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Abstract: In agricultural vehicles with internal combustion engines, owing to the use of rear-wheel
drive or four-wheel drive, it is difficult to obtain information regarding the slip of the driving wheels.
Excessive wheel slip, an inevitable phenomenon occurring during agricultural activities, can easily
damage the original soil surface and result in excessive energy consumption. To solve these problems,
a distributed drive agricultural vehicle (DDAV) based on multi-information fusion was proposed.
The actual travel reduction of each wheel was calculated by determining the vehicle parameters in
order to deliver the required torque to the four drive wheels via sliding mode control (SMC) and
incremental proportional-integral (PI) control. Through this process, the vehicle always operates
in a straight line. Test results show that, on a uniform surface, the travel reduction of each wheel
can be maintained at the target value by using the incremental PI control strategy, with only minor
fluctuations, to make the vehicle run in a straight line (R2 = 0.9999). Furthermore, on a separated
surface, the travel reduction of each wheel can be maintained at the target value, and using the SMC
strategy enables more identical coefficient of gross tractions for each wheel to make the vehicle run in
a straight line (R2 = 0.9902). Unlike the non-control strategy, the vehicle reaches a stable state within
1 s, owing to the use of a controller that can effectively reduce the impact of road changes on vehicle
velocity. This study can provide a reference for the drive control of DDAVs.

Keywords: travel reduction; distributed drive agricultural vehicles; sliding mode control; incremental
PI control; coefficient of gross traction

1. Introduction

The field operation of wheeled agricultural vehicles is an important part of agricultural
production. To realize precise and intelligent agriculture, one approach is to ensure that
these vehicles precisely perceive and identify their working state and environment through
sensors. Recently, owing to the rapid increase in research on distributed drive agricultural
vehicles [1–3], especially agricultural vehicles driven by servo motors, these vehicles can
also be equipped with inertial navigation, GPS, cameras, and other sensors. Through
multi sensor information fusion, more intelligent and accurate vehicles featuring improved
driving control or power consumption control can be achieved. Multi sensor information
fusion is an information processing method that can improve the detection performance of
the system, expand the space-time coverage, improve the reliability and maintainability
of the system, and improve fault tolerance and robustness. It is widely used in intelligent
vehicle driving, agricultural robots, agricultural machinery navigation, unmanned farms,
and other such fields. Rear-wheel drive and four-wheel drive are the most common forms
of power transmission employed in agricultural vehicles with internal combustion engines;
however, in these configurations, the driving force of each driving wheel, subjected to
the differential, cannot be controlled independently. In contrast, in distributed drive
agricultural vehicles, power is transmitted directly to the drive wheels or driving motors
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are installed near the wheels, which shortens the drive chain and significantly improves
the transmission efficiency. In addition, the drive motor itself serves as an information
unit that can accurately provide feedback regarding the current wheel speed and driving
torque. This enables fast and accurate control [4], in addition to high reliability and good
flexibility [5], providing a suitable foundation for multi-information fusion in vehicles.

During the operation of agricultural vehicles with internal combustion engines, owing
to the complex soil environment and the large load fluctuations, it is difficult to obtain
accurate information regarding the operation and traction state of the vehicle. When the
travel reduction of the driving wheel exceeds 0.2, excessive driving wheel slip occurs; as a
result, the traction force of the vehicle is limited, and the growth environment of the crops
can be damaged. Thus, the travel reduction directly affects the dynamic performance of an
agricultural vehicle, and it is an important parameter for real-time control systems [6,7]. It
is necessary to maintain the travel reduction of each driving wheel within the allowable
range to improve the traction efficiency of agricultural vehicles.

In the case of electric drive vehicles, the driving, anti-skid mechanism, and tracking
are generally realized by a motor control strategy [8], such as the model predictive con-
trol [9,10], hierarchical control strategy [11], or electronic stability control algorithm [12].
Sliding mode control (SMC) is a variable structure control method [13] that has been widely
used in mechanical and vehicle engineering [14,15], especially for clutch control [16] and
motor control [17]. Although some studies have focused on the control of agricultural
vehicles in terms of the path [18] and guidance and steering [19], the drive control of
distributed drive agricultural vehicles on complex soil surfaces has received limited at-
tention. Furthermore, the agricultural environment and soil conditions of each wheel can
be complex and considerably different. Therefore, each wheel requires a separate travel
reduction control to ensure that a reasonable amount of torque is delivered to the wheel.

