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Abstract: The number of spray deposits plays an important role in effective and efficient spraying.
The spraying equipment is one of the most significant factors that affect the number of spray deposits.
Therefore, the study was focused on the parameter optimization of a newly developed self-propelled
variable height crop sprayer. Response surface methodology (RSM) along with Box–Behnken design
(BBD) was used to study the effect of the independent variables (forward speed, spray height, and
spray pressure) on response variables such as droplet density, coverage per-centage, and Volume
Median Diameter (VMD). The experiment was conducted in the cotton field. Additionally, the RSM
model was validated in this research. The results revealed that the coefficient of determination
(R2) values was good for all response variables in the quadratic polynomial model. The optimized
parameters were 6.5 km/h, 60 cm, 4 bar for fungicide application, and 8 km/h, 70 cm, 3 bar for
insecticide and herbicide application. The predicted response variable values at the optimal conditions
were 60.4 droplet/cm2, 27%, 230 µm for fungicides and 37.8 droplet/cm2, 19.1%, 225.4 µm for
insecticide and herbicides application. The model validation is confirmed by the mean of actual
response variable values at the optimal condition for insecticide and herbicides application, which
was 41.35 ± 3.67 droplet/cm2, 21.10 ± 1.72%, 227.43 ± 1.22 µm, and the prediction error was 8.46%,
9.2%, and 0.9% for droplet density, coverage percentage, and VMD, respectively. This study can
provide support for further optimizing the parameters of the sprayer.

Keywords: self-propelled sprayer; response surface methodology; forward speed; spray height;
spray pressure; droplet density; coverage percentage; VMD

1. Introduction

Plant protection products are mainly used to control pests and diseases. However,
the implementation of Integrated Pest Management Programs (IPMs) in recent years has
optimized the application of these products [1–4]. Even so, IPM practices are still only
applied on a small scale, and the risk of environmental pollution due to pesticide use
has increased. Some studies found the residue of pesticides in the soil [5,6] as well as in
surface and groundwater. In general, a small percentage of the sprayed liquid retains on
the plant canopy whilst the rest of it is either deposited to the ground or drifted. The foliar
application of plant protection products is considered an inefficient process [7,8]. Likewise,
when the spray deposition on the plant canopy is close to the control threshold for the
infestation or disease with minimal losses to deposition or drift, this foliar application is
considered adequate [8,9].

Agriculture 2022, 12, 408. https://doi.org/10.3390/agriculture12030408 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12030408
https://doi.org/10.3390/agriculture12030408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-6334-1078
https://doi.org/10.3390/agriculture12030408
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12030408?type=check_update&version=2


Agriculture 2022, 12, 408 2 of 19

Several studies have shown that spraying equipment is one of the most significant fac-
tors affecting the efficient use of plant protection products on different types of crops [10–12].
The spray losses to ground, the quantity of the pesticide retained by the canopy, and uni-
form distribution depend on the type of spray equipment [13], the position and type of
nozzle [13], and the application rate [12].

Several efforts have been made to optimize the operating parameters of spraying
equipment. The optimum forward speed of field sprayers was reported between 6 and
8 km/h for pesticide applications and lower forward speeds were suggested during high
wind speeds [14]. In constant-volume anti-drift nozzles, surface coverage rate, droplet
density, and spray efficiencies were increased with increasing forward speed (6.4, 13.0, 19.0,
and 26.0 km/h) [15]. The maximum boom heights recommended for nozzles with 50 cm
constant spacing and 65◦, 80◦, 110◦, and 120◦ nozzle angles are 75 cm, 60 cm, 40 cm, and
40 cm, respectively [16]. The droplet evaporation will increase by increasing spray heights
with the impact of temperature and humidity. Such cases ultimately increase pesticide
losses [17]. The optimum boom height was reported as 38 cm for standard low-pressure
nozzles [18]. The recommended spray height for 110◦ spray angle is between 40 and 80 cm
and the height for 80◦ spray angle is between 80 and 120 cm [19]. Sanchez-Hermosill et al.
reported that the average deposit was higher at 10 bar and 15 bar spray pressure compared
with 20 bar spray pressure [20].

