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Abstract: Food defect detection is crucial for the automation of food production and processing.
Potato surface defect detection remains challenging due to the irregular shape of potato individuals
and various types of defects. This paper employs deep convolutional neural network (DCNN)
models for potato surface defect detection. In particular, we applied transfer learning by fine-tuning
a base model through three DCNN models—SSD Inception V2, RFCN ResNet101, and Faster RCNN
ResNet101—on a self-developed dataset, and achieved an accuracy of 92.5%, 95.6%, and 98.7%,
respectively. RFCN ResNet101 presented the best overall performance in detection speed and
accuracy. It was selected as the final model for out-of-sample testing, further demonstrating the
model’s ability to generalize.

Keywords: potato surface defect detection; deep convolutional neural networks; SSD; faster RCNN;
object detection

1. Introduction

As one of the most significant crops, potatoes are planted on more than 18.9 million
hectares of farms in the world [1]. In 2015, potatoes were promoted as a staple food in
China, with a target of 30% of the total potatoes consumed as a staple food by 2020 [2],
which drives potatoes to become the World’s fourth-largest food product after wheat, rice,
and corn. After harvest, the potato surface is often subject to sprouting and mechanical
damage due to human or other external factors [3]. Therefore, grading based on surface
quality is crucial to classify products into different categories, which can greatly improve
packing, storage, transportation, and other post-harvest operations. Traditional defect
detection methods rely on manual inspection [4], which is highly subjective, slow, error
prone, and difficult to achieve uniform standards [5].

As a non-intrusive technique, computer vision systems have been adopted to build
automated grading systems during post-harvesting [6–9]. A variety of devices, such as
CCD camera, ultraviolet camera, hyperspectral camera, and X-ray CT, have been utilized
and demonstrated their efficacy in capturing essential features of potato surface quality [10].
Sensory images generated by these devices can be used to build estimators to detect a
potato’s physical size and internal and external defects [3,11]. However, early automated
grading systems have extensively utilized image processing algorithms and relied on
manually defined image features to build classifiers [12–15], limiting the robustness and
generalization [16] of detection performance due to the variance of potato types, appear-
ances, and damage defects [17]. These machine vision systems form the basis of optical
sorters used for potato grading and quality inspection [18–20]. For example, Noordam et al.
develop a high-speed sorter to grade potatoes on on size, shape, and color based on several
image processing and classification algorithms: Linear Discriminant Analysis combined
with a Mahalanobis distance classifier for color segmentation; a Fourier-based estimator for
shape classification; and features such as central moments, area, and eccentricity are used to
discriminate between similar colored defects [20]. To build such an optical sorter, extensive
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domain knowledge is required to identify a set of features to represent a potato sample in
an image. Compared to the feature-based conventional learning algorithms, deep learning
can learn features automatically during training and demonstrate superior performance
in a wide spectrum of computer vision tasks, including image classification and object
detection [21,22]. Recent years have witnessed the development of deep learning-based
optical sorters [23,24], which have been proven to be more efficient and effective than
traditional machine vision-based systems [25].

The rise of deep learning has created explosive impact in every industry [26]. Deep
convolutional neural networks (DCNNs), a revolutionary neural architecture, can eliminate
the tedious feature engineering step and learn features automatically during training,
pushing numerous computer vision tasks to the state of the art [22]. Specifically, a DCNN
consists of multiple convolutional layers that can extract and represent features at different
levels. The network parameters, or weights, are optimized during training in a ways that
the critical patterns can be captured, leading to activated signals on the output feature
maps, which jointly determine the prediction result.

DCNN-based models have also been developed for surface quality assessment of
agricultural products [27–29]. We investigate a collection of relevant studies published
in the last five years and present a subset of them in Table 1, from which we identify the
commonly studied products, e.g., apples, carrots, mangosteens, tomatoes, and potatoes.
In addition, we compare these efforts in terms of the number of classes, the learning task,
the use of transfer learning and out-of-sample (OOS) testing. We highlight the differences
between our work and the ones in the literature as follows.

Table 1. Literature in DCNN-based surface defect detection for agricultural products. Abbreviation:
T.L. = Transfer Learning; OOS T. = Out-of-sample testing; Cls. = Classification; O.D. = Object Detection.

Ref Product # Classes Task T.L. OOS T.

