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Abstract: Crop seed yield modeling and prediction can act as a key approach in the precision
agriculture industry, enabling the reliable assessment of the effectiveness of agro-traits. Here, multiple
machine learning (ML) techniques are employed to predict sesame (Sesamum indicum L.) seed yields
(SSY) using agro-morphological features. Various ML models were applied, coupled with the PCA
(principal component analysis) method to compare them with the original ML models, in order to
evaluate the prediction efficiency. The Gaussian process regression (GPR) and radial basis function
neural network (RBF-NN) models exhibited the most accurate SSY predictions, with determination
coefficients, or R? values, of 0.99 and 0.91, respectfully. The root-mean-square error (RMSE) obtained
using the ML models ranged between 0 and 0.30 t/ha (metric tons/hectare) for the varied modeling
process phases. The estimation of the sesame seed yield with the coupled PCA-ML models improved
the performance accuracy. According to the k-fold process, we utilized the datasets with the lowest
error rates to ensure the continued accuracy of the GPR and RBF models. The sensitivity analysis
revealed that the capsule number per plant (CPP), seed number per capsule (SPC), and 1000-seed
weight (TSW) were the most significant seed yield determinants.

Keywords: agro-morphological; data-driven; machine learning; seed yield; sensitivity analysis

1. Introduction

The continuous spread of industry, along with rapid resource depletion, has increased
the demand for green energy sources. Fossil fuels (e.g., oil, coal, and natural gas) are non-
renewable resources and, despite being the leading contributors to rising CO, emission
levels, have long been utilized by industries as fuel [1-3]. Oilseeds are regarded as one
of the most important energy sources, with diverse industrial and medicinal applications.
Therefore, the precise prediction of the crop yield is a principal objective for agricultural
and industrial applications [4,5]. Forecasting the crop yields prior to harvest can help one
to identify optimal reaping times and alleviate the concerns of farmers regarding field
conditions and management [6,7]. As a result, it is critical to enhance the planting meth-
ods for oilseed species and develop new cultivars with higher potential yields. Sesame
(Sesamum indicum L.) is one of the oldest oilseeds, with its nutritious seeds containing oil
(34.4-63.2%), proteins (17-32%), minerals, and fat-soluble vitamins [8,9]. Sesame oil is the
most stable and high-quality edible oil due to its unique combination of fatty acids and
natural antioxidants. However, little research exists regarding the planting and develop-
ment of adaptable, high-yield cultivars [10-12]. As a crucial breeding objective, the yield
is a complex, quantitative, polygenic trait that is primarily influenced by several factors
underpinning production. The phenotypic representation of this trait is typically impacted
by the environment and environment-genotype interaction. Thus, it is seldom heritable,
and the efficacy and efficiency of long-term direct selection for this trait are restricted. [13].

Agriculture 2022, 12, 1739. https:/ /doi.org/10.3390/agriculture12101739

https://www.mdpi.com/journal/agriculture


https://doi.org/10.3390/agriculture12101739
https://doi.org/10.3390/agriculture12101739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-4494-7058
https://doi.org/10.3390/agriculture12101739
https://www.mdpi.com/journal/agriculture
http://www.mdpi.com/2077-0472/12/10/1739?type=check_update&version=2

Agriculture 2022, 12,1739

2 0f23

In contrast, the selection of seed-yield-related traits that are heritable is a promising method
that may be used to improve the seed crop yield. These traits are relatively insensitive
to the environment and often highly heritable [14-16]. Yield components can indirectly
affect the seed yield through their positive or negative interactions. Thus, deducing the
relationships between the seed yield and agro-traits is regarded as an effective approach to
trait enhancement.

Statistical modeling applications have been widely used to explain the relationships
between the morphological and agronomic traits affecting the sesame seed yield. Other
yield prediction methods, such as quadratic, pure quadratic, interaction (2FI), and poly-
nomial methods, have previously been used for cotton, maize, and wheat crops. The
best regression model for this study was chosen based on the values of the assessment
criteria [17]. In another study, regression analyses were adapted for the survey of major
environmental factors and their impacts on the crop yield. Yield predictions were believed
to provide substantial benefits to farmers while reducing crop loss and increasing earn-
ings [18]. Alternatively, the multiple linear regression (MLR) technique was employed in
the East Godavari district of Andhra Pradesh in India to predict crop yields. Those findings,
in comparison with the dataset currently available, can aid in efforts to evaluate the efficacy
of the proposed technique [19]. A regression model was also manipulated to reveal the
relative importance of agronomic traits and the genetic correlations with the sesame seed
yield. The model conveyed data to support the notion that the CPP has stronger direct
and positive effects on the seed yield than most other traits [20]. Another study heralded
the significance of the CPP and deemed it important for yield selections [21], while other
studies reported that greater plant heights, combined with a higher CPP, could increase
the overall sesame seed yield [22,23]. Similarly, the seeds per capsule (SPC), thousand-
seed weight (TSW), and the number of capsules per branch (CPB) were positively and
significantly correlated with the seed yield [22,24]. Additional studies in this area applied
multiple linear regression (MLR) models developed to assess crop yield traits. Independent
variables (inputs) affecting the seed yield were identified and considered; however, the CPP
was the foremost variable required for the best results [25]. Similar results were achieved
when fitting a predictor equation for the seed yield [26,27]. Although traditional statistical
methods (i.e., regression analyses) are widely used to derive plant seed yield prediction
equations, assumptions, such as the normality of the dependent variables, homogeneity of
the error variance, and inefficient representation of the nature of complex and nonlinear
relations in empirical phenomena, represent substantial drawbacks [28].

