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Abstract: Fast and precise estimation of the available nitrogen content in vermiculite substrates
promotes prescription fertilization in desert facility agriculture. This study explored near-infrared
spectroscopy for rapid detection of the available nitrogen content in vermiculite substrates in desert
facility agriculture. The spectra of vermiculite matrices with different available nitrogen contents
were collected through a self-assembled near-infrared spectrometer. Partial least squares expression
(PLSR) established the available nitrogen spectrum prediction model optimized using different
pretreatments. After pretreatment, the prediction model of the available nitrogen spectrum was
simplified by adopting three feature extraction methods. A comprehensive comparison of the results
of each prediction model showed that the prediction model combining the first derivative with SG
smoothing pretreatment was the best. The correlation coefficients of the corresponding calibration
and prediction sets were 0.9972 and 0.9968, respectively. The root mean square errors of the calibration
and prediction sets were 149.98 and 159.65 mg/kg, respectively, with 12.57 RPD. These results provide
a feasible method for rapidly detecting the available nitrogen content of vermiculite substrates in
desert facility agriculture.

Keywords: vermiculite; near-infrared spectroscopy; nondestructive detection; available nitrogen

1. Introduction

Combining information technology with modern agricultural operation and manage-
ment systems is a new agricultural practice for positioning, timing, and quantification. The
rapid development of precision agriculture in facility farming demands rapid and accurate
detection technology for the precise control and management of desert facilities [1,2]. Preci-
sion agriculture is a new system in desert facility agriculture. The desert characteristics of
massive evaporation and minimal agricultural materials birthed the development of facility
agriculture which combines and precisely controls low-cost substrates with high water
and fertilizer conservation [3]. Natural, inorganic, and non-toxic vermiculite ore expansion
produces vermiculite substrate, which provides the nutrients and water necessary for
long-term plant growth and effectively promotes crop root growth and stable seedling
development. Vermiculite substrate is an alternative cultivation substrate in desert facility
agriculture [4,5].

Notably, available nitrogen is easily absorbed and utilized by plants and is often
used for short-term rapid nitrogen fertilizer supplementation to promote crop growth
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and ensure crop yield [6–8]. However, facility agriculture lacks the relevant technology
and equipment to quickly detect the available nitrogen content of cultivation substrates.
Thus, excessive application is generally adopted to ensure sufficient supplies, causing
fertilizer overuse, serious waste, and agricultural pollution [9]. Presently, the detection of
nitrogen in cultivation substrates mainly involves conventional chemical measurement of
soil available nitrogen content, a time- and labor-intensive technique that pollutes the envi-
ronment [10,11]. Therefore, methods for rapidly detecting the available nitrogen content in
vermiculite substrates and determining in a timely manner the available nitrogen content
in the cultivation environment are crucial for precise fertilization in desert facility agricul-
ture and reducing agricultural pollution. Moreover, rapid and pollution-free methods for
detecting nitrogen fertilizer levels in vermiculite substrates are urgently required.

The near-infrared (NIR) spectrum detection technique, widely used in food, medicine,
agriculture, the chemical industry, and other fields, is suggested. The NIR technique is
simple, rapid, nondestructive, and pollution-free [12]. The absorption bands in the NIR
spectrum are all related to hydrogen groups (such as C-H, N-H, and O-H) and can analyze
specific structures of chemical components. NIR spectroscopy has been widely used for
detecting soil composition [13]. Many studies have shown that the NIR spectrum rapidly
and non-destructively detects soil available nitrogen, phosphorus, and potassium [14–16].
This study adopted the NIR spectroscopy to evaluate the available nitrogen content of
vermiculite substrates in crop cultivation.

Despite the research progress in detecting available nitrogen content, most reports
have focused on detection from soil, with only a few reports on detection in soil-less
cultivation substrates. Vermiculite is an agricultural mineral matrix used in desert facilities.
Therefore, rapid and accurate detection of available nitrogen content can facilitate the
improvement of available nitrogen and water usage, further promoting and popularizing
desert agricultural facilities. However, a systematic technical system for detecting the
available nitrogen content of vermiculite is still lacking. Therefore, this study explored the
possibility of using near-infrared spectroscopy to detect the available nitrogen content of
vermiculite matrices rapidly. The research provides technical support for the agricultural
application of vermiculite, specifically, a NIR spectral prediction model for rapidly detecting
available nitrogen content in cultivation environments, thus promoting the modernization
of desert agricultural facilities.