Fan et al. (2020) [30] Apple Two Cls. 7 7
Valdez et al. (2020) [31] Apple Two O.D. 3 7
Xie et al. (2021) [32] Carrot Six Cls. 3 7
Deng et al. (2021) [33] Carrot Six Cls. 3 7
Azizah et al. (2017) [34] Mangosteen Two Cls. 7 7
Shi et al. (2019) [35] Tomato Two O.D. 3 7
da Costa et al. (2020) [36] Tomato Two Cls. 3 7
Turaev et al. (2020) [37] 12 types Five Cls. 3 7
Casano et al. (2020) [38] Potato Two Cls. 7 7
Su et al. (2020) [3] Potato Six Cls. 7 7
Hasan et al. (2021) [39] Potato Twenty Cls. 3 7
Ours Potato Three O.D. 3 3

• # classes. Half of the listed studies classify the target samples into two categories:
healthy and defective. One study, by Hasan et al. [39], considered a fine-grained
classification problem with twenty categories, which describe the different types of
potato diseases. Our study considers three potato classes: normal, scratch, and sprout.
Based on an experiment conducted by Al-Dosary et al. [40], 2–3% of potato tubers
are superficially or deeply scratched, accounting for over 70% of the total damaged
potatoes during harvesting. Our review reveals that the scratched type is rarely
considered in surface defect detection models by prior efforts. Furthermore, sprouted
potatoes can be toxic to human being due to the higher level of glycoalkaloids [41].
The two defective types we consider are crucial and meaningful, as they represent the
major defects caused during and post-harvesting.

• Learning task. We have seen both classification [42] and object detection [43] used
in the literature to build a detection model. The former takes an input image and
outputs a predicted class, meaning that there is only one object in the image. On the
other hand, the latter allows an input image to contain objects of different classes
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and outputs bounding boxes and classes of the predicted objects. Apparently, object
detection is a more powerful model with more practical value, suitable for large-scale
and real-time detection systems [44]. Our investigation shows that classification is
mainly adopted by most existing studies, and we develop detection models based on
object detection algorithms in this study.

• Transfer learning. Training a robust DCNN model requires a large amount of data,
which is usually not available for the surface defect detection task. Transfer learn-
ing [45] addresses the low-resource issue by transferring knowledge from a source
domain, where a base model can be trained with sufficient data, to a target domain.
We find that most existing studies have adopted transfer learning, i.e., a pretrained
DCNN model is only fine tuned on the target dataset for surface defect detection.

• OOS testing. OOS testing is essential to evaluate how robust a model is by testing it on
a different batch of sample and potentially in a different environment [46]. A grading
system can be installed and utilized in various scenarios. It is thus crucial to simulate
the image variance caused by environment change via an OOS test set gathered in a
different scenario than the one where the original dataset is developed. We did not
find another related study using an OOS test set.

The contributions of this paper are as follows.

• We develop a dataset for potato surface defect detection with three categories and a
total of 2770 images. Compared to the existing studies, we treat the potato surface
defect task as an object detection problem and consider the scratched and sprouted
potatoes, which are rarely seen in prior efforts.

• Three pretrained DCNN models—SSD Inception V2, Faster RCNN ResNet101, and
RFCN ResNet101—have been fine-tuned on our dataset and achieved an accruacy
of 92.5%, 95.6%, and 98.7%, respectively. In addition, we develop an OOS test set to
evaluate the best model, namely, RFCN ResNet101, in three scenarios. Results show
that the RFCN ResNet101 model demonstrates robust performance with moderate
inference speed. To our best knowledge, this is the first time DCNN-based transfer
learning is employed for potato surface detect detection, with three object detection
algorithms evaluated on both original and OOS test sets. Our work can serve as a
credible baseline for future research.

2. Material and Methods
2.1. Potato Surface Defect

Surface defect refers to the external characteristics of potatoes, including sprouting,
greening, insect eyes, rotting, disease spots, damage, etc. In this paper, we focus on
three specific categories: normal, scratch, and sprout. Figure 1 shows a sample image for
each category.

• Normal: Potatoes that are yellow without sprouts, damage, scratch, rot, etc. and are
ready for everyday human consumption.

• Scratch: The potatoes were artificially scratched to simulate damage at the time of
harvesting. In our experiment, we keep the number of scratches to one to three.