Machine learning (ML) techniques have attracted extensive attention because they can
easily be used in fields such as agriculture and chemical and energy sciences for a variety
of applications [29-35]. Consequently, agronomists have shifted towards machine learning
methods such as artificial neural networks (ANNSs) and Gaussian process regression (GPR)
models in recent years [36—40]. ML models are especially effective in agricultural fields and
have been used for product image processing [41], the separation of weeds and vegetative
cover in remote sensing [42], the prediction of solar radiation [43], flood forecasting [44],
hydrogen storage on bio-carbon [45], biomass estimation [46], CO; capture [47], and the
estimation of soil erosion rates [48]. As shown in Table 1, numerous studies have expounded
upon the usefulness of ML in investigations of seed and crop yields. Moreover, predictions
of agro-product constituents, such as oil or nitrogen contents or disease diagnosis and plant
classifications, are most often accomplished with ML models. These intelligent models
use numerous interconnected processing elements to solve problems and can be modified
to perform specific functions, including pattern identification, data classification, and the
prediction and modeling of processes through a reliable learning process [49,50]. ANNs
are characterized by their suitable error tolerance, direct learning from data, and lack of a
need for statistical quantity estimations [51,52]. The predictions of the output correspond
to a set of inputs, where parameter relationships serve different functions based on the
study goals [16]. In the agriculture field, ML is most often tasked with investigating
multi-objective concerns, such as crop yield estimation and quality control. A selection of
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agricultural research studies devoted to crop yields, plant classification, seed assessments,
and crop quality control, in which ML was incorporated, is illustrated in Figure 1. Radial
basis function neural networks (RBF-NN) and regression models have been adapted for
the prediction of the tree trunk volume. The RBF neural network has been operationally
more reliable than regression models in completing this task [53].

Table 1. A selection of previous studies using ML to advance agricultural crop research.

Application Performance Prediction Model I({II{VZI)S E Ref.
-~ . . . . . SVR
Prediction of oilseed rape yield with alternative planting styles and ANN ) [54]
varied nitrogen fertilizer applications. PLSR
Estimation of soybean seed yield using collected multispectral MLP ) [55]
images for predictions.
Incorporation of multi-qualitative and quantitative features for the
o . ANN - [56]
estimation of wheat yields.
ML model comprised of high-dimensional phenotypic trait data to RE - [57]
carry out in-season seed yield predictions. (0.83)
Ten agro-morphological and phenological traits (plant height, ANN
number of branches per plant, number of capsules per plant, number MLP 0.87 [16,58]
of days to flowering, number of days to maturity, thousand-seed RBF (0.92) !
weight, etc.) were used as the basis for a predictive seed yield model. PCA
Prediction of crop yields in mustard and potato with models using
: . : . . ANN -
soil elemental properties, physicochemical features, pH, electrical SVR 462 [59,60]
conductivity, organic carbon, and others for training and test KNN (0'72) !
datasets. '
Prediction of corn crop yield by careful climate change factor 15
temperature and moisture) evaluation to compile an impact
(temp d moi ) evaluati pil imp ANN ' [61]
assessment of corn fields.
ML to provide predictive estimates of the maize crop yield using ) [62]
topography, land use, soil data, and multiple other parameters. (0.96)
Yield predictions of rice paddies using climate-based factors
(rainfall, morning and evening relative humidity, minimum and ANN 31 [63]
maximum temperature).
Utilization of fertilizer volume in tandem with general atmospheric ANN 30 [64]
. conditions to predict maize yields. MR
Seed and Crop Yield
Predictions of rice paddy yields based on environmental features 11?41;]411;1 0.05-0.1
(area, number of open wells, tanks, maximum temperature, etc.) as SVR ’ © 8). [65]
independent variables. RE '
Constructing several distinct ML models to predict winter rapeseed
yield at specific timepoints from six agro-morphological traits (oil ANN - [66,67]
and protein content, seed yield, oil and protein yield, and RF (0.944) !

thousand-seed weight) as inputs.

Examination of micro-topographic attributes related to growth in
agronomic crops based on analyses of vegetation indices, lidar ANN - [68]
derivatives, and crop type.

Investigation of available water holding capacity of soil coupled with
climate data, used to estimate the average wheat yield within a ANN - [69]
region.

Cotton lint yield derived from a remote sensing ANN model

evaluating eight phenological crop indices. ANN i [70]
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Table 1. Cont.

Application Performance Prediction Model I({II:ZI)S E Ref.
Six ML algorithms applied to predict the cotton yield by climate ANN, RF, (0.51) [49]
and management parameters. etc. '

Predicted and optimized the corn yield by ML technique. - 9 [71]
Some seed and crop yields, such as maize, sorghum, and ) ) [72]
groundnut, modeled by climate data.
NN-based ML applied to predict the chemical specification (fatty =~ ANN and (0.69 to 73]
acid) of rubber seed oil ANFIS 0.99) )
- . . MLR
Prediction of seed yield with ML and coupled PCA-ML models .
mpanied by sensitivity analysis based on agro-morphological PeA 0.00-0.36 This
accompanied by sensitivity analysis based on agro-morphologica RBE (0.88-099)  work
features of sesame plants.
GPR
(114;3 ecatliiii‘lliens of seeds and date fruits are classified by utilizing CNNs (0.99) [74,75]
Seed classification P &
ML applied to classify various seeds by using simple architecture CNNs (0.98) [76]
and memory characteristics.
Nitrogen prediction of oilseed rape leaves based on ten spectral ANN 0.30 [77,78]
features from both barley and oilseed rape. (0.9) !
Nitrogen and fThefme;‘lgin'g of bio}—lphysi’ochemical and spectral features in leaves GP 2258 [79]
Oil Concentration or further in-depth studies.
Prediction of sesame oil content from eighteen ANN 056
agro-morphological an onological traits usin in efforts to
g phological and phonological trai ing ML in eff MLR (0.86) [80]
prevent marginal effects. PCA ’
Integration of ML models coupled with hyperspectral imaging to
. . - LS-SVM - [81]
detect disease in pre-symptomatic tobacco plants.
Disease and Quality Conducting ar}loﬂsceleél:l. diseasT analysis with directed surveys of ]I:{)g _ 82]
Diagnoses for use ten common oilseed disease classes. MLP
in Classification Investigation of physicochemical properties (fatty acid and
mineral profiles) and additional physical attributes of six SVM, RE, 0.21 [83]
sunflower varieties for use in classification, grading, and MLR, etc. (0.81)

quality assessment studies.

* Column indicates the best RMSE value, or R? value (in parenthesis), obtained in the referenced study. Artificial
neural network (ANN); adaptive neuro-fuzzy inference system (ANFIS); convolutional neural networks (CNNs);
DT (decision tree); GP (Gaussian process); k-NN (k-nearest neighbor); LS-SVM (least-squares support vector
machines); PLSR (partial least-squares regression); RF (random forest); SVR (support vector regression); PCA
(principal component analysis); PHN (pruning hidden nodes).

