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Abstract: Considering hydro-climatic diversity, integrating dynamic dimensions of water security
modeling is vital for ensuring environmental sustainability and its associated full range of climate
resilience. Improving climate resiliency depends on the attributing uncertainty mechanism. In this
study, a conceptual resilience model is presented with the consideration of input uncertainty. The im-
pact of input uncertainty is analyzed through a multi-model hydrological framework. A multi-model
hydrological framework is attributed to a possible scenario to help apply it in a decision-making
process. This study attributes water security modeling with the considerations of sustainability and
climate resilience using a high-speed computer and Internet system. Then, a subsequent key point of
this investigation is accounting for water security modeling to ensure food security and model devel-
opment scenarios. In this context, a four-dimensional dynamic space that maps sources, resource
availability, infrastructure, and vibrant economic options is essential in ensuring a climate-resilient
sustainable domain. This information can be disseminated to farmers using a central decision support
system to ensure sustainable food production with the application of a digital system.

Keywords: decision support systems; agricultural water management; water security; data-driven
modeling; conceptual resilience model; input uncertainty; climate extreme; process-based modeling

1. Introduction

The application of computers and the Internet brings new dimensions to agricultural
water management and sustainable use of resources. Adequate robustness in recording
and transmitting sensing data during farming provides farmers with automatic decision-
making processes [1]. Trade-offs in land-use competition and sustainable land development
are also possible with an appropriate technological knowledge base [2]. As human action
is inherent to the water cycle, the dynamic dimension of water security can be attributed
to a dimensional space that maps economic options, physical resource availability, and
appropriate infrastructure. Crucial areas for environmental sustainability remain within
climate change, biodiversity, air quality, and water quality. Water security, as a result
of coupled human-natural system models, accounts for human compliance in the face
of external drivers [3]. On the other hand, environmental sustainability increases the
resilience of communities. A competent climate-resilient community structures itself
around significant urgencies and can adapt to a “new normal” [4–8]. Generally, building
climate resiliency is about improving development outcomes rather than implementing
development activities in a new dimension [4,5]. In actuality, it helps minimize costs and
maximize progress toward sustainable development goals [9,10].

However, resilience is a multi-sectoral, incremental process [11]. It is the capacity to re-
cover quickly from strain/difficulties. In another way, resilience is the ability of a substance
or object to spring back into its original shape. A region’s resilience is calculated by the
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magnitude and severity of shocks (e.g., natural disasters such as flood and drought with
diverse frequency and magnitude) and the region’s capacity to contend with them [11,12].
If the shock overcomes the capacity, then resilience is measured by the region’s ability to
recover to a pre-shock level of functioning. The ultimate outcome represents the region’s
capacity to cope with the next shock [9]. Patterson and Kelleher describe this recovered
resilience as a new, strengthened resilience level [13]. A conceptual linkage of resilience to
water security and environmental sustainability is shown in Figure 1.
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It is virtually certain that increases (decreases) in the frequency and magnitude of warm
(cold) daily temperature extremes will occur in the 21st century at the global scale [14,15].
As sea levels, which have increased globally by 0.19 m over the past century [10], continue
to rise, coastal flooding is expected to increase as well [16].

Climate change is already conveying more hydrological inconsistency. Increases in
the frequency of floods and the magnitude of droughts are visible. At the same time,
climate change uncertainties create more scenarios to explore. Global climate change is
anticipated to have a huge impact on our agricultural water resources. Research studies
suggest there will be amplification of the global hydrologic cycle with the appearance of
more-recurrent and larger-magnitude extremes, such as floods and droughts [14,17–19].
The recent increased frequency of unusual floods and droughts worldwide seem to have
only strengthened such findings. As a result, the study of how climate change impacts
water security is at the forefront of scientific research today [20,21]. Standard steps are
followed to assess the impacts of climate change on water resources: (1) future climate
projection [20]); (2) using global climate models (GCMs) to generate data (e.g., precipitation,
temperature); (3) downscaling of course-scale GCM outputs to fine-scale data appropriate
for hydrological modeling and water resource studies; and (4) estimation of streamflow
and groundwater levels [20,22].