• Sprout: Potatoes germinate in the temperature range of 15 to 20 °C. Below 10 °C,
germination is slow; above 25 °C, germination is rapid, but the shoot roots are small.
Therefore, potatoes are placed in a room with a room temperature of 18 to 25 °C and
high humidity.
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Figure 1. Potato samples.

2.2. Dataset
2.2.1. Potato Samples Acquisition

A total of 642 normal and edible potatoes were taken from a local vegetable market in
Huizhou, a southern city in China. The acquired potatoes belong to the Favorita variety [47].
We took photos on the same day of purchase for these normal potatoes to create an image
set for the normal category. After that, the 642 normal potatoes were divided into two
groups in a ratio of 1:2. The 214 potatoes in the first group were manually and intentionally
scratched. The 428 potato samples in the second group were then placed in a relatively
humid environment at 18–25 °C and left to germinate. We eventually collected a total of
428 sprouted potatoes. The sample size of sprouted potatoes is twice as large as that of
scratched potatoes for two reasons: first, there are more uncontrollable factors when making
samples of sprouted potatoes, which may cause undesirable results such as rotting [48], and
second, the sprouted potatoes have relatively small bud-eye characteristics [49], and more
samples are beneficial to training a better DCNN model.

2.2.2. Image Data Collection

To increase the quality and diversity of potato images, we utilized an industrial camera
(model Basler Scout scA1390-17fc made by Basler AG at Ahrensburg, Germany). The
camera has a SONY ICX285 CCD sensor and operates at 17 frames per second (FPS) with
global shutter, generating JPEG images with a resolution of 1392 × 1040. Images were
taken at different sites with different angles. Figure 2 displays some images from the dataset.
It is noted that the images have different backgrounds, which increases the diversity of
the dataset and allows deep learning models to learn more patterns to locate and classify
potatoes. Photos of the normal potatoes were taken on the same day of purchase. We then
created a group of scratched potatoes and took photos on the second day of purchase. Last,
the photos for the sprouted potatoes were taken after 20 days since purchase.

Training a DCNN model from scratch requires a large amount of annotated data. We
took advantage of transfer learning, which takes a pretrained model on the COCO object
detection dataset [50] and fine-tunes the model on the target dataset. As the pretrained
model can capture numerous generic object features such as shape, color, and texture, we
can further train it on our dataset to feed it with more domain-specific features. Transfer
learning performs exceptionally well on a small and medium-sized dataset. To this end, we
created a small dataset and trained a well-performing DCNN model. In all, we gathered
a total of 2770 images, which were divided into training and test sets in the ratio of 3:1.
Table 2 displays the basic information of the dataset.

Table 2. Basic information of the potato surface defect dataset.

Category Samples Images Percentage Training Test

Normal 428 813 29.4% 610 203
Scratch 214 841 30.4% 631 210
Sprout 428 1116 40.2% 837 279

Total 1070 2770 100% 2078 693
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Figure 2. The potato images are taken at different locations of the campus of Huizhou University
with different angles, creating a diverse dataset of images.

2.2.3. Out-of-Sample Test Set

To further validate the robustness and generalization ability of the DCNN models,
we created an OOS test set using a total of 642 potato samples purchased from a different
local food market. We followed the steps similar to the ones used for the first dataset and
eventually obtained 214 samples per category. We set up a real test environment to validate
the models in three scenarios. For each scenario, we used an industrial camera to take
images that were sent to the model for real-time detection.

• Scenario one. We took one image per sample at different sites within the campus,
with the camera directly facing down to the potato sample, creating 214 sample images
per category.

• Scenario two. This experiment was conducted indoor. We set up a clean desktop.
The camera was placed 30 cm above the desktop. Taking the point where the camera
was facing the desktop as the center position, we divided the shooting range equally
into four areas A, B, C, and D, as shown in Figure 3a. The potatoes were put into A, B,
C, and D areas in turn for testing. Scenario two also created 214 × 4 sample images
per category.

• Scenario three. Our last experiment aims to study the impact of different light
intensities on model performance. We moved the test platform into a closed dark
box, within which the light intensity can be changed by a ring-shaped adjustable light
source, as shown in Figure 3b. The adjustable light source has four levels of brightness.
At each brightness level, we placed a potato sample on the platform with the feature
parts (if any) of the potato facing up to the camera. We obtained 214 × 4 images for
each category.
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A B

C D

(a) (b)
Figure 3. (a) Shooting configuration. (b) Diagram of a dimmable test platform with an industrial
camera at 1, a ring dimmable light at 2, a placing platform at 3, and a closed black box (i.e., 4).