The optimization of operating parameters of spraying equipment is mainly dependent
on spray coverage quality standards. The spray coverage quality standards aim to improve
the spraying effectiveness. Several spraying parameters define the coverage quality of
the target area, these parameters include the number of droplets, coverage percentage,
and droplet size [21]. By increasing the number of droplets per unit area, the effective-
ness of the spray increases by improving the probability of reaching a certain threshold
for pest control [21]. According to Syngenta Crop Protection AG, the critical limits are
20–30 droplets per cm2 for insecticides or pre-emergence herbicides, 30–40 droplets per
cm2 for postemergence herbicides, and 50–70 droplets per cm2 for fungicides [22–24]. The
spray VMD classification according to the American Society of Agricultural and Biological
Engineers (ASABE) S572.1 standard are extremely fine (<60 µm), Very fine (61–105 µm),
Fine (106–235 µm), Medium (236–340 µm), Coarse (341–403 µm), Very coarse (404–502 µm),
extremely coarse (503–665 µm), and Ultra coarse (>665 µm) [25]. The fine and medium size
spray class is the most commonly used spray type and used for insecticides, herbicides,
and systematic-acting fungicides [25].

To make an optimized spraying, several studies were focused on prediction methods
for optimal and effective application of chemicals. Prediction methods are categorized
into three main groups, including computer software models, regression equations, and
mathematical equations [26]. To predict different parameters, computer models and simu-
lation programs save costs and time related to field experiments [26]. The response surface
methodology (RSM) is a statistical and mathematical method to analyze and optimize
independent variables in various processes [26]. Furthermore, to investigate several factors
and their interaction with response variables, the RSM would be used in the agriculture
sector [26].

Sun et al. conducted experiments to optimize the parameter of the variable spraying
liquid fertilizer machine. The spray parameters such as forward speed, spray flow rate, and
plot distance was analyzed using RSM with Box–Behnken center-united design principles.
The droplet distribution uniformity was evaluated as an output variable. The Design-
Expert 8.0 software was used in this study [27]. Huo et al. optimized the operating
parameters of a profile-modeling spray-bar on the characteristics of a high-spindle apple
tree to achieve effective profile modeling. The parameters were optimized using RSM. The
spray distribution coefficient of variation and effective collection rate was evaluated as
response variables in this research [28]. Weicai et al. optimized the spraying parameter
of the cotton defoliant sprayer. The RSM with the Box–Behnken center-united design
principle was used to optimize the parameters. Droplet coverage was evaluated by creating
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a quadratic polynomial equation using horizontal boom height, hang boom height, and
nozzle angle. The Design-Expert 8.0 software was used in this study [29].

In Pakistan, mostly manual knapsack sprayers and tractor-mounted sprayers are used
to apply agrochemicals [30]. However, the manual knapsack sprayers have drawbacks such
as light spray deposition, uneven distribution, heavy losses to the soil [31], and serious
chemical exposure to the workers [32]. The tractor-mounted boom sprayers have relatively
higher spray deposition and lower chemical exposure, but a small farm size with divided
plots and complex terrains limits the use of these sprayers. In addition, the power mismatch
between the boom sprayer and tractor is another issue that increases operational costs.
Therefore, a self-propelled variable height crop sprayer was developed and tested to resolve
the issues of small farmers.

This study focused on optimizing the combination of forward speed, spray height,
and spray pressure of the newly developed self-propelled variable height crop sprayer
using RSM, aiming that to minimize the cost, time, and environmental pollution.

2. Materials and Methods
2.1. Spraying Machine

The self-propelled variable height crop sprayer was used in this research (Figure 1).
The sprayer consisted of a mainframe, engine, hydraulic system, and spraying mechanism.
The frame material was mild steel (material grade SAE-4130). The length and width of the
mainframe were 2845 mm and 1017 mm, respectively. The engine size of the sprayer was a
20-hp engine (model 2105D). The sprayer was equipped with a battery-operated hydraulic
system (model 121613-08L), to control the up and down movement of the spray boom. The
spray mechanism of the sprayer consisted of the liquid tank, pumps, boom, and nozzles.
The liquid tank capacity was 300 L. There were four spray pumps (model BYT-7A111) with
four filters (50-mesh size) in the sprayer to generate the maximum discharge of 22 L/min.
The length of the horizontal boom was 6 m and there were eight hollow cone nozzles (ASJ-
HC8002, Size 15 × 7 mm) at the spray boom. The flow rate of the nozzle was 0.8 L/min at
3 bar pressure. The sprayer specifications are shown in the table (Table 1).
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Table 1. Spraying vehicle specifications.