This study aimed at: (1) a vermiculite available nitrogen NIR spectroscopy system
with a 940–1660 nm wavelength range; (2) establishing a prediction model of full spectral
data using the partial least squares regression (PLSR) of different spectral pretreatments for
detecting the nitrogen content of vermiculite substrate; (3) using the successive projections
algorithm (SPA), competitive adaptive reweighted sampling (CARS), and synergy interval
partial least squares (Si-PLS) to screen the characteristic NIR spectroscopic wavelengths
of vermiculite available nitrogen; (4) analyzing and comparing quantitative prediction
models of the spectral data, available nitrogen, and the prediction results of different
feature extraction methods. The best NIR spectroscopic model for predicting the available
nitrogen content of vermiculite substrates was selected by comparing the modeling results
of characteristic variables and the full spectral data.

2. Materials and Methods
2.1. Experimental Materials

White vermiculite from the Qeganbulak Vermiculite mine in the northeast corner
of the Taklimakan Desert, Xinjiang Uygur Autonomous Region (China) was used as the
vermiculite substrate material. Before the experiment, the vermiculite substrates were
immersed in a container of deionized water for 24 h, then filtered with gauze to remove
impurities, and the substrates were dried naturally. Then, 10 g was weighed from each
dried substrate using an analytical balance with a 0.001 g sensing accuracy and successively
added to an aluminum box (40 mm diameter). The reference concentration gradient was the
range of available nitrogen content in the actual cultivation environment. Then, different
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concentrations of nitrogen fertilizer solutions were artificially and successively added to
the aluminum box in a way that simulated fertilization. The available nitrogen content of
the substrate in the aluminum box was similar to the actual cultivation environment. The
numbers were marked and recorded. Vermiculite substrate samples containing nitrogen
fertilizer solutions were placed in a closed environment for 24 h to ensure that vermiculite
substrates fully absorbed the nitrogen fertilizer. Next, the vermiculite samples were placed
in a 105 ◦C thermostatic drying oven to eliminate moisture that might influence the spectral
data. Dried vermiculite substrate samples were crushed successively by a crusher and
screened through a 0.25 mm screen to form vermiculite substrate powder with uniform
particle size. Before each grinding, the crusher was cleaned, and each screened sample
of vermiculite substrate was weighed and added into a clean aluminum box of 40 mm
diameter. Weighed samples were compacted with 500 g calibration weights to eliminate
the influence of particle size heterogeneity on spectral data collection.

2.2. NIR Spectrum Measurement System and Spectral Data Acquisition

A locally prepared reflectance NIR spectroscopy collection system determined the
reflectance spectral data of the vermiculite substrate samples (Figure 1). The local NIR spec-
trum collection system is composed of a Flame NIR spectrometer (FLAME-NIR-INTSMA25,
Ocean Optics Co., Ltd., Dunedin, FL, USA), four 35 W halogen tungsten lamps (Philips
halogen 12V, Shanghai Philips Co., Ltd., Shanghai, China), an optical fiber with a fiber
probe, a ball screw, a sample chamber, and a computer control unit and display.
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Figure 1. Equipment for visible and near-infrared spectral measurements. 1. Ball screw. 2. Tungsten
halogen lamp. 3. Sample room. 4. Optical fiber. 5. NIR spectrometer. 6. The computer control unit.
7. Monitor.

The wavelength range of the collected spectral data was 940–1660 nm, with a 5.8 nm
sampling wavelength interval and 6000:1 signal-to-noise ratio. The tungsten halogen
light source was preheated for 30 min before acquiring spectral data using the self-made
detection system. In addition, the vermiculite substrate spectral data was acquired at
386 ms, 3 nm, 3 ms integration time, smoothness (average sliding width), and average
scanning time, respectively. The optical fiber probe and sample surface were 20 mm
apart. All spectral acquisition and testing were completed by the Oceanview windows
launcher 2.0.7, a professional testing software package provided by Ocean Optics Co., Ltd.,
Dunedin, FL, USA. After pre-warming, a standard Teflon whiteboard generated the white
reference to circumvent external environmental influence on the spectral data.