2.2.4. Data Labeling

To train a supervised DCNN model, we need to first manually label each image in
the dataset to indicate its category. In particular, we employed a tool called LabelImg,
which allows one to draw a bounding box around a potato object in an image and mark its
category. As shown in Figure 4, the blue rectangle is the bounding box enclosing a normal
potato object. After the labeling, each image comes with a file that stores the coordinates of
the bounding box and the potato’s category.

Figure 4. We adopt LabelImg to annotate each potato object in an image by marking a rectangle (i.e.,
a bounding box) that encompasses the potato object. The coordinates of the bounding box’s four
corners specify the location of the marked potato and are used as labels in training.

2.3. DCNN Models for Object Detection
2.3.1. Model 1: SSD Inception V2

Figure 5 shows a simplified neural architecture of SSD Inception V2. The SSD algo-
rithm is a single-stage detection model that allows object localization and classification to
be done in a single forward pass of the neural network. The vanilla architecture of SSD uses
VGG-16 [51] as the backbone network to extract features, with a set of convolutional layers
added after the backbone to perform feature extraction at multiple scales, which enables
the model to discover more distinguishable patterns at different granularities. Moreover,
to ensure the speed and accuracy of target detection, the output space of the bounding box
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is discretized into a series of default boxes with different aspect ratios, and the boxes can
be adjusted during training to better match the size and shape of the ground truth object,
while the prediction results on multiple feature maps of different resolutions are combined
to extract feature maps of different scales for better detection.

D
et

ec
tio

n 
H

ea
d

Inception v2 Backbone

Input

Extra feature layers

Figure 5. The SSD Inception V2 model.

Our study utilized the SSD Inception V2 model, which replaces VGG16 with the
Inception V2 neural structure [52] that splits the large convolutional kernel into several
small convolutional kernels, and introduces asymmetric convolution to reduce the number
of parameters and mitigate overfitting. As shown in Figure 6, an inception module performs
multiple convolutional or pooling operations on the input image in parallel and stitches
all the results into a deep feature map. It uses different filters to perform convolution
operations on the input to obtain different information about the input image. Processing
these operations in parallel and combining all the feature maps would result in a better
image representation. Inception V2 also uses batch normalization to speed up training
while removing dropout and mitigating L2 regularization.

Previous
layer

1x1
conv

1x1
conv

1x1
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max 

pooling

3x3
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5x5
conv

Channel
concatenation

Figure 6. The Inception module.

2.3.2. Model 2: Faster RCNN ResNet101

Regions with CNN features (RCNN), proposed by Girshick et al. [53], work by per-
forming a selective search that extracts 2000 regions, i.e., region proposals (RP), from an
image. Each RP is then warped and passed through a CNN to produce a feature vector,
which acts as input of a support vector machine (SVM) for the final classification. Despite
its inspiring idea, RCNN is not practical for real-time systems due to its low detection
speed, mainly caused by the CNN operations individually done on the 2000 image patches.
To speed up RCNN, Fast RCNN, proposed by the same group [54], works by passing an
entire image through a CNN to generate a feature map, from which RPs are located and
warped to make a feature vector. Fast RCNN greatly reduces the time consumed by the
CNN as only one image passes through it, rather than 2000 patches.
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Despite the improvement brought by Fast RCNN, it still adopts a selective search
process to identify RPs, which is inefficient. Ren et al. [55] develop Faster RCNN that
adopts a Region Proposal Network (RPN), which can learn where and how to place RPs
through training. Specifically, the input of RPN is an image, and the output is a collection
of anchor boxes, also known as object proposals, each assigned a an objectness score.
The top-N scored anchor boxes are sent to a region of interests (ROI) pooling layer to
produce a feature map with proposals, which is fed into the detection head for bounding
box regression and object classification.

Our study employed the Faster RCNN ResNet101 model, as shown in Figure 7,
which adopts ResNet101 as the backbone network for feature extraction. In deep learning,
as the network deepens, accuracy drops due to gradient dispersion. This issue is well
addressed by a residual network (ResNet) [56], which allows the network to deepen as
much as possible without causing gradient dispersion. A ResNet adds an identity mapping
(constant mapping) that transfers the current output directly to the next layer of the
network, taking a shortcut and skipping the current layer of operations. During backward
propagation, the gradients of a layer are passed directly to the upper layer of the network.
ResNet101 is a variant of ResNet that is 101 layers deep.