Similarly, the RBF-NN is more efficient than the multilayer perceptron neural (MLP)
network in the prediction of rice yields in terms of its training time, precision, and the
number of neurons in the hidden layer [84]. Efficiency comparisons of the RBF and
MLP neural networks with the MLR model indicated that ANN models more accurately
estimated the biological and grain yield in barley [85]. Earlier works corroborated the
greater ability of ANNSs to predict the wheat performance and to map and determine rice
yields [69,86]. Moreover, Gad and El-Ahmady applied PCA to predict the black seed oil
yield, achieving a correlation coefficient of 0.997 [87]. GPR is also used for yield prediction
in the case of agricultural products. Applying a set of random variables, GPR is capable of
solving nonlinear problems using a novel data mining method [88]. Previous studies on
MLR models often focused on model evaluation without checking their generalizability.
To overcome such drawbacks, this study aimed to evaluate the ability of certain well-
known machine learning models (e.g., ANNs and GPR) and coupled models, such as
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* Crop Nitrogen Status «Output

PCA-MLs, to estimate plant yields, a gap currently found in the literature. As such, the
main objectives of the present work are to estimate the agronomical yield of sesame using
ML and coupled PCA-ML models to predict the SSY and to compare the resultant data
from each model. The primary motivation for, and contributions of, this study include:
(i) the use of the principal component analysis (PCA) approach to simplify the calculations
and reduce the number of sesame production input variables, (ii) to assess the ML and
PAC-ML models’ generalizability and identify an optimal training and test dataset utilizing
the k-fold approach, (iii) to employ MLR training and testing procedures to provide a
comparison with the ML models, (iv) to predict sesame yields with the RBF-NN and GPR
models for their comparison with the MLR model outputs, and (v) to apply the sensitivity
analysis approach in order to uncover the features that are essential for the sesame seed
yield. This research, predicting the sesame oil yield, offers the following contributions:

Four ML models were employed to aid in predicting the sesame seed yield (SSY).

Coupled PCA-ML models were used for in-depth predictions of SSY for the first time.

The use of the GPR, RBF, and MLR models led to a greater accuracy of the SSY predictions.

e  The primary agro-morphological features for predicting the SSY were revealed through
a sensitivity analysis.

1| * Soil and Climatic Factors

> Spectral Features

Leaf
reflectance

» Multi-Spectral Image
> Agro-Morphological traits

* Phonological traits ik

transmittance  ~

* Phenotypic traits . mittan
. /G X e N

Machine Output « Crop and Plant

* Crop Oil Content Learning Classification

e RCP4.5. 2040-70 RCPY.5, 2070-00

* Crop Yield

~J

* Crop Quality
Control

! = Disease Diagnosis

Figure 1. Overview of the potential agricultural research questions that have been investigated using
ML modeling methods [54,55,62,79,81,89-92].
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2. Material and Method
2.1. Field Experiments

In this study, 135 sesame genotypes were derived from five genotypes (selected from
nine diverse genotypes) representing various sesame growing zones within Iran (Varamin
2822, Borazjan 1, Darab 1, Tnps, and Tnp3s4). The selected genotypes were produced
from various Iranian landraces planted on a research farm at the Shahrud University of
Technology (36.39° N, 54.94° E) during 2018-2019. Each experimental plot consisted of
two 1.5 m rows with 50 cm spacing between rows and 7 cm spacing between plants. The
plots were fertilized with 80 kg ha~! N and 100 kg ha~! P before sowing and 40 kg ha~!
N upon flower initiation. The crops were grown in a clay loam Typic Haplargid aridisol
at pH 7.5 with 1% soil organic matter. Agro-morphological data were collected from the
F1 and F2 progenies (81 F1 and 45 F2), arranged in a randomized complete block design
(RCBD). As illustrated in Figure 2, the provided datasets were applied to construct the ML
models that were used to predict the seed yields and relative importance of input features.
A total of 135 sesame genotypes were agronomically investigated in the form of an RCBD,
with 3 replications. A total of 10 random plants were measured from each experimental
unit and the average was considered as the result of that repetition. Therefore, a total of
135 * 3 = 405 data were obtained. Based on the Grubbs test, 27 data were identified as
outliers and were removed from the dataset. Therefore, 378 data remained for the final
dataset. Next, 80% and 20% of the dataset, including 302 and 76 data, were used for the
training and testing of machine learning methods, respectively.

[ oo - O *

[ Data acquiring ] ! ——— [ Modelling procedure ] ....... —

#135

Principal component ;

Radial Basis analysis

Function (RBF)

I
Multiple Linear
| Regression (MLR)

%

A #1

regression (GPR)

LN

v

| ]

* Measurement of components

analysis

I
I
|
|
|

1

| I

N 1

! Gaussian process !

! :
|
|
|
I
I
|

I

v !

[ Sensitivity ] |
I

|

0000

* Data analysis for model
development

{Lnput features

=000

t---[20% F------- '[ Testing data ]‘ =

Figure 2. The schematic diagram of the dataset provision, modeling, and model verification processes
for the seed yield prediction.
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The experiment was repeated in triplicate, and the agro-morphological traits (inde-
pendent variables) are illustrated in Table 2. These variables include the flowering time at
10% (FT-10) and 100% (FT-100), seed maturity (SM), plant height (PH), the height of the
first fruit-bearing node (PHN), number of fruit-bearing branches (BN), capsule number per
plant (CPP), seed number per capsule (SPC), and 1000-seed weight (TSW). FT 10% means
the time by which approximately 10% of plant had flowered, while FT 100% is the time by
which the plant had completely flowered and grown. These input features were measured
on 10 plants randomly selected from each sampled plot. The remaining plants were used
after eliminating marginal effects to determine the output as the sesame seed yield (S5Y).
Input variables are defined as x1 to 9, while (i), the sesame seed yield, is designated as the
output. A summary of the measurements obtained is presented in Table 2. Visual data
were collected daily from each plot for FT10, FT100, and SM. The SSY data were obtained
by harvesting two rows from the middle of the experimental plot.

Table 2. Summary of the measured statistical parameters for the agronomic trait data.

