral imaging can be used to quantitatively
analyze the a* value, the firmness, and the SSC of Korla fragrant pears. Both the PLSR
and the LS-SVM models were implemented in combination with the IRIV algorithm to
select the important wavelengths. The optimal (γ and σ2) combinations found in this study
are (8.67 × 104, 1.21 × 103), (1.45 × 104, 2.93 × 104), and (2.37 × 105, 3.80 × 103) for the
a* value, the firmness, and the SSC, respectively. In the LS-SVM model, the combination
of the RC and RMSEC values for a*, the firmness, and the SSC measures (0.892, 0.726),
(0.914, 0.410), and (0.925, 0.319), respectively. These combinations are (0.883, 0.775), (0.908,
0.548), and (0.916, 0.346), respectively, when the validation set is considered. These results
show that the IRIV-LS-SVM model can efficiently evaluate the main important parameters
of Korla fragrant pears, which can be used for the quantitative evaluation and grading
of fruit.

5. Conclusions

Compared with traditional detection methods, multiple parameter detection based on
hyperspectral imaging technology has the technical advantages of being nondestructive,
real-time and accurate.

There were two ways to reduce the spectral influences caused by different optical
path lengths of ROI of Korla fragrant pear. Firstly, there were four halogen light sources at
the same vertical plane in the irreflexive hyperspectral imaging system. The center of the
four lights was in the center of the moving stage. Secondly, some spectral preprocessing
algorithms were used in order to reduce the effects. The combination of MSC and SG
exhibited the highest evaluating ability.

Most previous studies predicted only one or two parameters of fruits by non-destructive
technologies. Three quality parameters related to the maturity and grading were predicted
at the same time in this paper. Both the PLSR and the LS-SVM models were implemented
in combination with the IRIV algorithm to select the important wavelengths. Both the
irrelevant wavelengths and the interference wavelengths are completely removed after
the 6th iteration. 8, 11, and 16 important wavelengths are selected to estimate the a* value,
the firmness, and the SSC. The optimal (γ and σ2) combinations found in this study are
(8.67 × 104, 1.21 × 103), (1.45 × 104, 2.93 × 104), and (2.37 × 105, 3.80 × 103) for the a*
value, the firmness, and the SSC, respectively. In the LS-SVM model, the combination of
the RC and RMSEC values for a*, the firmness, and the SSC measures (0.892, 0.726), (0.914,
0.410), and (0.925, 0.319), respectively. These combinations are (0.883, 0.775), (0.908, 0.548),
and (0.916, 0.346), respectively, when the validation set is considered. These results show
that the IRIV-LS-SVM model can efficiently evaluate the main important parameters of
Korla fragrant pears, which can be used for a quantitative evaluation and grading of the
fruit. At the same time, this study also has a certain guiding significance for the qualitative
detection of other fruits.

There are some research demands in the future. Firstly, a large number of experiments
are needed to extend this method to more fruit detection fields through the adjustment of
key parameters and the development of supporting equipment. Secondly, the number of
Korla fragrant pears can be increased, so as to guarantee the grading quality and realize
the industrial upgrading. Thirdly, this research mainly used spectral data to quantitatively
predict the quality parameters of Korla fragrant pear although hyperspectral imaging
technology has the characteristics of atlas integration. The image processing technology
can be introduced to identify the kind of defects, defect level, maturities, et al. of Korla
fragrant pear according to more organoleptic attributes.
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