Items Specifications

Structure Self-propelled
Overall dimensions 2845 mm × 1017 mm × 2440 mm
Weight 1090 kg
Wheelbase 1753 mm
Ground clearance 762–915 mm
Nozzle height from the ground 458–1220 mm
Engine power 20 hp
Driving mode Automatic gear shift
Wheel Four wheels
Solution tank capacity 300 L
Nozzle type Hollow cone

Spray boom
Lifting mode Hydraulic drive
Folding mode Manual drive
Spray boom 6096 mm

Spray pump
Type Diaphragm pump
Pressure 24 bar
Flow rate 22 L/min

2.2. Field Experiments

The field experiments were carried out in the cotton crop (Figure 2) at the University of
Agriculture, Faisalabad, Pakistan, located at a research station (31◦26′25” N, 73◦04′13′′ E).
The test was performed in August 2021. The crop characteristics such as plant height, plant
to plant distance, row to row crop distance, and plant population were 60–70 cm, 20 cm,
60 cm, and 36,000 plant/acre, respectively. An area of 165 m × 40 m was selected with
crop in uniform height and growing ways, to reduce the effect of leaf area index on droplet
coverage. To ensure the sprayer travels stably, water channels were removed from the
field before the experiment. To ensure sampling uniformity, water-sensitive papers (WSPs)
were fixed at the top of the plant canopy. The experimental area was divided into three
blocks, 10 m buffer zones were provided between the blocks. Each block (165 m × 6 m)
was divided into 17-plots (each for one trial). Each plot was a 5 m × 6 m area. In each plot,
there were seven crop rows, among seven crop rows. WSPs were fixed at three crop rows
(Row 1, Row 4, Row 7), and each row was 2.2 m apart (Figure 3). In each row, two WSPs
were fixed along the traveling direction, spaced by 5 m (Figure 3). Therefore, there were six
WSPs in each plot. To avoid drift pollution, a 5 m buffer zone was also provided between
the plots. Each trial was repeated three times (3 blocks). The spray was started and stopped
5 m away from the trial plot to achieve the uniform spraying.
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In all spray trials, freshwater was used as a spraying liquid. The forward speed of
the sprayer was calibrated manually using measuring tape and a stopwatch. The spray
height above the plant canopy was controlled with a hydraulic system and measured
with measuring tape before each trial. The spray pressure was regulated using a pressure
regulation valve and measured with a pressure gauge.

After nearly 30–40 s of spraying, WSPs at each plot were collected and stored in a
separate labeled sealed bag, the label describing spray treatment, replication, and location
information. Immediately after collection sampling bags were placed into a light-proof
seal [33] box and transported to the laboratory for analysis. In the laboratory, the WSPs
were scanned using a 600-dpi scanner, and droplet deposits were analyzed employing
Depositscan software [23]. Depositscan software was used to measure the droplet deposits
in the digital image and analyzed the droplet density, coverage percentage, and VMD.
When software starts, first open the ImageJ window then the user is required to scan the
WSP. After scanning, the image is converted into an 8-bit grayscale image. In the next step,
to activate the command “count black and white pixels” and select the area for analysis,
the ANALYSIS feature in ImageJ is used. The results are generated as the percentage area
covered by the spots and the total number of spots. In the last step, the software calculates
the droplet size such as DV1, DV5, and D9, DV1 indicates that 10% of the volume of spray
is in droplets smaller than the expressed values, DV5 means that 50% of the volume of
spray is in droplets either smaller or higher, DV9 reveals that 90% of the volume sprayed is
in droplets smaller than the given values. A DV5 was used as VMD in this study.

2.3. Weather Conditions

The environmental parameters were collected from the University of Agriculture,
Faisalabad, Pakistan, Metrological Cell. The digital Kestrel device (model NK-5500, Nielsen-
Kellerman Co., Pennsylvania, PA, USA) with a collection frequency of 2 s was used in the
test, the temperature, humidity, and wind speed was recorded from 10:00 AM to 6:00 PM.
During the test the maximum and minimum temperature was 41–23 ◦C, the maximum and
minimum relative humidity was 45.2–35%, and the maximum and minimum wind velocity
was 6.8–4.3 km/h.

2.4. Response Surface Methodology Approach

The response surface methodology (RSM) is used to optimize the independent vari-
ables. In RSM, the optimization of independent variables consisted of five steps. (1) selection
of response variables; (2) selection of independent variables and allotting codes to them;
(3) development of experimental design for response variables; (4) regression analysis and
development of a quadratic polynomial (response generation); (5) generating 3D surface of
the observed response surface and analysis of optimal conditions. The RSM along with
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Box–Behnken design (BBD) was carried out with 17-trials (5 sets of center tests and 12 sets
of factorial tests) using Design-Expert v13.0 software (Stat-Ease, Inc. Minneapolis, MI,
USA). In RSM, the forward speed X1, spray height X2, and spray pressure X3 were used as
independent variables. Independent variables and their code levels are given in Table 2.
The 17-trials were performed according to the BBD methodology requirement (Table 3).
The droplet density, coverage percentage, and VMD were used as the response variables to
evaluate the performance of the sprayer.

Table 2. Independent variables and their code level in RSM.