This study introduces a distributed operation platform driven by servo motors and
controlled by programmable logic controller (PLC) and configuration software to address
the abovementioned problems related to the driving and control of distributed drive
agricultural vehicles on complex soil surfaces. Multi-information fusion, based on the
vehicle GPS and servo driver, was applied for monitoring the travel reduction of each wheel,
and a vehicle body controller based on sliding film control and incremental proportional-
integral (PI) control was designed to realize the driving of vehicles on different soil surfaces.
Uniform and separated surfaces experiments were selected to test performance of the
strategies, compared with non-control strategies. The proposed approach was expected
to effectively reduce wheel slip and improve the traction efficiency of distributed drive
agricultural vehicles, while also ensuring traction stability.

2. Materials and Methods

The experimental electric agricultural vehicle developed in this study utilizes four-
wheel independent drive and rear-wheel steering (Figure 1), and the main parameters are
shown in Table 1.

Table 1. Main parameters of the experimental DDAV.

Parameters Value

Power 18 KW

Vehicle size 3.2 m × 2.0 m × 2.7 m

Trackwidth 1.6–2.8 m

Wheelbase 2.2 m

Vehicle mass 2000 kg

Max mass 3000 kg

Tire 8.3–24

Centroid coordinate (1.12, 0, 1.763) m
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Figure 1. Developed electric distributed drive agricultural vehicle.

The control system is mainly composed of the controller, actuators, and information
collectors. The vehicle drive controller continuously receives and processes signals collected
by the sensors, and calculates the travel reduction of each driving wheel based on the
current vehicle speed and wheel speed. In this strategy, each actuator is assigned different
instructions to complete the command action according to the final signal processing results.
Moreover, the servo driver feeds back the executed signal to the controller to complete the
closed-loop control.

Siemens PLC S7-200 was chosen as the controller; it mainly includes a central pro-
cessing unit (CPU) module (EM214), an analog input module (EM231, sampling frequency
200 Hz), and an analog output module (EM232, output frequency 500 Hz). It is capable of
high-speed signal acquisition, torque signal acquisition, and basic I/O functions, adequate
for the tests in this study. Monitor and control generated system (MCGS), developed by
Beijing Kunlun TongTai Automation Software Technology Co., Ltd. Beijing, China, was
selected as the configuration software. It can realize field data acquisition and monitoring,
and also process and control front-end data. In this study, MCGS was mainly used as the
platform for data storage and foreground observation; it can quickly exchange memory
values with the PLC, display the required value in the form of a chart, and subsequently
save it as a database file.

The wheels were directly driven by servo motors and reducers, that, in turn, were con-
trolled by the torque mode. The Panasonic A52 series MFME454G1G flat servo motor was
selected as the drive motor. The matching drive model was MFDTB3A2, and appearance
identification was F type. GPS was adopted for speed measurement; the GNSS differential
receiver system, produced by JAVAD (accuracy of RTK, 0.8 cm + 1 ppm; accuracy of velocity,
0.02 m/s), was mainly divided into the base station and the mobile station. The mobile
station features primary and secondary antennas that can detect the vehicle’s heading angle
and global coordinate position. The structure of hardware device is shown as Figure 2.

Generally, the barycenter rolling and vehicle laterally slipping are inevitable when
agricultural vehicles are steering. However, most of them are under the conditions of
turning around and obstacle avoidance in the field. This article mainly discusses the sliding
of agricultural vehicles under the conditions of field operation, such as ploughing, sowing,
and fertilization. Therefore, to establish a dynamic model of the vehicle, two assumptions
were made in this study: the geometric parameters of all wheels were assumed to be
identical, and the vehicle was assumed to move along a straight path.

The traction force of each wheel can be adjusted according to the specific driving state
of the vehicle. The wheels on the same side can be regarded as a two-wheel vehicle model,
as shown in Figure 3, and subscript 1, 2, 3, and 4 indicates left front, left rear, right front,
and right rear, respectively.
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Hence, the vehicle dynamic model can be expressed as:

m
.
v = ∑4

i=1 Fxi −∑4
i=1 Xi(i = 1, 2, 3, 4) (1)

The equation of torque balance of the driving wheel can be shown as:

J
.