While obtaining the black reference spectral data, the halogen tungsten light source
was wrapped in a black shield to form a dark environment and reduce interference from
the unstable light source. Collecting the spectral data of vermiculite samples requires
an equal distance between the surface of each sample and the optical fiber probe. More-
over, the position and brightness of the light source should remain constant to reduce
measurement errors.
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2.3. Laboratory Chemical Measurements

Based on the Chinese forestry standard LY/T1229-1999, the available nitrogen of
vermiculite was determined by the alkali hydrolysis diffusion method with proper adjust-
ments. The 144 test samples were prepared by weighing 1 g of dried vermiculite substrate
powder through a 0.25 mm sieve and spreading it evenly in an extracellular chamber
of a Conway dish. Simultaneously, three blank vermiculite-free tests were set up, and
3 mL of 20 g/L boric acid indicator solutions were added to the intracellular chamber
of the Conway dish. The boric indicator solution was composed of 100 mL of 20 g/L
boric acid (AR, Beijing Chemical Plant, Beijing, China), 2 mL of 0.1 g methyl red (IND,
Tianjin Guangxia Fine Chemical Institute, Tianjin, China), and 0.5 g bromocresol green
(IND, Tianjin Guangxia Fine Chemical Institute, China). The constituents were dissolved in
methyl red–bromocresol green indicator with 100 mL of 95% ethanol (AR, Tianjin Beilian
Fine Chemicals Development Co., Ltd., Tianjin, China) and adjusted to pH 4.5. An alkaline
gel was evenly smeared on the external edge of the Conway dish and covered with frosted
glass. After sealing, 10 mL of 1.2 mol/L NaOH solution from the frosted glass edge was
added to the extracellular chamber of the Conway dish. The frosted glass cover was bound
to the Conway dish using a rubber band to form a cross bundling and a closed space inside
the Conway dish. The bound Conway dish was placed in a thermostatic incubator at 40 ◦C
for 24 h of alkaline hydrolysis diffusion reaction. After that, the mixture absorption solution
of boric acid and indicator in the intracellular chamber was titrated with 0.01 mol/L stan-
dard hydrochloric acid solution (Xiamen Science and Technology Co., Ltd., Xiamen, China).
The titration was terminated when the absorption solution changed from blue-green to
purplish-red. The content of available nitrogen in the vermiculite substrate was calculated
following the titration consumption volume of the standard 0.01 mol/L hydrochloric acid
solution. The calculation is as shown in Equation (1).

WN =
(V − V0)× C × 14

k × m
× 100 (1)

where WN is sample available nitrogen content, mg/100 g; V is the consumption of standard
titration acid solution of the test sample, mL; V0 is the consumption of standard titration
acid solution of the blank sample, mL; C is the concentration of the standard titration acid
solution, mol/L; m is the weight of the sample, g; k is the water reduction coefficient of the
air-dried sample.

2.4. Spectral Preprocessing

The acquired NIR data had interference in the inform of background noise and scatter-
ing [17], which could negatively influence the prediction accuracy of the model. Therefore,
the first- and second-order derivatives, Savitzky–Golay smoothing (SG), multiplicative
scatter correction (MSC), standard normal variable transformation (SNV), and derivative-
integrated SG smoothing were used to preprocess the spectral data and reduce the noise
and scattering interference. The first- and second-order derivatives reduced background
interference, enhancing spectral characteristics. Savitzky–Golay smoothing eliminated
high-frequency noise, smoothened the spectral data, increased the signal-to-noise ratio,
and retained important information. The window size and degree of the polynomial were
12 and 2, respectively [18]. The MSC eliminated the spectral differences caused by different
scattering levels, enhancing the correlation between spectra and data [19]. However, SNV
eliminated the influence of solid particle differences and information about the measured
substances [20]. Finally, the derivative combined with the SG smoothing method eliminates
the influence of solid particle difference and the content information of the measured
substance, thus performing spectral data pretreatment.

2.5. Establishment and Evaluation of the Spectral Prediction Model

The absorption bands in the NIR spectral region were all related to hydrogen-containing
groups. Therefore, the spectra of the available nitrogen content of the vermiculite substrate
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and wavelength were irrelevant for detecting the available nitrogen content. Moreover, the
spectral data corresponding to these wavelengths significantly interfered with the available
nitrogen content detection [21]. In this study, the characteristic variables closely related to
available nitrogen content detection were selected to reduce the interference of irrelevant
variables and enhance the prediction accuracy of the model.