Independent Variables Code Actual
Levels

−1 0 1

Forward speed (km/h) x1 X1 4 6 8
Spray height (cm) x2 X2 40 55 70

Spray pressure (bar) x3 X3 3 5 7
Note: x1 = (X1 − 6)/2; x2 = (X2 − 55)/15; x3 = (X3 − 5)/2.

Table 3. Experimental values of the independent variables. Mean and standard deviation of the
response variables.

Run No.
Independent Variables Response Variables *

X1 X2 X3 Droplet Density Coverage Percentage VMD

km/h cm bar Droplets/cm2 % µm

1 6 (0) 40 (−1) 7 (1) 93 ± 3.32 49.2 ± 1.55 252.5 ± 2.27
2 8 (1) 55 (0) 7 (1) 59.8 ± 3.41 28.1 ± 1.67 232.1 ± 2.05
3 6 (0) 70 (1) 7 (1) 74.8 ± 3.65 35.1 ± 1.76 238.1 ± 2.13
4 6 (0) 40 (−1) 3 (−1) 76.3 ± 2.97 36.4 ± 1.82 235.1 ± 2.21
5 4 (−1) 40 (−1) 5 (0) 94.2 ± 3.15 52.9 ± 1.43 259.8 ± 2.48
6 4 (−1) 55 (0) 7 (1) 92.6 ± 2.87 48.8 ± 1.62 255.5 ± 2.39
7 8 (1) 55 (0) 3 (−1) 44.6 ± 3.46 20.5 ± 1.51 225.4 ± 2.16
8 6 (0) 55 (0) 5 (0) 70.3 ± 3.09 32.3 ± 1.64 235.6 ± 1.97
9 4 (−1) 55 (0) 3 (−1) 86.5 ± 2.91 44.7 ± 1.74 247.1 ± 2.27

10 6 (0) 70 (1) 3 (−1) 56.9 ± 3.23 26.6 ± 1.38 230.5 ± 2.31
11 6 (0) 55 (0) 5 (0) 72.9 ± 3.54 34 ± 1.46 239.2 ± 2.54
12 6 (0) 55 (0) 5 (0) 72.4 ± 2.83 33.5 ± 1.31 237.3 ± 2.42
13 4 (−1) 70 (1) 5 (0) 83.9 ± 3.21 42.6 ± 1.52 248.8 ± 1.99
14 6 (0) 55 (0) 5 (0) 68.7 ± 3.57 30.9 ± 1.59 233.7 ± 1.95
15 6 (0) 55 (0) 5 (0) 69.5 ± 2.98 31.7 ± 1.61 233.5 ± 2.43
16 8 (1) 70 (1) 5 (0) 49.1 ± 3.36 22.8 ± 1.49 226.4 ± 2.22
17 8 (1) 40 (−1) 5 (0) 65.6 ± 2.95 30.1 ± 1.35 231.3 ± 2.09

* All the trial data were mean values of triplicate determinations.

In the Box–Behnken design, independent variables are symbolized by X1, X2, and X3;
+1, 0, and −1 represent the high, middle, and low levels of each independent variable. The
independent variables are coded by Equation x1 = (X1 − X0)/∆X, where x1 is the code
value for an independent variable, X1 is the actual value for an independent variable, X0 is
the actual value for an independent variable at the experimental center point, ∆X is the
step size.

According to the BBD model, the quadratic polynomial regression formula is given in
Equation (1).

Y = β0 +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i +

n

∑
i<j

βijXiXj (1)

(i = 1, 2, 3 . . . , n; j = 1, 2, 3 . . . , n)

In above equation, Y are the response values, X are the independent values, β0 = intercept,
βi = Linear coefficient. βii = Quadratic coefficient. βij = Interaction term coefficient.
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Moreover, the model validation was also carried out to check whether the predicted
model agrees with actual results. For that purpose, after developing the model, three more
experiments were performed in the cotton field with the same experimental procedure.

2.5. Data Analysis

To determine the relationship between the responses and model validation, several
statistical parameters such as correlation coefficient of determination (R2), predicted R2, and
adjusted R2 were used [26,34]. Analysis of variance (ANOVA) was performed to determine
the significance of the quadratic model at α = 0.05.

3. Results and Discussion
3.1. Regression Model

Regression models, including the studied parameter (forward speed, spray height,
and spray pressure), were developed to predict the response variables (Equations (2)–(4)).
The experiment design and results are shown in Table 3, where run No. 8, 11, 12, 14, and
15 are for sets of center tests to estimate the experiment error and all other run No. are for
factorial tests.