D
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d

ResNet101 
backbone

Input

Region
proposal
network

ROI pooling

Bounding box
regression

Classification

Output

Feature map

Figure 7. The Faster RCNN RseNet101.

2.3.3. Model 3: RFCN ResNet101

Another notable target detection model is the RFCN algorithm, which adopts the same
neural structure as Faster RCNN. RFCN generates proposals through an RPN that shares
previous feature maps with the detection layer. Our work utilized RFCN ResNet101 with a
convolutional layer of ResNet101 as the base network structure, immediately followed by
a convolutional layer to downscale and a position-sensitive convolutional layer capable
of generating score maps. The following is a position-sensitive ROI pooling layer with
a softmax layer to determine the type of ROI. The RFCN model framework is shown in
Figure 8.

vote

R
O

I P
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lin
g

ResNet101 
backbone

Input

ROIsConvolution
layer

Score
maps

Convolution
layer

Softmax Output

Feature map

Figure 8. The RFCN ResNet101 model.

The ResNet101 used in Faster RCNN is shared in the first 91 layers, then inserted
into ROI pooling, and the last ten layers are computed separately for each ROI. In con-
trast, RFCN ResNet101 puts all 101 layers in the front shared subnetwork, and the final
convolution used for prediction is only one layer, and then ROI pooling is performed.
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This dramatically reduces the amount of computation. The location information is lost in
ROI pooling, so the location information is added before pooling based on the concept of
position-sensitive score maps, i.e., different score maps are specified to be responsible for
detecting different locations of the target. After pooling, the score maps obtained from
different locations can be combined to reproduce the original location information, which
further improves the accuracy of RFCN in detecting targets.

2.4. Transfer Learning for Potato Surface Defect Detection

Transfer learning refers to a machine learning method where a model trained on a
source dataset is reused as the starting point to train another model on a target dataset [21].
For our task, we adopt the COCO object detection dataset [50], which consists of 330 K im-
ages, 1.5 million object instances, and 80 object categories, as the source dataset. As shown
in Figure 9, the trained DCNN backbone network, namely, the parameters or weights,
are directly utilized for our task. As the backbone network is thoroughly trained on a
large dataset, it has learned extract general object features, such as color, shape, texture,
and edge [45]. To fit our objective, we choose to freeze the first T layers of the pretrained
backbone, and only fine-tune the remaining layers on our dataset. This strategy is fast and
effective, as demonstrated in Section 3.

Source domain

Target domain

transfer

DCNN backbone

DCNN backbone
(frozen)

Dense layers

Copy

Source labels

Target labels

Source dataset 
(millions of samples)

Target dataset 
(hundreds of samples)

Dog
Cat
Plane
Car
...

Normal
Scratch
Sprout

Dense layers
(fine tuning)

Figure 9. Transfer learning.

2.5. Performance Metrics

To gain a comprehensive understanding of the model performance, we employed
five metrics: accuracy (Acc), precision (Pre), Recall (Rec), Specificity (Spe), and the F1
score. Intuitively, Acc measures the ratio of correct predictions over the total number of
predictions (see Equation (1)), Pre is the fraction of true positives (TP) among the detected
positives (see Equation (2)), Rec is the fraction of TP among the correct predictions (see
Equation (3)), Spe measures the fraction of negatives that are misclassified as positives
(see Equation (4)), and F1 is the harmonic mean of precision and recall (see Equation (5)).
As our task is a multi-class classification problem with three categories, we can use the
following equations to calculate the five metrics per category and perform a micro average
to obtain the overall performance.

Acc =
TP + FN

TP + FP + TN + FN
(1)

Pre =
TP

TP + FP
(2)

Rec =
TP

TP + FN
(3)
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Spe =
TN

TN + FP
(4)

F1 = 2 × Pre × Rec
Pre + Rec

(5)

3. Results
3.1. Experimental Setting

We conducted the experiments on a workstation equipped with an Intel Core i7-8700
CPU, a 16 GB RAM, and an Nvidia GeForce RTX 2070 GPU. To implement and train the
DCNN models, we adopted Python 3.6.7 and TensorFlow r2.1.

3.2. Implementation Details

The model implementation details are provided as follows.