The data was preprocessed using SPA, CARS, and SI-PLS to simplify the model
and enhance its detection accuracy for the characteristic variables of the spectral data for
the available nitrogen content of vermiculite substrate. The SPA method screened the
characteristic variables via a forward loop. This technique (SPA) minimizes collinearity
in the vector space of the spectral data and reduces spectral substrate redundancy [22].
The CARS method, however, uses Monte Carlo sampling and partial least squares (PLS)
regression coefficients to significantly reduce the amount of data and establish the optimal
combination of variables [23]. However, both SPA and CARS are univariate screening
methods, and the selected wavelength variables are a subset of individually relevant
variables. The Si-PLS algorithm considers the root mean square error of the synergy model
as the accuracy measurement standard of each model [22]. The algorithm selects the lowest
root mean square error combination and the corresponding sub-interval combination as
the best combination.

The change in peak values of the spectral curve is the change of the available nitrogen
content of vermiculite substrates. A linear relationship model between the spectral data of
vermiculite substrates and the measured available nitrogen content was established using
the PLSR to rapidly and quantitatively detect the available nitrogen content of vermiculite
substrates [24]. The PLSR is an effective linear modeling method with the advantages
of principal components, canonical correlation, and multiple linear regression analyses.
PLSR is especially suitable for establishing the prediction model when the number of NIR
spectral variables is larger than the number of samples. Therefore, the PLSR algorithm is
useful for establishing the spectral prediction model of the available nitrogen content of
vermiculite. All modeling was performed in MATLAB R2018b (Mathworks Inc., MA, USA).

The following indicators: calibration set correlation coefficient (RC), prediction set
correlation coefficient (RP), the calibration set root mean square error (RMSEC), prediction
set root mean square error (RMSEP), and the ratio of prediction to deviation (RPD) were
applied to estimate the model performance. The root mean square error of the calibration
set had the best prediction performance when the correlation coefficient and root mean
square error of the calibration and the prediction sets of the prediction model were similar.
Formulas (2)–(4) show the calculation methods for these evaluation indicators. When Rc
and Rp are maximum, while RMSEC and RMSEP are minimum, RPD represents the accu-
racy level of the prediction model. The model was inapplicable for accurate quantitative
prediction because RPD < 3; 3 ≤ RPD < 4 implied better prediction performance. An
RPD ≥ 4 implied outstanding performance of the detection model [25,26].

R =

√√√√√1 −
∑n

i=1

(
yi,actuual − yi,predicted

)2

∑n
i=1
(
yi,actuual − yaverage

)2 (2)

RMSE =

√
∑n

i=1 (yi,actuual − yi,predicted)
2

n
(3)

RPD =
SD

RMSEP
(4)

where R is the correlation coefficient, n is the number of samples; yi,actuual is the measured
reference of the available nitrogen content of the ith sample; yi,predicted is the spectra-
predicted available nitrogen content of the ith sample; yaverage is the average of the average
available nitrogen content of the reference sample; RMSE is the root mean square error;
RPD is the ratio of prediction-to-deviation; RMSEP is the root mean square error of the
prediction set; and SD is the standard deviation of the prediction set.
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3. Results and Discussion
3.1. Grouping Statistics of the Available Nitrogen Content of Vermiculite

Using NIR spectroscopy, the available nitrogen content in 144 samples was determined
to establish a stable and reliable model for predicting the available nitrogen in vermiculite.
The spectral data of 144 vermiculite substrate samples were sorted in descending order
following the chemical measurements of available nitrogen content. The samples collected
at equal concentration intervals were divided into two groups, and 25% of the 144 samples
were selected as the prediction set. Table 1 shows the content range and distribution of
available nitrogen in the calibration and prediction sets.

Table 1. Available nitrogen content distribution of vermiculite matrix samples.

Subsets Sample Number Range of Available Nitrogen Content
(mg/kg) Mean (mg/kg) Standard Deviation

(mg/kg)

Calibration set 108 11.2–753.21 232.29 202.886
Prediction set 36 11.2–699.16 228.18 200.289
Total samples 144 11.2–753.21 231.26 200.848

Table 1 showed that sample available nitrogen chemical measurement value of calibra-
tion set covered the whole range of the sample set and had strong representativeness, and
the sample distribution of the two sets was similar. The classification of the two sets met
the requirements of spectral data grouping for establishing a model with better stability
and robustness.

3.2. Analysis of the Spectral Data of Vermiculite

A self-made NIR spectroscopy system collected the reflectance spectral data of ver-
miculite samples. The reflectance spectral data of 144 vermiculite substrate samples was
collected with a 940–1660 nm wavelength range. In Figure 2, below, the x-axis represents
the wavelength and the y-axis the reflectance.
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As shown in Figure 2, the basic variation trend of sample spectral curves is consis-
tent. The difference between sample spectrum curves of vermiculite substrates shows the
reflectivity of the absorption peak amplitude. The spectral curve showed no significant
change, implying the similar composition and chemical structure of the samples. The
absorption peak reflectance amplitude difference is due to the content differences of the
same substance in different samples.