Droplet density = +181.22799− 5.73083 X1 − 1.94256 X2 − 3.17500 X3 (2)

Coverage percentage = +142.35097− 12.91750 X1 − 1.76378 X2 + 0.01315 X2
2 (3)

VMD = +333.54708 –18.29958 X1 − 1.34617 X2 − 5.58542 X3 + 0.836250 X2
1 (4)

In all the above equations, X1 is the forward speed in km/h, X2 is the spray height in
cm, and X3 is the spray pressure in the bar.

3.2. Analysis of Variance (ANOVA)

The results of droplet density, coverage percentage, and VMD were analyzed using
Design-Expert software, which is given in Table 3. Three different tests, a sequential model
sum of squares, lack of fit, and model summary were carried out, to check the adequacy
of the model. Analysis of variance (ANOVA) for the quadratic models revealed that all
independent variables were significant as p < 0.05. The results are shown in Tables 4–6.

Table 4. ANOVA for droplet density.

Source SS df MS F-Value p-Value Result

Model 3381.44 9 375.72 39.87 <0.0001 significant

X1-Forward speed 2383.95 1 2383.95 252.98 <0.0001

X2-Spray height 518.42 1 518.42 55.01 0.0001

X3-Spray pressure 390.60 1 390.60 41.45 0.0004

X1 X2 9.61 1 9.61 1.02 0.3462

X1 X3 20.70 1 20.70 2.20 0.1818

X2 X3 0.3600 1 0.3600 0.0382 0.8506

X1
2 3.94 1 3.94 0.4182 0.5384

X2
2 48.89 1 48.89 5.19 0.0568

X3
2 4.93 1 4.93 0.5236 0.4928

Residual 65.96 7 9.42

Lack of Fit 52.65 3 17.55 5.27 0.0710 not significant

Pure Error 13.31 4 3.33
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Table 4. Cont.

Source SS df MS F-Value p-Value Result

Cor Total 3447.40 16

Std. Dev 3.07 R2 0.9809

Mean 72.42 Adj. R2 0.9563

C.V% 4.24 Pre. R2 0.7569
Adeq

Precision 22.346

Table 5. ANOVA for coverage percentage.

Source SS df MS F-Value p-Value Result

Model 1380.60 9 153.40 45.44 <0.0001 significant

X1-Forward speed 957.03 1 957.03 283.50 <0.0001

X2-Spray height 215.28 1 215.28 63.77 <0.0001

X3-Spray pressure 136.12 1 136.12 40.32 0.0004

X1 X2 2.25 1 2.25 0.6665 0.4412

X1 X3 3.06 1 3.06 0.9072 0.3726

X2 X3 4.62 1 4.62 1.37 0.2802

X1
2 11.60 1 11.60 3.44 0.1062

X2
2 36.89 1 36.89 10.93 0.0130 significant

X3
2 8.08 1 8.08 2.39 0.1658

Residual 23.63 7 3.38

Lack of Fit 17.14 3 5.71 3.52 0.1277 not significant

Pure Error 6.49 4 1.62

Cor Total 1404.23 16

Std. Dev 1.84 R2 0.9832

Mean 35.31 Adj. R2 0.9615

C.V% 5.20 Pre. R2 0.7975

Adeq
Precision 24.402

Table 6. ANOVA for VMD.

Source SS df MS F-Value p-Value Result

Model 1619.25 9 179.92 30.58 <0.0001 significant

X1-Forward speed 1152.00 1 1152.00 195.78 <0.0001

X2-Spray height 152.25 1 152.25 25.87 0.0014

X3-Spray pressure 201.00 1 201.00 34.16 0.0006

X1 X2 9.30 1 9.30 1.58 0.2490

X1 X3 0.7225 1 0.7225 0.1228 0.7363

X2 X3 24.01 1 24.01 4.08 0.0831

X1
2 47.11 1 47.11 8.01 0.0254 significant
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Table 6. Cont.