In climate change predictions, there are four different sources of uncertainty to con-
sider: input uncertainty, model uncertainty, scenario uncertainty, and internal variabil-
ity [18,19,22]. Because of an incomplete understanding of physical processes, model uncer-
tainty is prominent. Scenario uncertainty arises because of incomplete information about
future emissions. Internal variability is the natural, unforced fluctuation of the climate
system [22]. Internal variability is aleatoric and cannot be reduced by the improvement of
scientific knowledge. Input uncertainty dominates over the other three sources, leading to
the desired output. This paper centered on climate resilience and water security modeling
based on environmental sustainability.

The first major objective of this paper is a multi-model hydrological framework de-
cision support system (DSS) attributed to water security modeling in consideration of
sustainability and climate resilience. A subsequent vital objective of this paper is the
use of water security modeling in various scenarios to ensure water security in light of
food security.
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2. Materials and Methods

Resilience planning should be based on comprehensive region-specific tools to capture
vulnerability in its varied dimensions (for example, biophysical, social, and technolog-
ical). Dimensions of resilience can vary with a specific purpose. The most significant
dimensions in climate resilience are: (i) expectation—a resilient community is competent at
anticipating multiple hazards or threats to people and their values. These hazards could
be non-routine, discontinuous, or collective events, such as coastal erosion, drought, or
economic disinvestment; (ii) cutback—a resilient community takes mitigating action to
reduce impacts; (iii) reaction—ability to mobilize resources and coordinate relief efforts [23];
(iv) revival—capacity to re-establish throughout the phases of emergency, restoration, ren-
ovation, and community betterment [9,15,16]. To build and strengthen climate resilience,
input uncertainty needs to be quantified. For example, flooding is caused by excess rainfall,
and drought is due to a shortage of rainfall. At the same time, temperature variation
has a significant impact on both of these phenomena. How input uncertainty affects the
overall climate resilience system, considering environmental sustainability, is illustrated in
this research.

2.1. Data Source and Availability

A high-emission scenario is frequently referred to as “business as usual”, suggesting
that it is a likely outcome if society does not make concerted efforts to cut greenhouse gas
emissions. Projected data are available for 14 general circulation models (GCMs) under
each emission scenario. The GCMs are bcc_csm1_1, ccsm4, cesm1_cam5, csiro_mk3_6_0,
fio_esm, gfdl_cm3, gfdl_esm2m, giss_e2_h, giss_e2_r, ipsl_cm5a_mr, miroc_esm, miroc5,
mri_cgcm3, and noresm1_m. The impacts of three CO2 emission scenarios, the repre-
sentative concentration pathway (RCP) 4.5, RCP 6.0, and RCP 8.5. The historical data
period is 1961–2016, and the projected periods are 2020–2039, 2040–2059, 2060–2079, and
2080–2099 [18,24]. Data from different periods can be used for scenario analysis or mapping
future variability.

Additionally, the daily rainfall and evapotranspiration data set was used in this study.
The data set was derived from the Australian Water Availability Project (AWAP) [18,24],
which is gridded to 0.050◦ × 0.050◦ (5 × 5 km) and is extracted for the common 1980–2015
period. The accuracy of this data set is typically low where gauge density is low, as is the
case in central-west Australia, for instance [24]. The original meteorological data used in
the AWAP product were supplied by the Bureau of Meteorology Australia (BoM). Daily
rainfall data are available from 1900 to present, temperatures from 1911 to present, and
solar irradiance from 1990 to present. Selected catchments are shown in Figure 2.

In this section, the conceptual flow of the resilience model is shown (Figure 3), where
climate extremes were identified with diverse input sources (precipitation, temperature,
wind speed). Resilience functions were analyzed with climate extremes. The solution
options were output, and a sustainable solution was made as per the resilience index for
each resilience function. There are various possible options likely for different climate
extremes at a specified location [18,19,21,24–26]. Quantification of input uncertainty was
evaluated through the methodical process (Figure 3).
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Figure 3. Schematic overview of the experimental design undertaken to find a sustainable solution
and quantify the resilience index for input variability. Climate extreme ensembles are analyzed
as a function of resilience functions and optimized with different solutions. All the solutions are
characterized as the resilience index with time. The circle in the bottom panel of the figure shows the
increase in complexity from left to right. Ensembles of solutions are possible with multiple climate
extreme possibilities for a specific catchment or community.
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The quantification of the extent of climate extremes, resilience functions, and identifia-
bility of the solution options are shown below [18,19,21,24].