• SSD Inception V2. The loss function of SSD is a weighted combination of localization
and confidence loss. The former is defined as the smooth L1 loss with the offset
from the predicted bounding box to the ground truth bounding box, and the latter is
calculated as the softmax over the confidences of multiple classes. We adopt a learning
rate of 0.001, 0.9 momentum, 0.0005 weight decay, and batch size 32. The model
is trained using a stochastic gradient decent (SGD) optimizer. The used model in
this study is offered by supervise.ly at https://supervise.ly/explore/models/ssd-
inception-v-2-coco-1861/overview (accessed on 6 February 2021).

• RFCN ResNet101. The loss function of RFCN on each RoI is the sum of cross-entropy
loss and the box regression loss, which correspond to the confidence and localization
loss defined in SSD, respectively. We adopt a learning rate of 0.001, a weight decay of
0.0005, and a momentum of 0.9, with an Adam optimizer, also used by the original
authors of RFCN in [57]. In addition, the batch size is 32. The released model used
in this study is at https://supervise.ly/explore/models/rfcn-res-net-101-coco-1862
/overview (accessed on 6 February 2021).

• Faster RCNN ResNet101. Faster RCNN uses the same loss function as SSD and RFCN.
For training, we adopt similar settings as [55], with a learning rate of 0.003, a batch
size of 16, a momentum of 0.9, a weight decay of 0.0005, and an optimizer of SGD. We
used the released model at https://supervise.ly/explore/models/faster-r-cnn-res-
net-101-coco-1866/overview (accessed on 6 February 2021) for our experiment.

As the models have been pretrained, fine-tuning on our dataset is fast. For each
model, we only fine-tuned with five epochs, and the models were sufficiently trained and
converged. In addition, all images in the dataset are rescaled with a shorter side of 600 px,
which is a common setting [55,57].

3.3. Model Evaluation and Selection

The primary performance metric used in this study is Acc, which is adequate because
the three categories in our dataset are relatively balanced. In addition, we used the model
loss to monitor the training progress as it serves an effective indicator of model convergence.

Figure 10 shows the results that plot accuracy vs. training steps and loss vs. training
steps. In Figure 10b, we observe that the loss gradually drops and eventually converges as
the step number increases and reaches 15,000. All three models present a quick convergence
with a low loss, indicating the models’ ability to learn rich features to distinguish potatoes of
categories. In particular, both RFCN ResNet101 and Faster RCNN ResNet101 outperform
SSD Inception V2 with a loss close to zero. Performance-wise, as the number of steps
increased, the test accuracy of all three models reached more than 90%, and the final
accuracy of SSD Inception V2, RFCN ResNet101, and Faster RCNN ResNet101 network
models was 92.5%, 95.6%, and 98.7%, respectively.

https://supervise.ly/explore/models/ssd-inception-v-2-coco-1861/overview
https://supervise.ly/explore/models/ssd-inception-v-2-coco-1861/overview
https://supervise.ly/explore/models/rfcn-res-net-101-coco-1862/overview
https://supervise.ly/explore/models/rfcn-res-net-101-coco-1862/overview
https://supervise.ly/explore/models/faster-r-cnn-res-net-101-coco-1866/overview
https://supervise.ly/explore/models/faster-r-cnn-res-net-101-coco-1866/overview
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(a) (b)
Figure 10. Results on the test set: (a) Accuracy vs. training steps. (b) Loss vs. training steps.

We plot the confusion matrices of the three models in Figure 11, from which we
obtain a better understanding about the correct predictions and misclassifications. Taking
SSD Inception V2 (the left matrix) as an example, 188 out of 203 normal samples were
correctly predicted, nine were misclassified as scratch, and six were misclassified as sprout.
After checking, we found that these errors are caused by the mud, spot, or sprout eyes on
the potato surface, which confused the model. Furthermore, 195 out of 210 scratch samples
were correctly predicted, nine were predicted as normal, and six were predicted as sprout;
an error analysis reveals that the potatoes with superficial scratches might be predicted as
normal, and the ones with deep and large scratches could be predicted as sprout. As for
the sprouted samples, 257 were correctly predicted, eight were misclassified as normal,
and fourteen were predicted as scratch; our error analysis shows that the model tends to
predict the potatoes with small sprouts or the ones with large but hidden sprouts due to
camera shooting anger. RFCN ResNet101 presented the best performance, also reflected in
the confusion matrix, in which only nine out of 693 potatoes were misclassified.
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Figure 11. Confusion matrices for models evaluated on the test set.