Variables Symbols  Input Min Max Mean Stdv
Flowering time 10% (days) FT10 x1 41 55 47.25 2.57
Flowering time 100% (days) FT100 x2 41 60 52.17 2.73
Seed maturity (days) SM x3 102 155 130.63 13.05
Plant height (cm) PH x4 100.86 199.2 143.45 16.14
Plant height to first fruiting node (cm) PHN x5 26.15 87.92 58.26 10.65
Capsule number per plant CPP x6 24.68 99.21 50.83 11.94
Thousand-seed weight (g) TSW x7 1.98 422 3.41 0.36
Seed number per capsule (g) SPC x8 27.74 102.61 54.52 13.47
Branch number BN x9 0 5.3 1.84 1.08
Seed yield of sesame (t/ha) SSY y 1.19 4.18 2.52 0.58

2.2. Machine Learning Algorithms and Models
2.2.1. Multiple Linear Regression (MLR) Models

The study assessed four MLR models, including linear, interaction (2FI), reduced
quadratic, and quadratic models, as can be seen in Equations (1)—(4), respectively. [93].
The ANOVA regression coefficients were determined using MATLAB software 2019a
(MathWorks Inc., Natick, MA, USA):

9
y=PBo+ ) Bixi+e 1)
i=1
9 9 9
y=PBo+ Y Bixi+), Y, Bixij+e 2)
i=1 i=1j=it1
9 9
y=Po+ ) Bixi+ ) Bixii+e 3)
i=1 i=1
9 9 9 9
y=PBo+ Y Bixi+ ), Y, Bixij+ ) Piuxite 4)
i-1 i=1j=it1 i-1

where y is the crop yield (t/ha~!), x represents the independent variables (inputs), B is the
intercept, f; is the linear regression coefficient, f;; is the interaction regression coefficient,
and f;; is the quadratic regression coefficient.

2.2.2. Principal Component Analysis (PCA)

PCA is a tool for reducing model calculations and input vector dimensions. The basis
of PCA is the transformation of vast amounts of model input data into a smaller set of new
variables (principal components) with lower autocorrelations [94,95]. The procedure is
as follows:

X=X-X ®)



Agriculture 2022, 12,1739 8 of 23

C= %XXT (6)
D=v"lcv (7)
Z =XV (8)

where X is the input vector matrix, C is the covariance matrix, V is the eigenvector of C, D
is the vector of the eigenvalues of C, and Z is the eigenvector of X.

2.2.3. Gaussian Process Regression (GPR) Model

The GPR model is a non-parametric, kernel-based probabilistic regression framework,
which infers functions from a set of training data D = {(yn,x,), n=1,2,3, ..., N} of N
vector input pairs, x,IRF, and output y, within a noisy scalar field. Effective for smaller
datasets, this Bayesian model effectively generalizes the output distribution in unrevealed
input zones. The output noise, or model uncertainty, is often caused by external factors
unrelated to x, such as observation errors. The model noise assumption is zero-mean and
is defined as:

y=f(x)+e &> N(O, 0501-55) 9)
where ¢

“vise ©€quals the noise variance. GPR utilizes the Gaussian process (GP) to describe
a latent variable function, referred to as f, with x used to describe index-related latent
variables in a finite collection {f(x1), ..., f(xx) } where the aforementioned indices consti-
tute a consistent normal or “Gaussian” distribution. This allows for nonlinear regression
between latent variable pairs. There are several advantages to GPR, such as the ability to
estimate the model uncertainty and the ability to use the estimations to specify function
types. The mean function m(x) and k( x,x'), which equals the kernel, or covariance, function,
where E equals expectation, are defined as:

m(x) = E[f(x)], k(x,x) = E[(f(x) —m(x))(f (') = m(x))] (10)

Typically defined as either zero or the dataset mean, the mean function is typically
constant. The mean function is significant only with respect to the average behavior of the
model over time, while the covariance function, a more comprehensive value, includes all
the procedure observations. The covariance function most often uses a hierarchical model,
where covariance parameters, called hyperparameters, define the distribution f(x). The
squared exponential covariance function employed to generate a smooth path is defined as:

K(x, x') = glexp —([lx — x'[)2(q2) (11)

A stationary covariance function and Euclidian norm, ||.||, is a function of x — x" and
is invariant to changes in the input or x-space. With an increase in the x-space distance,
or the space between x and x/, the decay in covariance escalates exceptionally quickly.
This implies that correlations between f(x) and f(x’) are negligible. The hyperparameter
g1 specifies the maximum permissible covariance, while q2 defines the rate of decay as
the correlation distance increases. The covariance matrix represents the relatedness of one
observation to another based on a set of kernel parameters. It can be defined as:

K(xj, xj) = aj% exp(—(xi - x]-)z/le) +026(x;, x;) (12)

where (TJ% is the maximum acceptable covariance, ! is the covariance matrix length parameter,

and 6(x;, x;) is the Kronecker delta function. The covariance matrix is assessed during the
GPR training process, and then the training dataset output is estimated.

2.2.4. Radial Basis Function (RBF) Neural Network

The RBF model is a flexible feed-forward network that is able to automatically predict
and classify new output patterns after the training phase [96,97]. The structure of the RBF
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model applied in the present study is illustrated in Figure 3. The independent variables
serve as first layer inputs while second (hidden) layer inputs are subjected to the nonlinear
activator function @(r) before all of them are tallied together in the third or output layer.
The RBF is effective in approximating non-linear input—output mapping and has a strong
tolerance to input noise. The optimum values of the matrix for the weight (W) and other
model parameters are acquired during the training stage by minimizing the sum of the
squared errors (SSE). The RBF model output, (y), is defined as:

y(x) = 3w (lx - el) 13)
k=1

where wy, is the weight of the linking of the kth neuron from the hidden layer to the output
layer and cj is the pre-pattern center of the kth neuron from the hidden layer. The Gaussian
radial basis function is denoted as:

2

F(r)=e 22 (14)

where 7 is the distance between the input and pattern center (c) and ¢ is a parameter
controlling the smoothness of the interpolation function [98,99].

Sesame Seed Yield
(SSY)

Po=1
Output layer

Input layer

Hidden layer

Figure 3. The RBF neural network structure applied in the present study.