Equations (1)–(3) were used to calculate the resilience flow deviation (RsFD) for the
selected parameters for climate extremes, resilience functions, and identifiability of the so-
lution options at each percentile (p), denoted as RsFDM

p , RsFDO
p , and RsFDI

p, respectively:

(RsFDM
p )2 = E

I,O

[
var(Qm

p

∣∣∣Qi
p, Qo

p

)
] =

[
1

IO(M − 1)

O

∑
o = 1

I

∑
i = 1

M

∑
m = 1

(Qmio
p − Qio

p )
2
]

(1)

(RsFDO
p )

2 = E
M,I

[
var(Qo

p

∣∣∣Qm
p , Qi

p

)
] =

[
1

MI(O − 1)

I

∑
i = 1

M

∑
m = 1

O

∑
o = 1

(Qomi
p − Qmi

p )
2
]

(2)

(RsFDI
p)

2 = E
O,M

[
var(Qi

p

∣∣∣Qo
p, Qm

p

)
] =

[
1

OM(I − 1)

M

∑
m = 1

O

∑
o = 1

I

∑
i = 1

(Qiom
p − Qom

p )
2
]

(3)

Additionally, I, M, and O denote the total number of parameter sets representing
identifiability of the solution options, the number of the selected climate extremes, and the
resilience functions [18,19,21,24].

The prime endeavor of the model is to ensure the sustainable development of cities,
towns, and other human settlements, incorporating the uncertainty due to climate extremes,
resilience functions, and types of optimization algorithms. One key stake of this plan is
ensuring that cities can withstand and recover quickly from catastrophic events. The
other objectives are as follows: (i) tools for measuring and increasing resilience to multi-
hazard impacts, (iii) building climate change resilience for poor and vulnerable people
in cities by creating robust models and methodologies for assessing and addressing risk,
(iv) developing statistical methods for the description of the uncertainties related to climate
change and economic constraints, (v) developing regionalization methods to improve
urban resiliency with a conceptual model, and (vi) developing empirical equations with
quantified parameters to relate urban resilience with sustainable development.

Resilience is presented here as a function of the following:

Resilience = f (R, En, S, If, L, In, Ec, N, C, Et) (4)

• R—resources (GDP, population density);
• En—energy consumption and emissions (oil intensity, CO2 per capita/per USD $GDP,

SO2 per capita/per USD $GDP);
• S—soil type and vegetation (agriculture subsidies, use of pesticides);
• If—infrastructure;
• L—livelihood and land-use pattern (indoor air pollution, child mortality, forest loss);
• In—integration (political risk, among local to national planning and implementing

body);
• Ec—ecosystem vitality (biodiversity and habitat, water resources, forest, fisheries);
• N—neighborhood network (governance, regional partnership, quality of local sup-

plies);
• C—coordination (control of corruption, centralization, and decentralization);
• Et—entropy (measure of disorder or randomness of the system).

To consider climate resiliency risk, three drivers were analyzed:

1. Exposure to natural hazards;
2. Quality of natural hazard risk management;
3. Quality of fire risk management.

The functions described above can be grouped in three parts: A = (R, S, If, L);
B = (En, Ec, Et); C = (In, N, C). These indexes are developed based on the resilience in-
dicator generated for a specific location or defined catchment.