Source SS df MS F-Value p-Value Result

X2
2 23.65 1 23.65 4.02 0.0850

X3
2 2.83 1 2.83 0.4811 0.5103

Residual 41.19 7 5.88

Lack of Fit 17.66 3 5.89 1.00 0.4788 not significant

Pure Error 23.53 4 5.88

Cor Total 1660.44 16

Std. Dev 2.43 R2 0.9752

Mean 238.94 Adj. R2 0.9433

C.V% 1.02 Pre. R2 0.8077

Adeq
Precision 19.363

The normal percentage probability plot of residuals for droplet density, coverage
percentage, and VMD (Figures 4a, 5a and 6a) shows that residuals are lying on a straight
line and 95% of residuals are falling within three-sigma limits. This indicates that errors are
normally distributed [29]. Figures 4b, 5b and 6b show that the actual values are following
the predicted ones calculated from the models. As all the plots for droplet density, coverage
percentage, and VMD (Figures 4–6) satisfy the prediction capability criteria and the error
normality, it is deduced that ANOVA results for the response variable are reliable.
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The F-values of 39.87, 45.44, and 30.58 in Tables 4–6, indicate the model is significant.
There is only a 0.01% chance for an F-value this large could occur due to noise in the case
of droplet density, coverage percentage, and VMD. The confidence interval was 95% in
this study. The results show that model factors are significant as p-value less than 0.05
for droplet density, coverage percentage, and VMD (Tables 4–6). The lack of fit was non-
significant (p > 0.05) relative to the pure error for all response variables, which showed that
model data was accurate (Tables 4–6). Lack of fit tells us whether a regression model is
a poor model, the Lack of fit p-value must be greater than 0.05 confidence interval. The
lack of fit can be calculated by dividing the lack of fit mean square by the pure error mean
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square. Furthermore, the coefficient of determination (R2) is computed to check whether
the fitted model truly explains the experimental data. To fit the regression model, the R2

value must not be less than 0.8 [26]. The R2 value for droplet density, coverage rate, and
VMD was 0.9809, 0.9832, and 0.9752, respectively. The R2 value indicates that the model is
statistically accurate as R2 values were greater than 0.8. The Predicted R2 of 0.7569, 0.7975,
and 0.8077 is in reasonable agreement with the Adjusted R2 of 0.9563, 0.9615, and 0.9433
for droplet density, coverage percentage, and VMD, respectively, i.e., the difference is less
than 0.2. The Adeq Precision measures the signal-to-noise ratio. A ratio greater than 4
is desirable. The model ratio of 22.346, 24.402, and 19.363 for droplet density, coverage
percentage, and VMD, respectively, indicates an adequate signal. This model can be used
to navigate the design space. The higher values of R2 and Adeq Precision indicate that this
model can be considered significant for predicting the experimental results. The coefficient
of variation (CV) is 4.24, 5.20, and 1.02 for droplet density, coverage percentage, and VMD,
respectively, which indicates the reliability of conducted experiment [29].
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3.3. Effect of Independent Variables on Dependent Variables
3.3.1. Effect of Independent Variables on Droplet Density

The droplet density depended on forward speed, spray height, and spray pres-
sure because of a highly significant effect at linear level (p < 0.01). From the regression
equation of droplet density (Equation (2)), the maximum predicted droplet density was
102.5 droplet/cm2 at speed 4 km/h, spray height 40 cm, pressure 7 bar. The minimum
predicted droplet density was 37.8 droplet/cm2 at speed 8 km/h, spray height 70 cm,
pressure 3 bar. The maximum value of droplet density was due to spraying near the plant
canopy at a low speed. Figure 7a showed that when spray height increased from 40 to 70 cm
at the constant forward speed (4 km/h) and spray pressure (5 bar), the 10.93% decrease was
observed in droplet density. Similarly, a 25.15% decrease was observed in droplet density
when spray height increased from 40 to 70 cm at the constant forward speed (8 km/h) and
spray pressure (5 bar). This 14.22% more decrease in droplet density from 10.93% to 25.15%
was due to the forward speed effect as speed changed from 4 to 8 km/h. The reduction
in droplet density at high speed could be due to boom movement, air turbulence as it
passes by the nozzles, and constant application rate. Based on the results it is concluded
that droplet density decreases as speed and height increase at constant pressure. Carroll
reported that droplet density decreases as forward speed increases [35]. Figure 7b showed
that when spray pressure increased from 3 to 7 bar, the droplet density increased from
86.5 to 92.6 droplets/cm2 at the constant forward speed (4 km/h) and spray height (55 cm).
Similarly, the droplet density increases from 44.6 to 59.8 droplets/cm2, when spraying
pressure increases from 3 to 7 bar at the constant forward speed (8 km/h) and spray height
(55 cm). The increase in the droplet density was due to a change in application rate, as pres-
sure increases, the application rate also increases. Carroll reported that the application rate
increases as pressure increases [35]. Thus, it is concluded that the droplet density increases
as pressure increases. Figure 7c showed that when both spray height and pressure increased
from lower level to higher level (40 to 70 cm and 3 to 7 bar) simultaneously at a constant
speed (6 km/h), a 2% decrease was observed in droplet density. This shows that when both
height and pressure change simultaneously at a constant speed, the change in the droplet
density will be minor because of the combined effect of both height and pressure.
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3.3.2. Effect of Independent Variables on Coverage Percentage