ωi = Tdi − Fxir− Fzi f r (2)

where r = tire rolling radius, ω = angular velocity of the wheels, J = rotational moment of in-
ertia of the wheels, m = mass of the vehicle, Td = input torque of drive wheel, Fx = longitude
force of drive wheel, Fz = normal force of drive wheel, f = rolling friction coefficient of
wheels, and X = running resistance of wheel.

Fi,trac = Fxi − Xi(i = 1, 2, 3, 4) (3)

Fres = Fxir + Fzi f r (4)

Then, based on Equations (6)–(8), the dynamic equations can be shown as follows:

m
.
v = ∑4

i=1 Fi,trac (5)

J
.

ωi = Tdi − Fres (6)

The coefficient of gross traction µi can be defined as:

µi =
Fxi
Fzi
≈

Tf d

Fzi
(7)
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where Tf d = the feedback torque of wheel obtained by servo motor.
For traditional machinery, when one wheel is completely slipping, the driving force of

the other wheel is also greatly reduced because of the differential. Although it can ensure
that the vehicle runs in a straight line, it reduces the overall efficiency. The power units
on each wheel (a remarkable feature of distributed electric drive agricultural vehicles)
can be controlled independently to adjust the driving force according to the change of
the road surface to ensure the driving stability of agricultural vehicles. For traditional
agricultural vehicles, inappropriate driving is one of the prime reasons that driving cannot
follow the driving intention. Instead of increasing the adhesion or stopping to solve the
invalid-driving problem, the distributed drive agricultural vehicle can change its driving
state by controlling the independent motors.

The travel reduction of four driving wheels is defined as:

si =
rωi − v

rωi
, (i = 1, 2, 3, 4) (8)

where si = travel reduction of the vehicle, ωi = the angular velocity of the wheels, v = vehicle
velocity, and r = tire rolling radius.

Speed measurement is the key to calculating the travel reduction. Different methods
are suitable for different situations. In the field environment, GPS is more suitable for
measuring vehicle speed than other methods [20]. Therefore, this study used GPS to
measure vehicle speed.

2.1. Drive Control Based on SMC

At present, soil parameters are mainly predicted according to existing research pa-
rameters or are estimated by experimental methods. The SMC can effectively solve the
problem of nonlinear systems with uncertain parameters. Therefore, in this study, SMC
was used to control the driving torque.

The state equation of the control system was constructed, and a system equation can
be as follows, which is calculated by Equations (5) and (6) and derivative of Equation (8).

.
si =

r(1− si)
2(Tdi − Ti,res)

Jv
− (1− si)∑4

i=1 Fi,trac

Mv
(i = 1, 2, 3, 4) (9)

Equation (8) can be transferred to:

.
s = h(s, v) + g(s, v)u (10)

s = [s1s2s3s4]
T (11)

u = [Td1 Td2 Td3 Td4]
T (12)

h(s, v) = [h1(s, v)h2(s, v)h3(s, v)h4(s, v)]T (13)

g(s, v) = diag[g1(s, v)g2(s, v)g3(s, v)g4(s, v)] (14)

hi(s, v) = −
r(1− si)

2Ti,res

Jv
− (1− si)∑4

i=1 Fi,trac

Mv
(15)

gi(s, v) =
r(1− si)

2

Jv
(i = 1, 2, 3, 4) (16)

where A = sliding surface, A = s− sq; sq = expected travel reduction vector; T = drive
torque of the wheels, which is the output of control system; TR = resistance torque of the
wheels; J = rotational moment of inertia of the wheels; and M = mass of the vehicle.

Then, .
A =

.
s = h(s, v) + g(s, v)u (17)



Agriculture 2022, 12, 70 6 of 17

The sliding mode reaching law is set as

.
A = −εsgn(A) (18)

where
ε = [ε1ε2ε3ε4]

T (εi > 0, i = 1, 2, 3, 4) (19)

Moreover, sgn(x) is a symbolic function, which is defined as follows:

sgn(x) =


1
0
−1

x > 0
x = 0
x < 0

(20)

To ensure the stability of the SMC, which is Si
.