The spectral curve showed three obvious absorption peaks near 1390, 1460, and
1570 nm. The absorption peak near 1390 nm signals the first frequency doubling of the
stretching vibration of the silanol O-H group in vermiculite, reflecting the characteristics of
vermiculite. The absorption peaks near 1460 and 1570 nm are related to the first frequency
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doubling vibration absorption of the N-H group and the change of available nitrogen
content of vermiculite substrates [27–29]. The characteristic peak at approximately 1120 nm
was related to the vibration absorption of secondary frequency doubling and combina-
tion frequency in C-H (CH2, CH3). In addition, that characteristic peak represented the
vibration absorption of methylene CH in the secondary frequency doubling region [30].
Therefore, most of the characteristic peaks reflecting the available nitrogen content were
weak absorption peaks.

3.3. NIR Spectroscopy of Available Nitrogen Content Based on All-Band Spectral Data of
Vermiculite Substrates

The PLSR algorithm established the prediction model of available nitrogen content
in vermiculite substrates using full spectral data. The original spectral data of vermiculite
substrates were pretreated with different algorithms to improve further the performance
of the model for the available nitrogen content of vermiculite substrates. In this article,
vermiculite matrix samples were arranged according to the different concentrations of
available nitrogen content by taking four samples as one group. Next, 25% and 75% values
of each group were extracted and combined into different sample intervals. Finally, the
correction set models of the different sample intervals were established using the PLSR
algorithm. The values of RC, RP, RMSEC, RMSEP, and RPD were used to select the optimal
number of principal components, where RC > RP, RMSEC < RMSEP, and RMSEP < 2RMSEC.
Finally, the optimal principal component score was used to calculate the PLSR prediction
model and the RPD value. Table 2 shows the prediction results.

Table 2. The partial least squares method under different pretreatment methods for predicting the
available nitrogen content of vermiculite matrix.

Pre-Processing Methods Number of Principal Components Rc RMSEC Rp RMSEV RPD

Original 8 0.9901 283.82 0.9835 399.56 5.28
1st Der 9 0.9955 191.69 0.9861 334.56 6.00
2nd Der 7 0.9957 187.63 0.9827 368.98 5.31

SG 8 0.9945 211.03 0.9942 239.91 8.54
MSC 7 0.9841 358.89 0.9747 501.61 4.27
SNV 8 0.9859 337.57 0.9751 515.51 4.21

1st Der + SG 8 0.9978 133.15 0.9967 169.10 11.78
2nd Der + SG 8 0.9982 120.35 0.9977 141.78 12.14

As shown in Table 2, different spectral pretreatment methods significantly affected
the PLSR model of vermiculite available nitrogen. All other pretreatments improved the
prediction accuracy of the model except MSC and SNV pretreatments. The MSC and SNV
pretreatments are generally used to eliminate the solid particle size difference and the
impact of the sample surface scattering. All vermiculite substrate samples in this study
were compacted after crushing and screening. The vermiculite sample particle size and
surface scattering effect were indifferent. Thus, MSC and SNV pretreatments instead
introduced irrelevant information, reducing model prediction accuracy. Combining the
second derivative pretreatment with SG smoothing had the best effect and significantly
improved the prediction effect of the model. The correlation coefficients of the calibration
and the prediction sets of the optimal model were 0.9982 and 0.9977, respectively. The RPD
was 12.14, indicating that the model had the best prediction performance.

3.4. Spectroscopic Measurement and Analysis of the Available Nitrogen Content of the Vermiculite
Substrate Based on SPA-Screened Characteristic Wavelengths

The characteristic variables of the original and various preprocessed spectral data were
SPA-screened to eliminate the influence of multicollinearity in NIR spectroscopy, reduce the
number of variables involved in spectral modeling, and enhance modeling effectiveness.
Moreover, PLSR established the prediction model for the nitrogen content of vermiculite
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substrates using the spectral data after SPA feature extraction. The modeling results are
listed in Table 3.

Table 3. Comparing PLSR results after extracting spectral features by successive projection algorithm.