In addition, we report the Acc, Pre, Rec, Spe, and F1 in Table 3. It is observed that
the variance across metrics is small for all three models, meaning that (1) classes in the
dataset are relatively balanced so that models can gain about equal amount of knowledge
from each category during training, and (2) the hard cases were not many. Furthermore,
the inter-class variance is slightly larger. Taking SSD Inception V2 as an example, the Pre for
the three categories were 91.7%, 89.4%, and 95.5%, respectively. As a higher Pre indicates
less false alarms, and vice versa, we find that the false alarm rate for the scratch samples is
the highest among the three classes, and that the false alarm rate for the sprouted samples
is the lowest.

Figure 12 shows the average inference speed of the three models. SSD Inception V2
is the fastest (51.3 FPS) because it is a single-stage object detector. Both Faster RCNN
(21.2 FPS) and RFCN (28.5 FPS) are two-stage detectors. All three models can meet the
requirement of real-time inference in practice with an FPS obove 20 [58–60]. Furthermore,
as RFCN ResNet101 achieves a good balance between accuracy and speed, we select it as
the best one among the three and further evaluate it on the OOS test set.
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Table 3. Model performance on the test set. Abbreviations: S.I.V2 = SSD Inception V2; F.R.R.N.101 =
Faster RCNN ResNet101; R.R.N.101 = RFCN ResNet101.

Model Category Acc Pre Rec Spe F1

S.I.V2

Normal 92.5% 91.7% 92.6% 92.4% 92.2%
Scratch 92.5% 89.4% 92.9% 92.3% 91.1%
Sprout 92.5% 95.5% 92.1% 92.7% 93.8%

Macro avg. 92.5% 92.2% 92.5% 92.5% 92.4%

F.R.R.N.101

Normal 95.7% 95.1% 96.1% 95.5% 95.6%
Scratch 95.7% 93.9% 94.8% 96.1% 94.3%
Sprout 95.7% 97.5% 96.1% 95.4% 96.8%

Macro avg. 95.7% 95.5% 95.6% 95.7% 95.6%

R.R.N.101

Normal 98.7% 99.0% 98.5% 98.8% 98.8%
Scratch 98.7% 98.1% 99.0% 98.5% 98.6%
Sprout 98.7% 98.9% 98.6% 98.8% 98.7%

Macro avg. 98.7% 98.7% 98.7% 98.7% 98.7%

Figure 12. Inference speed.

3.4. Out-of-Sample Testing
3.4.1. Scenario One: Effect of Different Batches

The results are shown in Figure 13a. The model performed exceptionally well with an
Acc of 100% for all three categories. After checking, we find that scenario one represent an
ideal situation where the camera was facing down pointing to the potato sample so that
the image can capture the most informative features, which can be easily distinguished by
our model.

3.4.2. Scenario Two: Effect of Different Detection Regions

Figure 13b and Table 4 show the model performance in scenario two. It is observed
that a number of scratched and sprouting potatoes were predicted as normal. After error
analysis, we found that for those misclassified samples, the characteristic parts of the
surface, i.e., scratches and sprouts, happened to locate in the blind area of the camera
shooting, leading to misclassification due to the lack of enough predictive features. This
finding shows that it is crucial to capture sample images from multiple angles to prevent
key surface features from being missed.

(a) (b)
Figure 13. Confusion matrices for the OOS test set: (a) scenario one (b) scenario two.
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Table 4. Effect of different detection regions on model performance for the OOS test set.

Category Acc Pre Rec Spe F1

Normal 95.60% 96.00% 100.00% 93.50% 97.90%
Scratch 95.60% 92.70% 95.30% 95.80% 94.00%
Sprout 95.60% 98.50% 91.60% 97.70% 94.90%
Macro avg. 95.60% 95.70% 95.60% 95.60% 95.70%

3.4.3. Scenario Three: Effect of Different Light Intensities

In scenario three, four brightness levels were offered during test. We find that for light
levels two and three, the RFCN ResNet101 presented an Acc of 100% for all categories,
which is reasonable as with moderate brightness and in a closed and controlled space
(even better than scenario one), the model should behave consistently well. As shown
in Figure 14 and Table 5, for level one, which is the case with the lowest light, RFCN
ResNet100 showed an Acc of 97.5%, with a total of sixteen errors out of 642 samples; for
level four, the case with the highest light, RFCN ResNet100 showed a decreased Acc of
93.3%. An error analysis on level one tells us that a darker image did affect the model’s
ability to discover patterns, which were of low quality given insufficient light. Furthermore,
for level four, stronger light resulted in light reflection on the potato surface, which also
lowered the image quality since certain informative areas were covered by reflection.