2.3. K-Fold Cross-Validation

K-fold cross-validation is used as a reliable approach to ruling out model bias. To
train MLR, GPR, and RBF models, the dataset is randomly divided into subsets for the
training and testing phases using 80% and 20% of the total dataset. Since the input data
partitioning is performed randomly, the model gives different results for each training and
testing run. The types of cross-validation differ, including k-fold cross-validation, K x 2
cross-validation, leave-one-out cross-validation, repeated random subsampling validation,
etc. [100]. Cross-validation involves repeated random subsampling procedures, where
no overlapping occurs between the test datasets. During the process, the learning set
is divided into equally sized k subgroups. The “fold” refers to the number of resulting
subsamples. Subsequently, one of the subsamples is designated as k and used as the test, or
validation, dataset, while the remaining k — 1 subsamples are utilized as the training data.
The first subsample selected becomes the first fold and serves as a validation sample D, 1
while successive subsamples serve as the training set Dy,,;,, 1. The ensuing result with the
least error is named E;. The outcomes for each k-fold are averaged or combined to obtain a
single estimation. The turning parameter for k-fold cross-validation is defined [101]. Each
subgroup,ori =1, 2, 3, ...,k helps to establish the fit model with  or k — 1 parts. Finally,
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a~*(y) is combined with the additional computation kth to identify the prediction error

and is shown as: 5

EM= ¥ |n-xa* o) (15)
i € kth part
This procedure continues for numerous 7y cycles, and the value of v, displaying the
smallest error, is selected.

2.4. Model Assessment Criteria

Models are assessed in the training and testing steps by multiple criteria, including the
mean absolute percentage error (MAPE), root-mean-square error (RMSE), efficiency factor
(EF), and total sum squared error (TSSE). The linear relationship between the actual (y) and
predicted values Y), including their coefficients of determination (R?), are defined as [102]:

N |y, -,

MAPE = (Z v )/N (16)

r=1

N
RMSE = \l (Z]Yr—ffpf)/(z\r—l) 17)
r=1

TSSE = %m — Y| ? (18)
r=1
n n 2
EF:l_(;(yj_]?j)z/ Z%(]/]'_yj) ) (19)
j= =

R2=1- (%(Yr -Y,)%/ %(m - ?,)2> (20)

where Y, and Y), represent the real and predicted values, and Y, indicates the average of the
real values. The MAPE, RMSE, and TSSE values closest to zero indicate the best ML model
performance and provide accurate predictions with acceptable estimation errors. The EF
values increase as the model approaches an optimal state. For an additional validation, the
line spanning the actual and predicted values (see Section 3.3) designates the best result,
which is achieved when the slope and intercept approach 1 and 0, respectively, and the
coefficient of determination (R?) nears 1.

3. Results and Discussions
3.1. Primary Statistical Analysis of Datasets

The generated datasets created inputs for the analysis of variance (ANOVA) using
a general linear model. The ML models were configured using the QNet v2000 software
package (QNet Ltd., Hong Kong, China) to define the SSY as the output and the other agro-
morphological traits as inputs. The ML models were trained and tested using 135 samples
from the study area. The corresponding statistical indices for each variable are illustrated
in Table 2.

The results of the Pearson correlation analysis applied to the nine independent vari-
ables are illustrated in Table 3. Almost all variables obtained a significant level in the range
of ~0.01.
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Table 3. The measured correlation and significant level of independent variables.

Sample 1 Sample 2 Correlation p-Value Sample 1 Sample 2 Correlation p-Value
FT100 FT10 0.87 0.00 TSW PH 0.13 0.02
SM FT10 0.53 0.00 TSW PHN 0.15 0.01
SM FT100 0.54 0.00 TSW CPP 0.13 0.01
PH FT10 0.24 0.00 SPC FT10 -0.17 0.00
PH FT100 0.29 0.00 SPC FT100 —0.10 0.07
PH SM 0.20 0.00 SPC SM -0.17 0.00
PHN FT10 0.38 0.00 SPC PH 0.22 0.00
PHN FT100 0.40 0.00 SPC PHN 0.27 0.05
PHN SM 0.34 0.00 SpPC CprpP —0.41 0.00
PHN PH 0.65 0.00 SPC TSW —0.41 0.00
CPP FT10 0.18 0.00 BN FT10 0.17 0.13
CPP FT100 0.13 0.01 BN FT100 0.75 0.00
CPP SM 0.09 0.09 BN SM 0.55 0.03
CPP PH 0.13 0.01 BN PH 0.41 0.00
CPP PHN —0.03 0.53 BN PHN 0.26 0.09
TSW FT10 0.31 0.00 BN CPP 0.48 0.01
TSW FT100 0.28 0.00 BN TSW 0.31 0.15
TSW SM 0.54 0.00 BN SPC 0.22 0.00

3.2. Statistical Processes of PCA and MLR Algorithms

The present study utilized nine agro-morphological traits to estimate the yield of
sesame seeds. PCA was employed to improve the speed, reduce the calculation com-
plexities, and decrease the number of independent variables by presenting the principal
components. The obtained five principal components (PCs), as shown in Figure 4a, ex-
plained 98.99% of the variability (the total variance). Therefore, only five traits, including
the pH (x4), SPC (x8), CPP (x6), SM (x3), and PHN (x5), were needed as principal com-
ponents. Figure 4b shows that two variables explained 69.50% of the total variance and
were more influential than the other variables as principal components. The morphological
traits of 250 sesame genotypes have been evaluated by PCA. Shim et al. (2016) reported
the five components accounted for 29%, 16%, 14%, 13%, and 10% of the morphological
trait variance. The primary traits of the first and second components were FT, SM, and
SPC [103]. Furthermore, Baraki et al. (2015) used a group of 30 African sesame genotypes
to construct a PCA. Three principal components explained 88.49% of the variance in the
measured agronomic traits. Their study concluded that the seed yield and oil percentage
have the greatest influence on the principal component formation [104]. Ismaila and Usman
(2014) also reported on three components analyzed by PCA, indicating that those three
components accounted for 86.73% of the variance [105].