Pre-Processing Methods Number of Characteristic Variables Rc RMSEC Rp RMSEV RPD

Original 5 0.9783 419.84 0.9809 395.19 5.21
1st Der 10 0.9852 346.67 0.9867 330.06 6.18
2nd Der 9 0.9666 521.19 0.9757 484.99 4.36

SG 31 0.9943 214.92 0.9941 244.87 8.49
MSC 16 0.9773 427.44 0.9713 503.21 4.21
SNV 27 0.9812 389.42 0.9699 518.45 4.10

1st Der + SG 54 0.9969 160.03 0.9966 186.45 10.99
2nd Der + SG 55 0.9967 164.45 0.9950 198.75 9.96

As shown in Table 3, the SPA screening of spectral data of characteristic variables
greatly reduces multicollinearity and improves the prediction accuracy of the model. In
the original spectrum, the first derivative and the second derivative had the largest data
elimination, but the RPD of the prediction model was low. The modeling effect of SG
smoothing alone and combining the derivative with SG smoothing performed better than
other pretreatments. After combining the first derivative with SG smoothing, the best model
had the optimal data prediction accuracy in PLSR modeling. The modeling variables were
reduced from 128 to 54, and the correlation coefficients of the calibration and prediction sets
of the optimal model were 0.9969 and 0.9966, respectively. The RPD was 10.99, indicating
that the prediction performance of the model was excellent. Figure 3 shows the results of
variable screening after using SPA to screen characteristic variables of the first derivative
combined with SG smoothing pretreatment for spectral data.
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The screened characteristic variables were distributed near the 1390 and 1500 nm
absorption peaks in the spectral band, as shown in Figure 3. The absorption peak near
1390 nm is related to the stretching vibration of the silanol O-H group in vermiculite,
reflecting the characteristics of vermiculite substrates. The absorption peak near 1500 nm is
related to the first frequency doubling vibration of the N-H group, closely related to the
change in the available nitrogen content of vermiculite substrates.

3.5. Spectroscopic Measurement and Analysis of the Available Nitrogen Content of the Vermiculite
Substrate Based on CARS-Screened Characteristic Wavelengths

The CARS algorithm screened the original and pretreated spectral data to reduce the
number of variables for spectral modeling and obtained the main characteristic variables
reflecting the change of available nitrogen content in vermiculite substrates. Subsequently,
PLSR established a prediction model of the nitrogen content in vermiculite substrates based
on the spectral data after CARS feature extraction and the results are listed in Table 4.
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Table 4. Comparing PLSR results after extracting spectral features by a competitive adaptive
reweighted sampling algorithm.

Pre-Processing Methods Number of Characteristic Variables Rc RMSEC Rp RMSEV RPD

Original 13 0.9843 357.39 0.9838 375.20 5.57
1st Der 26 0.9938 225.21 0.9878 312.60 6.48
2nd Der 25 0.9920 254.70 0.9896 285.08 7.04

SG 29 0.9926 246.05 0.9914 268.36 7.53
MSC 39 0.9864 331.35 0.9794 459.42 4.72
SNV 43 0.9859 337.99 0.9824 420.05 5.12

1st Der + SG 31 0.9972 149.98 0.9968 159.65 12.57
2nd Der + SG 25 0.9951 199.11 0.9933 228.79 8.77

As shown in Table 4, the CARS screening algorithm greatly reduces modeling re-
dundancy and improves the prediction accuracy of the model. In PLSR modeling, CARS
screening showed optimal prediction accuracy after combining the first derivative with
SG smoothing. The modeling variables were reduced from 128 to 31. The amount of data
was reduced by approximately 75%. The correlation coefficients of the calibration and
prediction sets of the optimal model were 0.9972 and 0.9968, respectively. The root mean
square errors (RMSE) of the calibration and prediction sets were 149.98 and 159.65 mg/kg,
respectively. However, the RPD was 12.57. The prediction performance of the model was
good. The CARS algorithm uses interactive verification to find the optimal combination
of variables. Thus, CARS greatly reduces the multicollinearity of vermiculite substrate
spectral data and the irrelevant variables of available nitrogen content spectral detection.
However, CARS accurately screens out the spectral data by directly reflecting the available
nitrogen content of vermiculite substrates and improving modeling efficiency.