The effect of forward speed, spray height, and pressure on coverage percentage was
highly significant at the linear level (p < 0.01). The effect of height on coverage percentage
was significant at the quadratic level (p < 0.05). From the regression equation of coverage
percentage (Equation (3)), the maximum and minimum predicted coverage percentage
was 59.7 and 19.1% at 4 km/h, 40 cm, 7 bar and 8 km/h, 70 cm, 3 bar, respectively. The
coverage percentage is dependent on application rate and droplet size. Coverage percentage
increases with an increase in application rate [35], on the other hand, coverage percentage
increases with fine droplet size [17]. Figure 8a showed that when spray height increased
from 40 to 70 cm, the 19.47% decrease was observed in coverage percentage at the constant
forward speed (4 km/h) and spray pressure (5 bar). Additionally, when spray height
increased from 40 to 70 cm at the constant forward speed (8 km/h) and spray pressure
(5 bar), a 24.25% decrease was observed in coverage percentage. This 4.78% more decrease
from 19.47% to 24.25% in coverage percentage was due to the forward speed as at high
speed, application rate decreases at constant pressure. Carroll reported the same trend [35].
This shows that coverage percentage decreases as speed and height increase at constant
pressure. Sayinci et al. reported decreasing coverage percentage with increasing forward
speed and spray height [17]. Nansen et al. also reported that spray coverage decreases as
sprayer speed increases [36]. Figure 8b showed that when spray pressure increased from
3 to 7 bar, the coverage percentage increased from 44.7 to 48.8% at the constant forward
speed (4 km/h) and spray height (55 cm). Similarly, the coverage percentage increases from
20.5 to 28.1%, when spray pressure increased from 3 to 7 bar at the constant forward speed
(8 km/h) and spray height (55 cm). This shows that the coverage percentage increases
as pressure increases. Ranta et al. reported the same trend [21]. Carroll also reported
that coverage percentage increases as pressure increases [35]. Figure 8c showed that at a
constant speed (6 km/h), a 3.6% decrease was observed in coverage percentage when both
spray height and pressure increased from low level to high level (40 to 70 cm and 3 to 7 bar)
simultaneously. This shows that the coverage percentage decreases as the two parameters
simultaneously increased at a constant speed. Although the application rate increases at
high pressure but at the same time height was also maximum, which is why there was a
small change in coverage percentage.
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3.3.3. Effect of Independent Variables on VMD

The influence of independent variables on VMD was highly significant (p < 0.01). The
influence of forward speed on VMD was significant at the quadratic level (p < 0.05). From
regression equation of VMD (Equation (4)), the maximum predicted value of VMD was
268.2 µm for speed 4 km/h, spray height 40 cm, pressure 7 bar and minimum predicted
value of VMD was 225.4 µm, for speed 8 km/h, spray height 70 cm, pressure 3 bar.
Figure 9a showed that the VMD was decreased from 259.8 to 248.8 µm when spray height
increased from 40 to 70 cm at the constant speed and pressure (4 km/h, 5 bar). Likewise, a
decrease was observed from 248.8 to 226.4 µm in VMD when forward speed increased from
4 to 8 km/h at the constant spray height and pressure (70 cm, 5 bar). This shows that the
variation in the VMD data was due to the speed and height as speed and height increase,
the VMD decreases at constant pressure. Shirwal et al. reported the same, as spray height
increases, the VMD decreases [37]. Figure 9b shows that there was a 3.28% increase in VMD
when spray pressure increased from 3 to 7 bar, whereas other parameters were constant
(speed 4 km/h and height 55 cm). Similarly, a 2.88% increase was observed in VMD when
spray pressure increased from 3 to 7 bar at the constant speed (8 km/h) and spray height
(55 cm). This showed that the value of VMD increases as pressure increases. Ranta et al.
reported that as pressure increases from 3 to 5 bar, the average droplet size (DV5) increases,
followed by a decrease at 7 bar and increase again at 9 bar pressure [21]. Figure 9c showed
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that a 1.25% increase was observed in VMD when both spray height and pressure increased
from low level to high level (40 to 70 cm and 3 to 7 bar) simultaneously at a constant
speed (6 km/h). This shows that when both height and pressure change simultaneously
at a constant speed, the effect on VMD will be small. All values of VMD of the sprayer
were falling under fine and medium class (Table 3) as defined by ASABE [25]. The fine
and medium size sprays are the most widely used spray type and used for insecticides,
herbicides, and systematic-acting fungicides [25]. The ideal droplet size is 50–300 m. If the
droplet size is less than 50 m, the droplets would be easy to drift. If the droplet size is more
than 300 µm, the droplets would find it difficult to penetrate the crop canopy and adhere to
the target [38].
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3.4. Optimization Using RSM Approach