Resilience Index = A ∗ B ∗ C (5)
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2.2. Conceptual Hydrological Model and Quantifying Input Uncertainty

Quantifying input uncertainty is vital in hydrologic models; therefore, several concep-
tual options were applied. Four parent hydrological models (TOPMODEL, ARNOXVIC,
PRMS, SACRAMENTO) within the FUSE framework to represent the full spectrum of
potential model [19] variability in the absence of specific information on the catchment
hydrologic processes. Twenty-two (22) model parameters represent the hydrological sys-
tem within FUSE [19]. Some of these parameters are inactive depending on the model
configuration of interest. Figure 4 outlines the model structure that was considered in
the simulation results presented. Flexibility in selecting model structure remains, as it
is possible to use the framework for understanding structural errors [18,19,21,24]. The
input of the models, such as precipitation (rainfall)/temperature/windspeed, was checked
with the variability of different grids in a specified catchment or area compared to the true
rainfall of the total catchment grids (Figure 4). At the same time, point gauge rainfall for
that specific catchment was considered for the input variation [18,24]. Details of the four
parent models could be found in [19].
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nent multi-model structures are (i) single state (SS), (ii) separate tension storage (ST), (iii) cascading
buckets (CB), (iv) baseflow reservoir of fixed size (BRFS), (vi) tension reservoir plus two parallel tanks
(TRTPT), (vii) baseflow reservoir of unlimited size (frac rate) (BRUSfr), (viii) baseflow reservoir of
unlimited size (power recession) (BRUSpr), (ix) drainage above field capacity (DAFC), (x) gravity
drainage (GD), (xi) saturated zone control (SZC), (xii) unsaturated zone Pareto (UZP), (xiii) unsatu-
rated zone linear (UZL), (xiii) saturated zone topographic (SZT). Model structural components used
for the 4 models considered in this study are depicted as TOPMODEL = a; ARNOXVIC = b; PRMS = c;
SACRAMENTO = d (after [18]).

The chosen experimental design is a combination of climate resilience, environmental
sustainability, and water security modeling. The equation was based on the basics of the
theoretical context of quantifying the metrics of the methodological framework. More
details on [18,19,24].

For a given model (Figure 5), analyses were conducted for different likelihood or ob-
jective functions, including the Nash–Sutcliffe efficiency coefficient (NSE) [21], logarithmic
Nash–Sutcliffe efficiency (LogNSE), and square root Nash–Sutcliffe efficiency (SqrtNSE).
The optimization algorithm (dynamically dimension search (DDS)) was used to find the
optimum parameter sets. From each simulation, the quantile variation of streamflow was
determined and, thus, compared with different input variabilities of the defined catch-
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ment [18,24]. It is said that over-parameterization, dependency on input data bias, and lack
of a systematic link between parameter precision and model efficiency are the three main
factors [24,27] that complicate the regionalization of conceptual rainfall-runoff models.
With the best possible model structure, input uncertainty was quantified to improve climate
resilience.
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Figure 5. Possible model structure options in hydrological models with alternate descriptions for
upper and lower soil layers, types of surface runoff, vertical drainage, evaporation, interflows, and
possible routing options. For different conceptual model structures, different likelihood/objective
functions can be made. For each likelihood, options of parameter domain can be generated. For each
simulation, flow quantiles can be produced to compare with different inputs.

As part of the demonstration of the approach, three objective functions were selected
for analysis, including the Nash–Sutcliffe efficiency coefficient (NSE) [28], a logarithmic
Nash–Sutcliffe efficiency (LogNSE), and a square root Nash–Sutcliffe efficiency (SqrtNSE).
The Nash–Sutcliffe efficiency measures the relative magnitude of the model residual vari-
ance in comparison to the observed data variance. This efficiency can be greatly influenced
by the peak flow values, which tend to have higher residual error. In contrast, the LogNSE
and SqrtNSE are more likely to be influenced by low flows as the log and square root
transformation reduces the importance of errors on larger flow magnitudes. These three
objective functions are selected to reflect variability in the model optimization process and
the desire to provide suitable models that fit different aspects of the hydrograph and the
catchment response depending on the purpose of the model.

3. Results and Analysis

In this section, the key outcome is analyzed based on the method and data presented
in the previous section. The more-generalized scenario was considered in this analysis. The
possible scenarios were: (i) increasing precipitation, constant temperature; (ii) decreasing
precipitation, constant temperature; (iii) increasing temperature, constant precipitation;
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(iv) decreasing temperature, constant precipitation; and (v) real-time variability with
changing conditions.