3.6. Spectroscopic Measurement and Analysis of the Available Nitrogen Content of the Vermiculite
Substrate Based on Si-PLS-Screened Characteristic Wavelengths

The chemical composition content information in NIR spectral data might be a wave-
length region with a specific bandwidth. Therefore, the Si-PLS algorithm was adopted to
screen the original and pretreated spectral data. All the 128 detection wavelength vari-
ables were approximately divided into 20 sub-intervals. The best four groups of intervals
were selected to establish the prediction model and reduce the involvement of irrelevant
spectral data in detecting available nitrogen content. The main characteristic variable
regions reflecting the change of available nitrogen content of vermiculite substrates were
obtained. Subsequently, PLSR was used to establish a prediction model of nitrogen content
in vermiculite substrates based on the spectral data after Si-PLS feature extraction. The
modeling results are listed in Table 5.

Table 5. Comparing PLSR results after extracting spectral features by synergy interval partial
least squares.

Pre-Processing Methods Rc RMSEC Rp RMSEV RPD

Original 0.9869 325.33 0.9708 570.83 3.51
1st Der 0.9929 241.64 0.9868 354.38 5.65
2nd Der 0.9919 256.08 0.9879 402.56 4.98

SG 0.9942 218.02 0.9784 461.11 4.34
MSC 0.9870 324.43 0.9586 1164.92 1.72
SNV 0.9870 324.47 0.9599 1130.79 1.77

1st Der + SG 0.9964 172.07 0.9899 313.11 6.40
2nd Der + SG 0.9952 198.06 0.9879 402.56 4.98

As displayed in Table 5, the Si-PLS algorithm effectively reduces irrelevant information
variables for detecting available nitrogen in vermiculite substrates. The input variables
of the model were reduced from 128 to 28 and 24, respectively, while the amount of data
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was reduced by approximately 78%. The RPD values of the prediction models were all
lower than the original spectral modeling because the Si-PLS interval introduces irrelevant
information as compared to the univariate screening method, resulting in reduced modeling
accuracy. However, PLSR modeling had the best effect on the spectral data, combining
the first derivative with SG smoothing. The correlation coefficients of the calibration and
prediction sets were 0.9964 and 0.9899, respectively, and the RPD was 6.40. Figure 4 shows
the results where CARS were used to screen characteristic variables combining the first
derivative with SG smoothing.
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The four synergistic sub-intervals screened out by the CARS optimization model are
1330.9–1359.1, 1398.4–1426.5, 1532.4–1560.1, and 1598.8–1626.3 nm, respectively, includ-
ing the N-H bond characteristic band, as shown in Figure 4. Therefore, Si-PLS can find
the optimal band region, greatly reducing the multicollinearity of vermiculite substrate
spectral data and accurately screening the spectral data that directly reflects the available
nitrogen content of vermiculite substrates. Thus, PLSR modeling can establish an excellent
prediction model.

3.7. Prediction Model Performance for the Available Nitrogen Content of Vermiculite Substrates
Based on All-Band Spectral Data and Characteristic Variables

The prediction performance of the optimal model was established by the full spectral
data and the spectral data after screening and comparing three characteristic variables
(Table 6). The purpose was to achieve high precision and rapid detection of the available
nitrogen content in vermiculite substrates and simplify the complexity of the model. Screen-
ing spectral data using SPA, CARS, and Si-PLS reduces the influence of multicollinearity
and irrelevant information variables and improves the calculation speed of the predic-
tion model.

Table 6. Comprehensive comparison of the best prediction models from different algorithms for
determining the available nitrogen content of a vermiculite matrix.

Pre-Processing Methods Number of Characteristic Variables Modeling Methods Rc RMSEC Rp RMSEV RPD

2nd Der + SG 128 PLSR 0.9982 120.35 0.9977 141.78 12.14
1st Der + SG 54 SPA + PLSR 0.9969 160.03 0.9966 186.45 10.99
1st Der + SG 31 CARS + PLSR 0.9972 149.98 0.9968 159.65 12.57
1st Der + SG 24 Si-PLS + PLSR 0.9964 172.07 0.9899 313.11 6.40

Investigated from Table 6, the prediction model based on full and variable screening
spectral data realized a rapid, nondestructive, quantitative detection model of the available
nitrogen content in vermiculite substrate. The second derivative combined with the SG
smoothing method was used to pretreat the spectral data. The optimal prediction model of
the available nitrogen content of vermiculite substrates was established for the all-band
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spectral data. After combining the first derivative with the SG smoothing method, the
optimal prediction model for the available nitrogen content of vermiculite substrates was
established using SPA, CARS, and Si-PLS feature extractions. All three feature variable
screening methods can effectively eliminate the redundant information in the spectral data.
However, SPA had a poor simplification effect on the model, but CARS and Si-PLS greatly
simplified model complexity. The Si-PLS algorithm had the best elimination effect. The
input variable of the model was reduced from 128 to 24, while the amount of spectral data
decreased by approximately 81%.