PC4\'5

9%
PC1
41%

PC2
28%

-0.5 0 0.5

(@) (b)

Figure 4. (a) Variance in the five most influential principal components and (b) the relationship
between the two variables and PC2.
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The results from four regression models (linear, 2FI, quadratic, and reduced quadratic)
are presented in Table 4 to present the error rates for the training and testing stages.
These error rates helped to inform our determinations of the model efficiency after a
thorough evaluation of all 50 training and testing datasets produced using the k-fold
method. From these data, it is apparent that the 2FI regression model was best suited to
all nine independent variables. The quadratic model performed best with the principal
components (PC; to PCs) and represented the lowest mean and standard deviation of the
RMSE, MAPE, and EF. Limiting the models to the principal components PC; to PCs did
not improve the MLR model yield prediction. The model accuracy decreased in the testing
rather than the training phase (Table 3). Therefore, MLR models have an acceptable level of
generalizability. Emamgholizadeh et al. (2015) applied an MLR model in an investigation
of the agronomic traits and yield of sesame [16]. The ML-PCA and ML-no-PCA exhibited
approximately the same performance in terms of the prediction accuracy based on the
RMSE. Comparatively, the MAPE showed a maximum ~3% higher accuracy using ML-no-
PCA in comparison with ML-PCA. However, ML-PCA is fast and has lower computing
expenses compared with ML-no-PCA.

Table 4. Comparison of the yield predictions of four MLR model types before and after PCA exclusion.

Phase Train Test

Model RMSE MAPE EF RMSE MAPE EF
L no-PCA 0294001  8.04 -+ 0.80 0.82+001  0.29+0.03 8.36 + 0.80 0.80 + 0.04
mear PCA 0364001 1121+026 0724001 037 +0.02 1143 4+1.02 071 +0.05
- no-PCA 0214001 582+0.15 0.90+0.01 0254 0.02 7.02 + 0.68 0.86 + 0.02
PCA 0354001 1027 +032 0744002 038+ 0.04 11114+ 1.14 067 £0.10
Ouadrati no-PCA 0214001  56840.15 090+ 001  0.26+0.02 7.15 + 0.67 0.84 + 0.33
uadratic PCA 0314000 897+026 0.80 +£0.01  0.34 +0.03 9.89 + 1.03 0.75 + 0.05
Reduced cuadratic  NOPCA  0254£001 6524022 0.86 £0.01  0.26 & 0.03 6.96 + 0.80 0.84 +0.03
q PCA 0324001 9374024 078+ 0.01  0.34 =+ 0.03 8.87 + 0.80 0.76 + 0.03

Mokarram and Bijanzadeh (2016) predicted barley (Hordeum vulgare) grain yields
using the percentage of soil organic matter and grain/spike ratio as independent variables
for MLR model inputs. They observed that the machine learning model ANN (R? = 0.922)
performed more accurately than MLR (R? = 0.784) [85]. The four transformation types
shown in Table 5 were assessed for their ability to improve the MLR model performance.
A comparison between the achieved results (Tables 4 and 5) revealed that the utilization
of response variable transformation (y) did not enhance the model prediction efficiency.
Thus, the final MLR model was created without transformation. The k-fold method gener-
ated 50 different datasets from among which the “optimal” dataset was selected for the
assessment of the model training and validation steps. The results gained after subjecting
this dataset to ANOVA with 2FI are presented in Table 6. Correlation tests between the
independent variables and yield showed an insignificant correlation between the yield
and the number of fruit-bearing branches (x9), leading to its exclusion from the model. A
p-value cutoff of 0.10 was employed to aid in the selection of the final model and effective
traits. This stringency level resulted in 11 traits (xy, x3, x5, X3, X12, X16, X18, X37, X67, X68,
and x73) selected from a total of 36 using a stepwise regression process. Among the main
variables, the days to 100% flowering (x,), days to maturity (x3), CPP (xs), and SPC (xs)
were directly incorporated into the model. Other variables were included after viewing
the interactions between the main independent variables. El-Mohsen (2013) discovered a
relationship between the yield and agro-morphological traits through a stepwise regression
process, which showed that 77.25% of the variance in the SSY was explained by the days to
flowering and CPP [27]. Additionally, Parimala and Mathur (2006) indicated that the CPP
was the most effective factor for predicting the yield [25]. Yol et al. (2010) defined selection
inputs based on the pH, CPP, BN, and TSW to elucidate the SSY [106].
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Table 5. MLR model performance parameters for four different transformation types.

Phase Train Test

TV * EF MAPE RMSE EF MAPE RMSE

VY 0904+ 0.00 599+0.17 022+0.00 0.84+0.03 7.32 £0.70 0.27 £ 0.02
Iny 0.88+0.00 6.34+026 023+000 0.79+0.05 7.86 +0.81 0.31 4+ 0.04
1/y 0.06 £3.09 787+079 049+046 —085+580 11.11+440 0.92+1.42
y2 0.84 +£0.01 6.65+0.12 027+001 0.75+0.20 9.58 + 0.91 0.28 +0.32

* TV, transformation variable.

Table 6. MLR regression model ANOVA for the optimal training and validation dataset.

Source DF SS p Source DF SS p Source DF SS p
Model 36 135 0 FT10*PP 1 0.34 0.1 SM*SPC 1 1.03 0.9
FT10 1 7.3 0.48 FT10*TSW 1 0 0.65 PH*PHN 1 0.01 0.47
FT100 1 0.55 0.07 FT10*SPC 1 0.56 0.1 PH*CPP 1 0.27 0.02
SM 1 5.19 0.09 FT100*SM 1 0 0.8 PH*TSW 1 0.04 0.93
PH 1 19.52 0.54 FT100*PH 1 0 0.79 PH*SPC 1 0.27 0.66
PHN 1 0.23 0.69 FT100* PHN 1 0 0.42 PHN*CPP 1 1.08 0.51
CPP 1 36.36 0 FT100*CPP 1 0.04 0.63 PHN*TSW 1 0.3 0.18
TSW 1 1.9 0.5 FT100*TSW 1 0 0.68 PHN*SPC 1 0 0.73
SPC 1 51.08 0.02 FT100*SPC 1 0.35 0.11 CPP*TSW 1 0 0
FT10*100 1 1.05 0.01 SM*PH 1 0 0.49 CPP*TSW 1 3.95 0
FT10*SM 1 0.17 0.32 SM*PHN 1 0.02 0.27 TSW*SPC 1 143 0
FT10*PH 1 0.31 0.37 SM*CPP 1 0.1 0.9 Residual 265 14.61 -
FT10*PHN 1 0.03 0.51 SM*TSW 1 1.17 0.05 Total 301 149.3 -
* Interaction function between the two independent variables; p-value (p); sum of squares (SS).
The percentage contribution (PC) for the features applied for the estimations of the
SSY is generated by dividing the sum of the squares of each feature by the total sum of the
squares. Presented in Figure 5, the PC of error is 9.84% in the training step, with the CPP
(x6) and SPC (x3) displaying the highest PC. As interaction factors such as x;, (FT10*FT100),
x16 (FT10*CPP), and x47; (CPP*TSW) have the lowest PC, it can be assumed that the x5 and
xg variables are very effective parameters for SSY estimation. The FT10*SPC (x15), SM*TSW
(x37), CPP*SPC (x45), and TSW*SPC (x7g) interaction variables also contributed significantly
to determining the SSY.
40%
~35% F ¥=0.78+0.11x,+0.03x;—0.16x,—0.11x,—0.003x,,+0.002x,,+0.001x
%) 30% | —0.009x;,10.02x,+9.04%(10)* x4 +0.01 x5
= 0
2
= 25%
]
= 0, n
= 20%
S
O 15% |
=
810%
5 _— ]
& 5% T
— — —
0% - - - - - - L - - . AL_AL
x2 x3 x6 x8 x12 x16 xI18 x37 x67 x68 x78 Error
Independent Variable