Figure 6 contains three sub-plots. The left one shows the variability of stream-
flow/discharge among different developed models (X, Y, Z, W, and V) generated from four
parent models. The right plot shows the regional variability of streamflow/discharge due
to changing grid with respect to selected parent model ARNOXVIC and the middle one is
similar to the right, only testing with different parent model name TOP model.

Agriculture 2022, 12, x FOR PEER REVIEW 5 of 5 
 

 

due to changing grid with respect to selected parent model ARNOXVIC and the middle 
one is similar to the right, only testing with different parent model name TOP model. 

 
Figure 6. Input variability in different model choices and grid-based rainfall variability with the 
model input of rainfall estimated with the variability of different grids in a specified catchment or 
area compared to true rainfall of the total grids of the catchment. At the same time, point gauge 
rainfall for that specific catchment is considered for the variation in input. 

For a specific catchment (e.g., Richmond, NSW), different model structures re-
sponded differently to the variability (Figure 6, left) in predicting streamflow variability 
output. This represents higher prediction input uncertainty and the higher percentile and 
leads to more uncertainty in climate resiliency, with significant effects on environmental 
sustainability. By changing the different grid’s precipitation levels, variability was re-
duced (Figure 6, middle and right). 

This Figure 7 shows the regional rainfall considering different scenarios to observe 
the variability of streamflow/discharge due to changing grid with respect to selected par-
ent model PRMS. 

Input variability in different model choices and grid-based rainfall variability with 
model input of rainfall was quantified with the variability of different grids in a specified 
catchment or area compared to true rainfall of total grids of the catchment. At the same 
time, point gauge rainfall was considered for the variation in input for each specific catch-
ment (Figures 6–8). 
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model input of rainfall estimated with the variability of different grids in a specified catchment or
area compared to true rainfall of the total grids of the catchment. At the same time, point gauge
rainfall for that specific catchment is considered for the variation in input.

For a specific catchment (e.g., Richmond, NSW), different model structures responded
differently to the variability (Figure 6, left) in predicting streamflow variability output. This
represents higher prediction input uncertainty and the higher percentile and leads to more
uncertainty in climate resiliency, with significant effects on environmental sustainability. By
changing the different grid’s precipitation levels, variability was reduced (Figure 6, middle
and right).

This Figure 7 shows the regional rainfall considering different scenarios to observe the
variability of streamflow/discharge due to changing grid with respect to selected parent
model PRMS.
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ties. For example, uncertainty in the Richmond catchment was high compared to the Sev-
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the metrics of quantile flow deviation (QFD) metric [18,19], and the other was very dry. 
Meanwhile, the Buchan River catchment in Melbourne, Victoria, was more similar to the 
Barambah River catchment of Queensland. Extreme input uncertainty was quantified by 

Figure 7. Input rainfall variability to see the changeability of discharge in a defined model.

Input variability in different model choices and grid-based rainfall variability with
model input of rainfall was quantified with the variability of different grids in a specified
catchment or area compared to true rainfall of total grids of the catchment. At the same time,
point gauge rainfall was considered for the variation in input for each specific catchment
(Figures 6–8).
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Figure 8. Input rainfall variability (decreasing trend) to observe the changeability of discharge in a
defined SACRAMENTO model. Changing rainfall variability is also observed to obtain the overall
picture.

Catchment-to-catchment variability was observed due to variable catchment prop-
erties. For example, uncertainty in the Richmond catchment was high compared to the
Seventeen Mile catchment due to climate variability; one catchment was very wet consid-
ering the metrics of quantile flow deviation (QFD) metric [18,19], and the other was very
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dry. Meanwhile, the Buchan River catchment in Melbourne, Victoria, was more similar to
the Barambah River catchment of Queensland. Extreme input uncertainty was quantified
by applying a dynamically dimensioned search optimization algorithm [18,19,24]. The
analysis of the input uncertainty of four different catchments in Australia (Figure 2) showed
the variability in uncertainty due to streamflow uncertainty [19,21,25]. The quantile flow
deviation (QFD) metric [18,24,26] was used to estimate the input uncertainty compared to
the model structure and parameter uncertainty [19]. This uncertainty was, directly and
indirectly, linked with climate resilience and environmental sustainability and was quanti-
fied using Equations (1)–(3). Based on the extent of interaction, it is possible to integrate
dynamic dimensions of water security modeling. Nash–Sutcliffe efficiency (NSE) has been
presented for model simulations of discharge and is widely used to assess the predictive
power of hydrological models. Additional analysis considering alternate objective func-
tions to assess how sensitive our findings are to the objective function used is undertaken.
NSE values vary in a range of 0.69 to 0.94 considering different catchments and selected
model structures.