Si < 0, the Lyapunov function was
constructed as follows:

Vi =
1
2

A2
i (i = 1, 2, 3, 4) (21)

For
.

Vi = Ai
.

Ai = −εisgn(Ai)·Ai = −εi|Ai|,
.

Vi < 0, the system is stable. According to
Equations (9)–(20), equations of control variables u and inputs s and v can be expressed as

Ti = Ti,res +
J ∑4

i=1 Fi,trac

mr(1− si)
− Jv

r(1− si)
2 εisgn(Ai) (i = 1, 2, 3, 4) (22)

According to Equation (13), it can be divided into balanced driving torque Teq and
unbalanced driving torque Tueq, which can be expressed as follows.

u = Teq − Tueq (23)

To eliminate the jitter of the SMC [21],

Tueq =
Jv

r(1− s)2 εsat
(

S
ϕ

)
(24)

sat
(

A
ϕ

)
=


A
ϕ 0 < |A| < ϕ

sgn(A) |A| > ϕ
0 |A| = 0

(25)

where ϕ = thickness of the boundary layers.

2.2. Drive Control Based on Incremental PI Control

As shown in Figure 4, the longitudinal and lateral road coefficient of gross tractions
change when the travel reduction increases [22]. To ensure that the vehicle has good traction
performance and does not lose too much lateral force, controlling the travel reduction in a
certain range is necessary to ensure that the vehicle drives with appropriate longitudinal
adhesion. The vertical force Fz was hypothetically regarded as a constant in this study;
therefore, the relationships among the longitudinal coefficient, lateral coefficient, and travel
reduction are shown in Figure 4. Then,

J
.

ω = T − FxR (26)

where J = rotational moment of inertia of the wheels.
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Incremental PI control was adopted for the front and rear wheels, and the appropriate
target travel reduction sei was selected through the test. The incremental PI control quantity
is expressed as

TePIi(k + 1) = TePIi(k) + (Kpi·ePIi + KIi

∫
ePIidt) (27)

where TePIi = the increment of drive torque (the target of incremental PI control), k = sample
time point, and t = integral time interval of incremental PI control.

ePIi = sei − si (28)

Kpi = proportional parameters of incremental PI control; KIi = integral parameters of
incremental PI control; I = represented by front left (FL), front right (FR), rear left (RL), and
rear right (RR) wheels.

3. Results and Discussion

To test the performance of the two control strategies on complex surfaces, which is one
of the characteristics of agricultural vehicle operation, two running conditions, uniform and
separated surfaces, were chosen as the test area with three control methods: non-control
strategy, SMC, and incremental PI control strategy at the Jiangsu Agricultural Machinery
Test and Identification Station. Uniform surface was soil covered with hay and new grass,
which meant the surface of both sides were low adhesion surfaces. The separated surface
consisted of two different surfaces, which meant one side of the vehicle was soil surface
covered with hay and new grass, and another side was a cement surface. Meanwhile, non-
controlled strategy was used as the control group to evaluate the performance of the two
control strategies. According to the working speed requirements of agricultural vehicles in
the field, the control strategy was implemented when the vehicle velocity increased from 0
to 2 m/s in the experimental group. Sampling frequency of the upper computer was 5 Hz.

Through Equation (18) [21], the relationship between the coefficient of gross traction
and travel reduction of each surface is shown in Figure 5.

µ(S) =
2µpSpS
Sp2 + S2 (29)

where µp = the peak coefficient of gross traction, and Sp = the peak travel reduction.