Figure 5. Percent contribution (PC) for each MLR model factor and PC of error in the training phase.
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3.3. ML Models Evaluation

The evaluation of the model variables with and without PCA allowed for our effective
observation of the input accuracy in predicting the SSY. In addition to identifying specific
input sets which can influence the effectiveness of the ML model (MLR, GPR, and RBF)
prediction, tuning the hidden size number is crucial for RBE. Determining the hidden
layer neuron numbers (i.e., hidden layer size) is a key first step in reliable neural network
model design. The trial and error process enables the adjustment of the neuron numbers by
providing data, similar to factorial analysis, for the optimization of the hidden layer size
(Table 6). The results of the RMSE, MAPE, and EF in the training and test steps using the
50 unique datasets indicated that the highest predicted performance of the RBF resulted in
20 neurons in the hidden layer. The complete results of the MLR, GPR, and RBF models
during the training, test, and combined phases are presented in Table 7. These data are
displayed without PCA, using the two classes of the original factors (see Equation (18)),
and with PCA, incorporating principal components PC; to PCs, The addition of the PCA-
based variables did not enhance the MLR, GPR, and RBF model performance. The dataset
performance, in Table 8, was gauged by considering the lowest RMSE, TSSE, and MAPE
values and the highest EF value.

Table 7. RBF neural network performance factorial analysis with varied hidden layer neuron numbers.

Hidden Layer Size
Phase Criteria
5 10 15 20 25 30 35 40
RMSE 0.22 0.21 0.21 0.2 0.2 0.2 0.2 0.2
Train MAPE 6.31 5.99 5.85 5.74 5.81 5.75 5.8 5.81
EF 0.89 0.9 0.9 0.91 0.91 0.91 0.91 0.91
RMSE 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26
Test MAPE 7.31 7.09 7.24 7.15 7.14 7.17 7.16 7.21
EF 0.86 0.85 0.86 0.85 0.85 0.85 0.85 0.85
RMSE 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.22
Total MAPE 6.51 6.21 6.13 6.02 6.08 6.04 6.07 6.09
EF 0.89 0.89 0.89 0.9 0.9 0.9 0.9 0.9
Table 8. MLR, GPR, and RBF model assessments based on initial and PCA-derived input variables.
-PCA * Train Test Total
Model MLR RBF MLR GPR RBF MLR GPR RBF
RMSE 0.23 0.05 £ 0.06 0.20 = 0.01 0.23 0.26 = 0.03 0.26 = 0.02 0.23 0.13 £ 0.03 0.22 £+ 0.01
TSSE 16.25 217 £348 1310+ 1.74 3.90 5.46 +1.27 5.27 £ 1.05 20.15 7.63 £345 1838 +1.30
MAPE 6.29 1.37 £1.83 5.74 4+ 0.38 5.89 7114+ 0.71 7.15+0.76 6.21 252+ 1.44 6.02 = 0.25
EF 0.89 0.98 £+ 0.02 0.91 £ 0.01 0.90 0.85 £+ 0.03 0.85 £+ 0.03 0.89 0.95 4+ 0.01 0.90 4 0.01
+PCA * Train Test Total
Model MLR RBF MLR GPR RBF MLR GPR RBF
RMSE 0.36 0.21 £ 0.09 0.30 +0.01 0.32 0.34 +£0.02 0.30 +0.01 0.35 0.25 +0.04 0.30 +0.01
TSSE 38.92 16.89 = 8.77 27.88 £2.95 7.77 9.16 =149 27.88 £295 46.69 26.06 & 8.17 27.88 +2.95
MAPE 11.01 6.31 +£2.84 8.89 +0.42 8.55 9.97 +£0.91 8.89 +0.42 10.52 7.05 +£222 8.89 +0.42
EF 0.74 0.88 £+ 0.05 0.81 +£0.01 0.80 0.74 +£0.03 0.81 +£0.01 0.75 0.86 + 0.04 0.81 +0.01

* -, excluding PCA (using nine original input variables); +, including PCA (using five principal components (PCs)
extracted from nine variables).

The results of the GPR and RBF model performance in Table 9 were more accurate
than the GPR-PCA and RBF-PCA in both the training and testing steps. Generally, the
GPR, RBF and MLR showed the best prediction performance in the training phase (TSSE
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of 16.89, 27.88, and 38.92, respectively). The MLR was the ideal model in the test phase,
with a TSSE of 7.77. The RMSE displayed non-significant sensitivity in the ML comparison.
Since the training step performance of the GRP is reliable, no overfitting problems are
observed. Although the previous results (Table 8) are acceptable, hidden-layer optimization
procedures improve the performance accuracy of the GPR and RBF models. Additionally,
as reported for the previous models, the RBF model prediction performance is improved
with the use of the most influential variables compared with principal components PC; to
PCs (RBF-PCA) as neural network inputs.

Table 9. RBF and GPR model performance with the optimal hidden layer neuron number.