The three objective functions (NSE, LogNSE, SqrtNSE) are selected to reflect variability
in the model optimization process and the desire to provide suitable models that fit different
aspects of the hydrograph and the catchment response depending on the purpose of the
model (Figure 9). As Figure 9 illustrates, the change in the proportion of uncertainty by
considering additional objective functions is not significant.
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However, an aggregate sustainability score could be computed based on multiple indi-
cators organized into four dimensions: environment, social, water security and nutrition,
and economic. In the multi-dimensional nature of the sustainability score, there was no
“natural” or “theoretical” threshold above which a country could be said to be sustainable.
In other words, the creation of the metric also highlights the urgent need for governments
and other key stakeholders (donors, international development agencies, etc.) to invest
in more comprehensive monitoring of the existing water-energy-food systems. Increased
monitoring is particularly relevant concerning transformation, transport, retail, and dis-
tribution, for which data are still missing, including in some high-income-level countries.
The optimal combination and technical validation are crucial for the final computation of
the sustainability score [4,29,30].

4. Discussion—Scenarios of Model Development

As this study analyzed the model input and output uncertainty, this approach is useful
for precision agriculture. How 1 mm of rainfall can influence cropping patterns and food
production can be easily visualized for decision makers. Moreover, streamflow uncertainty
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has a direct linkage with climate resiliency. In this section, different aspects of the possible
integration of the dynamic dimensions of water security were attributed to environmental
sustainability and climate resilience. As water security is a multi-faceted dilemma, it goes
further than the mere balancing of supply and demand [3,31,32]. On the contrary, static
index-based approaches to quantifying water security are impotent to acknowledge the
human action inherent to the water cycle. A more flexible and dynamic view of water
security is urgent considering human adaptation to environmental change and increasing
spatial specialization [3,31]. A four-dimensional dynamic space that maps sources, resource
availability, infrastructure, and vibrant economic options is important in a climate-resilient
sustainable agriculture domain. These dimensions are based on scenarios considering
carbon emissions and possible trends in the world economy.

4.1. Water Security, Water Cycle Modifications, and Climate Resilience

Water security, climate resilience, and environmental sustainability must be closely
interrelated for effective agricultural practice, identical to our body parts. As it is complex
to quantify, we applied the function with its parameters then applied the regionalization
approach to obtain the process extents (Figure 10). As global climate change intensifies,
many countries have been hit hard by an unprecedented wave of droughts and water
shortages. Water security can be defined as a function of different parameters as follows:

Water Security, W = f (R, C, E, T, G, C2, U) (6)

where R is resource, C is culture, E is economy, T is technology, G is governance, C2 is
climate change, and U is uncertainty.
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Establishing safe limits to water cycle modifications and identifying possible spatially
explicit methods for quantification is an enormous challenge [33]. Many current and widely
relied-upon hydrologic prediction approaches are founded on the assumption of station-
arity [34], which permits extrapolation to the future using historical data. In a changing
world, however, neither the structure (e.g., patterns of land use and land cover, connectivity
between channels, and riparian or wetland environments, or the extent of human-made
structures) nor the external drivers (e.g., temperature and precipitation forcing) of the
hydrologic response can be treated as fixed [18–22,24–26,35]. Instead, changes in structure
and drivers create the potential for new dynamics [36], for example, by hydrologic systems
crossing unknown thresholds [19,26,31]. The possibility for the emergence of such new
dynamics poses key challenges to predictability, especially on decadal or longer time scales.