The three screening methods contained all the optimal characteristic variables ex-
tracted within 1500 nm spectral data. Hence, the established prediction model of the
available nitrogen content in vermiculite substrates is closely related to that characteristic
band. The model was reliable and credible. Unlike the optimal prediction model based on
full spectral data, except for CARS screening the accuracy of the model established using
PLSR after feature extraction decreased to some extent, and the Si-PLS screening method
had the lowest accuracy. The correlation coefficient of the calibration set decreased from
0.9982 to 0.9972, while that of the prediction set decreased from 0.9977 to 0.9968. The RPD of
the model decreased from 12.14 to 7.64, with nearly 40% decreasing amplitude. This trend
is related to introducing irrelevant information variables and block division in the character-
istic Si-PLS selected region. However, the RPD of the PLSR prediction model was >3 after
Si-PLS screening of the first derivative and SG smoothing of pretreated data, which still
had reliable prediction performance. After feature extraction, the best effect was from the
PLSR-established prediction model after CARS screening of the combined first derivative
and SG smoothing pretreated data. There were 31 variables for modeling. The 97 pieces
of irrelevant information about the available nitrogen content of vermiculite substrates
were removed. The RPD of the model was 12.57, indicating a significant prediction effect.
In summary, these results could reduce the gap in research into technology designed for
the rapid detection of the available nitrogen content of various cultivation substrates. The
results also provide references and a theoretical basis for developing detection equipment
for the available nitrogen content of facility substrates.

The best model, with 12.57 RPD, was selected by comparing various preprocessing and
feature extraction algorithms with prediction models constructed using PLSR methods. The
selected model is better than those previously reported. For example, in 2008, Bambangh
et al., collected 210 soil samples with 3.75 and 112.5 mm depths from seven field pastures in
Taupo and Rotoru, New Zealand. The contents of soil total carbon and total nitrogen were
detected with a LECO analyzer. After SG filtering and smoothing of the original spectrum
and first derivative pretreatment, the prediction model of soil total nitrogen was established
by PLSR [31]. In 2013, Kodaira et al. established partial least squares regression models for
ammonium nitrogen (NH4), nitrate nitrogen (NN), hydrolyzed nitrogen (HN), and total
nitrogen (TN) in soils sampled from Shisheng plain, Jiangjianchuan District, Hokkaido.
The determination coefficient, R2, of the total nitrogen (TN) prediction model was >0.89,
the relative analysis error RPD was >2.0, and the prediction accuracy reached class A, with
a good prediction effect [32]. In addition, Shao and He used near-infrared spectroscopy to
detect the spectrum of soil nitrogen, phosphorus, and potassium [33]. However, this study
assayed vermiculite matrix with relatively simple properties as compared to soil; thus, it
had less spectral collection interference and higher prediction accuracy.

4. Conclusions

This work built an NIR spectroscopy system of vermiculite substrate operating at a
940–1660 nm wavelength. Combining the NIR spectroscopy technology and stoichiometry,
the correlation between the available nitrogen content of vermiculite substrates and NIR
spectral curves was quantitatively analyzed. The results indicated that different spectral
data preprocessing methods differentially influenced spectroscopic detection of the water
content of vermiculite substrates. The combined prediction model using the second deriva-
tive with SG smoothing pretreatment had the best effect in band spectral modeling. The
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corresponding correlation coefficients of the calibration and prediction sets were 0.9982
and 0.9976, respectively, while the RPD was 12.14. After these results were obtained, SPA,
CARS, and Si-PLS were used to optimize the characteristic variables of the spectral data. In
contrast, PLSR was used to establish a predictive model for the available nitrogen content
of the vermiculite substrate. The prediction accuracy of the models reached the optimum
using the combination of SG smoothing and the first derivative pretreatment method. The
CARS feature extraction methods were relatively optimal after optimizing the characteris-
tic variables. Moreover, the corresponding correlation coefficients of the calibration and
prediction sets of the best prediction model were 0.9972 and 0.9968, respectively. The root
mean square errors of the calibration and prediction sets were 149.98 and 159.65 mg/kg,
respectively, and the RPD was 12.57. This model detected the available nitrogen content of
vermiculite substrates with high accuracy. Nonetheless, the samples used in this experi-
ment were synthetic; hence, in situ desert agriculture samples should be used to update
this model.
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