Phase Train Test Total
Model RBF RBF-PCA GPR GPR-PCA RBF RBF-PCA GPR GPR-PCA RBF RBF-PCA GPR GPR-PCA
RMSE 0.21 0.30 0.00 0.29 0.23 0.36 0.21 0.30 0.21 0.31 0.09 0.29
TSSE 12.75 27.17 0.00 26.01 4.08 9.77 3.22 6.75 16.83 36.94 3.22 32.76
MAPE 5.72 8.75 0.02 8.60 6.39 9.89 5.48 9.09 5.86 8.98 1.12 8.70
EF 0.91 0.81 0.99 0.83 0.91 0.78 0.90 0.81 0.91 0.80 0.98 0.82

3.4. Prediction of Sesame-Seed-Yield-Based ML Models

The distribution of the predicted and actual SSY values in Figure 6 between the ML
and ML-PCA models reveals similar performances between the training and testing steps.
The fit results for the MLR and MLR-PCA models are illustrated in Figure 6a,b, with an
R? value of 0.89 and 0.90 in the training and testing steps, respectively. The distribution
patterns of the actual and predicted data in Figure 6¢,d for the GPR and GPR-PCA models
were comparable to those of the MLR for the test phase (R? = 0.89), but the value for the
test phase was ten percent higher (R? = 0.99) than in the training phase. An R? value of
0.91, presented in Figure 6e,f, was identified for the training and test phases of the RFP
model. The ML-PCA models all exhibited lower R? values in the training and testing
phases for the prediction of the SSY, an indication that the ML models were less precise
when combined with the PCA technique. Based on the R? values reported here, the use of
agro-morphological features is an acceptable method when applying models to predict the
SSY. The frequency distributions in Figure 7 aid in the evaluations of the ML and ML-PCA
model performance across several error ranges.

The MLR model error ranged from —0.24 to 0.84, with 78% of the error falling between
—0.24 and 0.30. The error for the MLR-PCA model ranged from —0.30 to 1.02, with 60% of
the error between —0.30 and 0.36. The error distribution for the GPR and GPR-PCA models
implies that the GPR model is superior to the GPR-PCA model. Approximately 94% of the
errors in the GPR model are between —0.19 and 0.17, while the range for all the errors is
from —0.19 to 0.53. Additionally, the error distributions of the RBF and RBF-PCA models
are provided in three intervals, similar to the other MLs mentioned above. Approximately
71% of the errors in the RBF model fall between —0.15 and 0.26, while 74% of the errors fall
between —0.21 and 0.54 in the RBF-PCA model.
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Figure 6. Correlations between actual and predicted SSY values of three ML and ML-PCA models.
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Figure 7. Frequency distribution of MLR, GPR, and RBF errors for (a) initial and (b) PCA indepen-
dent variables.

3.5. Sensitivity Analysis

Uncertainty, in ML modeling, is best visualized through a sensitivity analysis. Con-
ventionally categorized into one of two classes, the global or local, sensitivity analyses
determine how data results change in response to alterations in ML models or meth-
ods [107,108]. A local sensitivity analysis only surveys a specific area while leaving the
remaining inputs or independent variables unexplored, whereas global sensitivity anal-
yses simultaneously incorporate the variance in all independent variables to ascertain a
nonlinear trend across a range of variables [109]. These tests make it easy to distinguish
the comparative importance of each input variable for the SSY. As illustrated in Figure 8,
the GPR, MLR, and RBF model sensitivity indices are indicative of the model performance
after the exclusion of the agro-morphological variables as inputs. Measurements of the
sensitivity analysis data were collected and presented with the RMSE, MAPE, and EF. Each
factor (x; to x9) was individually excluded to isolate the level of sensitivity for each variable.
Manipulations of the CPP (xg), SPC (xg), and TSW (x7) variables were the most influential
on the SSY prediction precision, with error rates between 0.29 and 0.55 for the RMSE, as
shown in Figure 8a.

The most sensitive ML models for each of these variables were the MLR, RBF, and
GPR, respectively. When these ML models were assessed based on the MAPE index, as
shown in Figure 8b, this revealed similar results. The highest MAPEs, those from the CPP
(14.2-11.06%), SPC (13.81-7.18%), and TSW (8.43-6.37%), were recorded after the MLR, RBF,
and GPR model exclusion. The results of the EF in Figure 8c exposed a decreasing trend
when the CPP, SPC, and TSW were removed from the model input. Notable errors were
revealed in the case of other agro-morphological indicators, providing further evidence
of the necessity for careful variable selection. The obtained model errors illustrate the fact
that their exclusion reduces the efficiency of the ML models, including the MLR, GPR, and
RBE, by 50%.
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Figure 8. Sensitivity analysis results for MLR, GPR, and RBF models to assess the SSY based on the
(a) RMSE, (b) MAPE and (c) EF criteria.

4. Conclusions

Here, multi-machine learning (ML) approaches were applied to generate predictions
of the seed yield in sesame. The initial study began with the MLR model and PCA analysis,
combined with data from existing studies. Nine agro-morphological factors contributed
to the establishment of multi-ML techniques, including the MLR, GPR, and RBF, used for
predictions of the SSY. Moreover, the coupled PCA-ML models incorporated five principal
components from nine primary variables and, for prediction accuracy, were compared with
the original ML models. The results obtained here suggest that the SSY can be effectively
estimated by the GPR, RBF, and MLR models. The SSY estimated by the GPR, RBF, and
MLR had RMSEs of 0 to 0.05 t/ha, 0.20 to 0.23 t/ha, and 0.23 to 0.36 t/ha, respectively. The
best performance was displayed by the MLR model, subjected to the 2FI inputs. The RMSE
declined in the case of the GPR and RBF models after the k-fold method was employed to
assist in the dataset selection for the training and validation steps. The GPR model predicted
SSY more accurately and precisely than MLR or RBE. The use of global sensitivity analysis
indicated that the CPP, SPC, and TSW were the most sensitive factors for the sesame yield
estimation. These findings could be vital in efforts to promote productivity by planting
more robust sesame species. The agro-morphological characteristics investigated here can
be coupled with phenolic and spectral data analyses in future studies to implement a multi-
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objective modeling approach. Additional studies of traits such as the yield and quality
level could provide the data necessary to formulate a solid and sustainable plan in order
to overcome several primary challenges in oilseed cropping systems. In future research,
the physio-chemical inputs, such as chemical components, could promote prediction at
a higher level. Additionally, the ML can present the optimal geographical location for
the plant seeds necessary to obtain higher yields by merging climate input variables and
convolutional neural network (CNN) models.
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