Understanding the bloodstream interdependency, availability, and accessibility of
surface water and groundwater plays a crucial role in recognizing and managing water
security. The Falkenmark water stress index, defined as the per capita annual renewable
freshwater available, was an early effort to recognize the relationship between human
needs and environmental constraints; regions with less than 1000 m3 per capita per year
were defined as “water-scarce” [35,37]. As populations grow, humanity faces the prospect
of uncertain future water supplies due to climate change and the increasing demands
on water [35,38,39]. In the virtual water importing and exporting region, some factors
dominate the water balance, affecting water security. For example, Murray Darling Basin
is considered the food bowl for Australia, where ecological destruction, environmental
regulations, laws, community sensitivity, infrastructure, controls on abstraction, and climate
change impacts play a key role in the water security domain (Figure 10). This phenomenon
instigates the internal integration of the dynamic dimensions of water security modeling
with the variability of climate resilience and environmental sustainability.

4.2. Climate–Water Quality Relationships in Changing Streamflow

Temperature and precipitation elasticities of water quality parameters, highlighted
by N and P nutrients, can be analyzed in large rivers due to the change of streamflow.
The spatial and temporal assessments show that precipitation elasticity is more variable in
space than temperature elasticity and that seasonal variation is more evident for precipita-
tion elasticity than temperature elasticity [1,32,34,36]. Even small changes to streamflow
may have significant agricultural and ecological implications [38]. Therefore, it is vital
to integrate the dynamic dimension of water security modeling with climate resiliency
and environmental sustainability. It is potentially helpful for investigating the effects of
climate change on water quality in large rivers, such as the long-term shift in nutrient
concentrations.

4.3. Drought Management

Underestimation of solar radiation usually overestimates soil moisture. The concept of
reliability-resilience-vulnerability (RRV) is used here in the context of agricultural drought
through the analysis of temporal variations in soil moisture. The failure, or unsatisfactory
stage, is considered the depletion of soil moisture below the permanent wilting point (PWP),
an indicator of agricultural drought (Figure 10). The natural integration of water security
modeling with climate resilience and ensuring environmental sustainability integrates
the plant, soil, and atmospheric conditions at a particular location with the long-term,
spatiotemporal variation of drought susceptibility [3,8,9,26].

5. Conclusions

The development of a decision support system (DSS) using advanced computer data
processing tools and Internet systems to analyze large data sets has made the agriculture in-
dustry more sustainable. Increased land-use change with industrial development has made
sustainable development critical. High-level policy intervention is required, considering
climate change. Based on development trends, variability in climate extremes, and water
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security, a coordinated policy matrix is crucial. Integrating the available resources with
the required products could be more effective with the application of a central database
using DSS. Considering the diversity in an uncertain world, integrating dynamic dimen-
sions of water security modeling is vital for ensuring environmental sustainability and the
associated full range of climate resilience. This is also possible with the use of high-tech
computer and Internet systems. This study presents a framework for integrating the dy-
namic dimensions of water security modeling with climate resilience and environmental
sustainability variability. Therefore, a vital contribution of this paper is in accounting for
the water security modeling and scenarios of model development. A more flexible and
dynamic view of water security is urgent considering human adaptation to environmental
change and increasing spatial specialization. With the adoption of high-tech computer data
processing, including Internet systems, nature-based solutions can be more effective to
model the dynamic indicators as outcomes of coupled human-water systems. Ensuring
water security ease, the way of environmental sustainability paradigm. Quantifying the
uncertainty in water availability or use projection gives the overall picture of the available
water. Thereby, decision makers got the idea of available water for the effective and efficient
use of water through enforcing water metering by adopting an integrated water pricing
policy. As the amount of water demand is increasing in all sectors, including agriculture,
new technology could be used for maximizing water use. This framework will surely
help in the policymaking process to allocate the right share of water as per demand to
save water, ensuring integrated water management. We have the options of multi-model
structures considering four parent models, which gives the policymaker to adopt new
model structures according to the purpose of the users. One of this study’s shortcomings
was finding the real-time data of social structure and economic diversity to interlink the
hydrological phenomena of climate and land-use change. Future research will concentrate
on the nonlinear dimensions of food security, integrating climate resilience and water
security in a sustainable domain.
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