The optimized values of the independent variables (forward speed, spray height,
and spray pressure) were selected for the response variables (droplet density, cover-
age percentage, and VMD) by solving regression equation using Design-Expert software
(Figures 10–12). The droplet density, coverage percentage, and VMD of the spray spec-
trum are the deciding factor for parameter optimization. The droplet density should be
within or more than the critical limit for insecticide, herbicide, and fungicide application.
The critical limits are 20–30 droplets per cm2 for insecticides or pre-emergence herbicides,
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30–40 droplets per cm2 for postemergence herbicides, and 50–70 droplets per cm2 for fungi-
cides [22–24]. The coverage percentage should be maximum or good enough to achieve
satisfactory results [36,39], but some studies suggest that reduced coverage percentage from
reduced application rate did not affect efficacy with some pesticides [40,41]. Additionally,
some studies suggest that a coarser spray nozzle can be selected to maximize the coverage
percentage [17,37]. On the other hand, Nansen et al. reported that the highest coverage
percentage was not always achieved with the same type of nozzles due to the effect of
spray setting (application rate, sprayer speed, and spray height) and weather conditions
(temperature, humidity, wind speed, and barometric pressure) [36]. For this reason, the
extrapolation of the results based on coverage percentage from this study is difficult. The
VMD should fall within the fine or medium class for effective spray [25] as drift is higher
for small-sized droplets, but it gives better coverage. On the other hand, too large droplets
result in reducing deposition but are not likely to drift. Based on the droplet density critical
limits and droplet size class, the optimized parameters were 6.5 km/h, 60 cm, 4 bar for
fungicide application and 8 km/h, 70 cm, 3 bar for insecticide and herbicide application.
The predicted response variable values at the optimal conditions were 60.4 droplet/cm2,
27%, 230 µm for fungicide and 37.8 droplet/cm2, 19.1%, 225.4 µm for insecticide and her-
bicide application. At both optimal conditions, the droplet density and droplet size were
within the recommended range and the coverage percentage was also high enough. The
values of droplet density, coverage percentage, and VMD at both optimal conditions are
unlikely to continue indefinitely due to environmental factors but were consistent during
the experiment.
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3.5. Validation of RSM Model

The RSM model was validated by experimenting with the optimal condition for insec-
ticide and herbicide application (8 km/h, 70 cm, and 3 bar). The actual values of droplet
density, coverage percentage, and VMD at optimized condition were 41.35 droplets/cm2,
21.10%, and 227.43 µm, respectively. The results of the predicted and actual response
variables are given in Table 7. The prediction error [29] listed in Table 7 was calculated
using Equation (5).

Prediction error (%) =
(Actual value− Predicted value)

Actual value
× 100 (5)

Table 7. Optimal condition, predicted and actual value, at optimized spray condition.

Response Variable Actual Value Predicted Value Prediction Error (%)

Droplet density (droplets/cm2) 41.35 ± 3.67 37.85 8.46
Coverage percentage 21.10 ± 1.72 19.15 9.2

VMD (µm) 227.43 ± 1.22 225.41 0.9

As the predicted results found from regression equations agree with the actual results
and the prediction errors are less than ±10% [29], the developed models can be considered
as reliable for experimental results.

4. Conclusions

In this study, the RSM approach presented a change in the droplet density, coverage
percentage, and VMD, caused by a change in forward speed, spray height, and spray
pressure at the 3D surface with high accuracy as a graph containing many small pixels. The
results conclude that the droplet density and coverage percentage decrease as speed and
height increase and pressure decreases. The VMD decrease as speed and height increase.
On the other hand, VMD increase in small fraction as pressure increases. The model data
was accurate as R2 values were greater than 0.8 for droplet density, coverage percentage,
and VMD. The optimized parameters were 6.5 km/h, 60 cm, 4 bar for fungicide application,
and 8 km/h, 70 cm, 3 bar for insecticide and herbicide application. The predicted response
variable values at the optimal conditions were 60.4 droplet/cm2, 27%, 230 µm for fungicide
and 37.8 droplet/cm2, 19.1%, 225.4 µm for insecticide and herbicide application. The actual
response variable values at the optimal condition for insecticide and herbicide application
were 41.35 ± 3.67 droplet/cm2, 21.10 ± 1.72%, 227.43 ± 1.22 µm, and the prediction error
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was 8.46%, 9.2%, and 0.9% for droplet density, coverage percentage, and VMD, respectively.
Because prediction errors are less than ±10% so, the developed models can be considered
reliable for experimental results. The RSM could be a suitable approach to study the
optimal conditions. Optimization of spraying parameters is important to improve the
effectiveness of spray while reducing spraying cost, application time, and spray losses to
the environment. Furthermore, this study can provide support for further optimizing the
parameters of the sprayer.
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