(a) (b)
Figure 14. Confusion matrix of scenario three for the OOS test set: (a) light level 1 (b) light level 4.

Table 5. Effect of light intensities on model performance for the OOS test set.

Light Level Category Acc Pre Rec Spe F1

One

Normal 97.50% 97.30% 100.00% 96.30% 98.60%
Scratch 97.50% 96.70% 96.30% 98.10% 96.50%
Sprout 97.50% 98.60% 96.30% 98.10% 97.40%
Macro avg. 97.50% 97.50% 97.50% 97.50% 97.50%

Four

Normal 93.30% 93.00% 100.00% 90.00% 96.40%
Scratch 93.30% 91.30% 88.80% 95.60% 90.00%
Sprout 93.30% 95.60% 91.10% 94.40% 93.30%
Macro avg. 93.30% 93.30% 93.30% 93.30% 93.30%

Despite the performance degradation, RFCN ResNet101 can still achieve satisfying
performance in this OOS testing. Results demonstrated that this model is in line with the
requirements for industrial-level applications.

4. Discussion

Detecting defective surface for potatoes is a crucial task in post-harvest quality control
during potato production. In this study, we consider two typical defective types, including
sprouting and scratches caused by mechanical damage in harvest. Sprouted potatoes are
toxic to human beings owing to the high level of glycoalkaloids, while scratched potatoes
account for over 70% of damaged potatoes during harvesting. The surface patterns of these
two damages carry rich imagery information that can be exploited to build automated
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and intelligent grading systems for potatoes. Such a system can tremendously improve
the efficiency and efficacy of the quality control process and reduce the cost of post-
harvest operations.

In the past two decades, computer vision-based grading systems have been developed
and applied to sort potatoes and other food products by size, shape, and external defects.
The early sorting systems have extensively applied image processing algorithms to extract
a set of hand-crafted image features from the potato images to build a classifier. As the
features, such as central moments, area, and eccentricity, are manually defined, extensive
domain knowledge is required. In addition, these feature-based learning models do
not generalize well, leading to performance degradation in OOS testing. The recent
advances of deep learning is proven to be effective to address the weaknesses of traditional
feature-based models. In computer vision, DCNN models have refreshed numerous
performance records in a wide spectrum of tasks, such as image classification, object
detection, and semantic segmentation. In the food industry, DCNN models have been
adopted to build intelligent quality control systems. However, the use of DCNN models for
potato surface defect detection has not been sufficiently explored. To our best knowledge,
this study is the first to consider both sprouted and scratched potato damages and treat the
detection problem as a transfer learning-based object detection task.

To validate the DCNN models, we developed an annotated dataset with a total of
2770 images, consisting of 813 normal potato images, 841 scratched ones, and 1116 sprouted
ones. To further evaluate a model’s robustness, a total of 642 potatoes were used to build
an OOS test set with three test scenarios. We investigated the effectiveness of three DCNN
models, including SSD Inception V2, RFCN ResNet101, and Faster RCNN ResNet101, using
the self-developed dataset. After a thorough comparison, the RFCN ResNet101 model
outperformed the other two and was selected as the final model for out-of-sample testing.
We conducted an error analysis on the misclassified samples, which were mainly caused by
avoidable factors like hidden areas of scratches or sprouts and light reflection. Our findings
lay the foundation of automated systems for potato surface defect inspection.

This work is subject to the following limitations that can be addressed in future work.
First, this study on considered the three most important categories, while there are other
categories and/or potato properties, such as broken, shape, size, and color that are also
desired in a grading system. Second, gathering samples is time-consuming and costly,
we plan to investigate data augmentation techniques to enhance the diversity and the
size of the training set, which has been validated by other applications as an effective
performance booster [61]. Third, recent advances in attention mechanisms have offered
us another direction. Attention in computer vision tasks allow a DCNN to learn what
and where to focus on in the input image, which would also benefit the surface defect
detection task.
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