3.1. Uniform Surface

Commonly, the left and right surfaces of DDAVs were low adhesion surfaces. Hence,
the uniform surface was selected as soil surface covered with hay and new grass, as shown
in Figure 6.
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3.1.1. Test of Non-Controlled Strategy

As shown in Figure 7, the vehicle velocity obtained by GPS increased to 2 m/s as. As
shown in Figures 8 and 9a, the actual input and feedback torque of the motor, which were
obtained by the torque sensor, were similar before t = 13 s. In particular, the difference
between the input and the feedback torque became larger when the motor reached the
maximum speed. As shown in Figure 9b, the travel reductions fluctuated significantly
when the vehicle was running under the condition of the given input torque. At t = 8 s,
travel reductions of the four wheels still did not come to be same.
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3.1.2. Test of SMC

The target travel reduction was selected as 0.08, and the vehicle speed exceeded 1 m/s
at t = 5 s, as shown in Figure 10. The travel reductions of the four wheels were similar to
0.08 after t = 5 s, as shown in Figure 11. Therefore, the travel reductions exceeded the set
range of 0–0.2, and the vehicle started to run in straight under SMC at t = 5 s.
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The vehicle running trajectory is shown in Figure 12. The Gauss projection coordinates
of the gate of the identification station (X: 159778, Y: 3557680) were chosen as the origin. R2

(goodness of fit, GOF) between walking and expected trajectory was 0.9998.
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3.1.3. Test of Incremental PI Control

Similarly, the target travel reduction was selected as 0.08. As shown in Figures 13
and 14, the travel reductions of the four wheels were similar when the vehicle speed
exceeded 1 m/s at the third second. Therefore, the vehicle changed to the automatic
control mode with incremental PI control after the third second when the travel reductions
exceeded the set range of 0–0.2, and the travel reductions became stable at t = 5 s. The
vehicle position was represented in the coordinate system, as shown in Figure 15, in which
the data were collected by GPS. R2 (goodness of fit, GOF) between walking and expected
trajectory was 0.9999.

To compare the performance of the three control strategies, three groups of tests were
carried out under the same test parameters. The mean and variance of vehicle travel
reduction after reaching the target speed were counted to characterize the stability of the
system, as shown in Table 2.
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Compared these three experimental results, the travel reduction of the test group with
non-control strategy not only had difficulty to approach the target, but also fluctuated
remarkably. Therefore, it was difficult for the vehicle to run in a straight state. Although the
vehicle of the test group with incremental PI control could almost run straight, the travel
reduction was not sufficiently close to the target.
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Table 2. Travel reduction feature of the test.

Group Wheel

Mean Variance

Non-
Controlled SMC Incremental PI Non-

Controlled SMC Incremental PI

1

FL −0.1324 0.0577 0.0136 0.0988 0.0212 0.0054

RL −0.0975 0.0554 0.0229 0.0987 0.0242 0.0032

FR 0.0053 0.0458 0.0351 0.0275 0.0205 0.0025

RR −0.0164 0.1299 0.0385 0.0302 0.011 0.0036

2

FL −0.015 0.048 0.004 0.0524 0.0248 0.0147

RL 0.0268 0.0555 0.0304 0.0541 0.021 0.0126

FR 0.053 0.0768 0.0107 0.0703 0.0139 0.0168

RR 0.0478 0.0679 0.0341 0.0401 0.0189 0.0108

3

FL −0.0402 0.0836 0.0578 0.0468 0.0113 0.0002

RL −0.0481 0.0487 0.0521 0.0622 0.0246 0.0002

FR 0.0281 0.0975 0.0589 0.0556 0.0167 0.0002

RR 0.021 0.0801 0.066 0.053 0.0109 0.0004

3.2. Separated Pavement Test

For agricultural vehicles, the working environment was regarded as a complicated
system, meaning the surfaces under each driving wheel of the vehicle may experience
different coefficients of gross tractions and travel reductions. Therefore, the coefficient of
gross traction of the wheels must be the same to ensure that the vehicles drive in a straight
line. The separated road is shown in Figure 16. The right side of the vehicle was a dirt
surface covered with grass, and the left was a concrete surface.
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According to Figure 5, the peak coefficient of gross tractions of the right and left
surfaces were different, which means that current coefficients of the two sides may be
different, although their travel reductions were almost identical. Therefore, to maintain the
straight-line driving ability of the vehicle, the coefficient of gross tractions of the wheels
should be the same.



Agriculture 2022, 12, 70 13 of 17

3.2.1. Test of Non-Controlled Strategy

Compared to Figure 7, Figure 17a showed that the velocity of the right wheels was
significantly lower than that of the left wheels—especially, the right front wheel was the
lowest before t = 7 s, which means that the vehicle started to deviate rightward to the grass
surface as it ran. When t = 9 s, the velocities of the four wheels were almost the same.
The vehicle finally entered the grass surface, completely breaking away from the concrete
surface. By collecting the GPS coordinates of each test, the trajectory line is as shown in
Figure 18. R2 (goodness of fit, GOF) between walking and expected trajectory was 0.8421.
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3.2.2. Test of SMC

As shown in Figure 6, travel reductions of right side were set to 0.08, and the left
side was set to 0.03, which means that travel reductions of two sides were same. Travel
reduction and coefficients of gross traction of the wheels can be shown in Figure 19. If the
coefficients tend to be same, the drive torques of each wheel are the same, guaranteeing
that the vehicle drives in a straight line. According to the X-Y coordinate axis collected by
GPS, the trajectory line is as shown in Figure 20. R2 (goodness of fit, GOF) between walking
and expected trajectory was 0.9902.
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3.2.3. Test of Incremental PI Control

The incremental PI control algorithm was used to control the vehicle, and the travel
reduction is shown in Figure 21a.
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As shown in Figure 21b, it can be seen that the coefficients were not stable. Fur-
thermore, although travel reduction of all wheels were close to a value of 0.08, only the
coefficients of right wheels were close to the target value, which meant that vehicle could
not run in a straight. The real trajectory can be seen from the GPS coordinates, as shown in
Figure 22. R2 (goodness of fit, GOF) between walking and expected trajectory was 0.7642.
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3.3. Discussions

In uniform surfaces test, as can be seen from Figures 11 and 14, the vehicle controlled
by two algorithms can run with the target travel reduction, compared with non-control
strategy. As shown in Figures 12 and 15 and Table 2, although both of them can travel in a
straight line, incremental PI control has less settling time and variance.

In separated surfaces test, owing to the different coefficients of gross traction on both
sides, the vehicle with non-control strategy was unable to drive in a straight line although
the travel reduction on both sides was the same, as shown in Figures 17b and 18. Therefore,
when driving on separated surfaces, current coefficients are also necessarily calculated to
estimate the peak coefficients, and then control the travel reduction. As can be seen from
Figures 19a and 21a, although the settling time of incremental PI control is smaller than
that of SMC, SMC has less oscillation than incremental PI control, which can be seen from
Figures 19b and 21b. Hence, its driving trajectory is closer to the desired straight line with
R2 = 0.9902, while R2 of incremental PI control is 0.7642, obtained from Figures 20 and 22.
Therefore, SMC can remarkably maintain straight driving, when the vehicle is operating on
complex surfaces.

Compared with studies [2,3,23] which had not classified surfaces to control DDAVs
operating, the two strategies proposed in this article can remarkably enhance the perfor-
mance so that DDAVs drive in a straight line, which will improve the operation efficiency.
Furthermore, running on simple surfaces or uniform surfaces, such as transferring and
transportation, DDAVs can enter the straight-line driving state faster under incremental PI
control. Due to the faster response time, this can reduce the time for adjusting the vehicle
statement and help obtain a higher work efficiency. Running on complicated surfaces or
separated surfaces, such as field operation, DDAVs can accurately maintain straight driving
under SMC to reduce the deviation of the vehicle and improve the operation efficiency.

4. Conclusions

In this study, a travel reduction control strategy based on SMC and incremental PI
control was designed to solve the energy consumption problem caused by excessive slip in
the operation process of DDEAVs. The tests of uniform and separated surfaces showed the
following:
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(1) According to the difference between the state variables and the target travel reduction,
the strategy can effectively distribute the energy and hence driving force of each
wheel, so that the travel reduction of the vehicle can be stabilized around the target
travel reduction.

(2) Compared with the non-control strategy, the two strategies can effectively reduce the
impact of road changes on vehicle velocity.

(3) On a uniform surface, the travel reduction of each wheel can be maintained at the
target value by using the incremental PI control strategy, with a less settling time.

(4) On a separated surface, the travel reduction of each wheel can be maintained at
the target value by using the SMC strategy, with less oscillation. The goodness of
fit between walking and expected trajectory was 0.9902, which meant its driving
trajectory was closer to the desired straight line.

This study can provide a method for the drive control of DDAVs to adapt to more
surfaces and meet different operation requirements.
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