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Abstract: Human appropriation of net primary productivity (HANPP) is an important indicator for
assessing ecological sustainability. However, the spatiotemporal dynamics of HANPP in the Qinghai
grasslands remain unclear. In this study, we used the spatially explicit Biome-BGCMuSo model
to quantify and map HANPP in the Qinghai grasslands from 1979 to 2018. Generally, the actual
net primary productivity (NPPact) was slightly lower than the potential net primary productivity
(NPPpot), and the difference between the NPPpot and NPPact increased slightly over time. From 1979
to 2001, the NPPpot and NPPact were relatively stable; however, from 2001 to 2018, both showed
significant fluctuating upward trends. From 1979 to 2018, HANPP showed a fluctuating upward
trend from 6.36 to 31.85 gC/m2/yr, with an average increase of 2.14 gC/m2/yr. The average HANPP
was 16.90 gC/m2/yr, which represented 18.80% of the NPPpot of Qinghai grasslands. High HANPP
mainly occurred in eastern Qinghai, whereas it was low in central and western Qinghai. Conversely,
from 1979 to 2018, the HANPP efficiency decreased in a fluctuating way from 98.28% to 72.05%, with
an average annual decrease of 0.66%. The interannual variations in the HANPP efficiency and harvest
were negatively correlated, with a correlation coefficient of −0.46 (p < 0.01). The average HANPP
efficiency was 85.33%, and the values in most grids were between 80% and 100%, being relatively low
in southern and eastern Qinghai. In rare cases, the HANPP efficiency was greater than 1. This study
clarifies the details of spatiotemporal dynamics of HANPP in the Qinghai grasslands and indicates the
need to optimize local management of grassland resources to ensure future ecological sustainability.

Keywords: ecological sustainability; HANPP; spatiotemporal dynamics; grassland management; model

1. Introduction

The sustainability of ecosystem services is the basis of human survival and sustainable
development [1,2]. However, the carrying capacity of natural ecosystems is limited. Exces-
sive disturbance inevitably destroys ecosystem structure and functioning, leading to the
decline and loss of ecosystem services [3]. Previous studies have shown that environmental
change and human activities are changing ecosystem patterns and processes in different
regions on earth [4–6]. These changes inevitably affect human survival and global sustainable
development [7,8]. Thus, it has become urgent for future global development to increase eco-
logical security and achieve sustainable natural resource utilization. In particular, assessing
ecosystem sustainability is a core issue in sustainable development research [7,9].
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Several quantitative methods have been used to assess ecological sustainability [10–13].
Among them, human appropriation of net primary productivity (HANPP) is one of the
popular methods of assessing ecological sustainability [13–15]. HANPP is the difference
between the potential net primary productivity (NPPpot) and the net primary productivity
(NPP) remaining in the ecosystem after human extraction of resources [14,15]. It directly
uses the total NPP as the index factor to comprehensively consider the ecological processes
of an ecosystem and the direct (or indirect) interference of human activities [14,16]. It
reflects the interaction between the ecosystem and human activities from the perspective
of resource supply and demand and intuitively displays the degree of utilization of the
ecosystem for human activities. In addition, HANPP is a method that is simple and easy to
use [15,17,18]. Therefore, it has been widely used in research on related topics.

Qinghai, located in the northeastern part of the Qinghai–Tibet Plateau, is the source
of the Yellow, Yangtze, and Lancang Rivers [19]. It has an extremely important and strate-
gic ecological position [20,21]. Grassland ecosystems are widely distributed in this region,
accounting for 58.11% of the total land area, and they have high ecological and economic
values [20,22–24]. As a basis for animal husbandry, grazing is the most important human
activity in the Qinghai grasslands [9,25]. Over the past few decades, part of these grassland
ecosystems has been severely degraded by overgrazing [26,27]. Overgrazing in Qinghai
grassland ecosystems indicates that they have been over-utilized by humans [28,29]. Exces-
sive HANPP reduces the available resources for other species and affects the biodiversity,
carbon–water cycle, and ecosystem services, resulting in serious ecological and environmen-
tal problems [17,29,30]. Previous studies have suggested that moderate grazing increases the
NPP when compared to ungrazed areas [31,32]. Thus, assessing the HANPP of grassland
ecosystems is conducive to understanding the impact of anthropogenic stressors on them. It
helps authorities scientifically guide human activities to utilize and protect ecosystems and
achieve harmonious development of the social economy and natural environment [15,33].
However, an estimation of HANPP is lacking for the Qinghai grassland ecosystem.

Although HANPP estimations have been conducted at global, national, and regional
scales, there are relatively few specific or systematic reports on the spatiotemporal dy-
namics of HANPP in grassland ecosystems [15,16,33–35]. In addition, previous studies
on grassland HANPP estimation did not effectively consider the effects of grazing or the
specific natural environment on grass growth, leading to considerable uncertainty in the
HANPP estimation of grazing grasslands [14,16,31]. To overcome this, we selected the
Biome-BGCMuSo model to estimate the storage and fluxes of carbon in Qinghai grasslands.
This is a mechanistic model developed from the Biome-BGC that has been successfully
applied in many regions, including the Qinghai–Tibet Plateau [31,36–38]. The Biome-
BGCMuSo model can better simulate grass growth than the Biome-BGC model, especially
when considering the impact of certain physiological and ecological processes on grass
productivity under energy and water stress; both of these stress conditions are in accor-
dance with the characteristics of alpine environments and the wide distribution of arid
and semi-arid grasslands in Qinghai [39]. In addition, the Biome-BGCMuSo model also
effectively considers the grazing process [39,40]. Based on the Biome-BGCMuSo model,
we aimed to estimate the HANPP and explore its spatiotemporal dynamics in the Qinghai
grasslands from 1979 to 2018. This will further our knowledge of the HANPP in grasslands
and provide theoretical guidance and data support for future local grassland management.

2. Materials and Methods
2.1. Study Area

Qinghai is located in the northeastern part of the Qinghai–Tibet Plateau, which is called
“the roof of the world” [19], and has an average altitude of 3000–4000 m a.s.l. It experiences
a plateau continental climate, with an average annual temperature of 1.37 ◦C and average
annual precipitation of 365.70 mm. Its climate is characterized by a low temperature, large
temperature differences between the day and night, low but concentrated rainfall, long
sunshine duration, and strong solar radiation. Winters are cold and long, and summers are
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cool and short. Qinghai has a grassland area of 41.9 million hm2, accounting for 58.11% of
the total land area [20,22–24]. Grasslands are mainly distributed in the southern Qinghai
Plateau, Qaidam Basin, and around Qinghai Lake. The plants occurring in this region grow
under energy stress, and arid and semi-arid grasslands are also widespread. The grassland
ecosystem in this region is sensitive and vulnerable to climate change and anthropogenic
activities. Parts of the grassland ecosystems in Qinghai have been severely degraded over
the past few decades due to grazing disturbance (Figure 1) [22,24,26,27].
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2.2. Methods

In the present study, as proposed by Haberl et al. [14] and Huang et al. [31], HANPP
was defined as the sum of the harvest and the difference between NPPpot and the actual net
primary productivity (NPPact). In Qinghai, the grasslands are mainly used for grazing, and
other human disturbances are very weak and difficult to quantify because the necessary
data are lacking. Thus, when estimating HANPP in Qinghai grasslands, we assumed that
grazing was the only human disturbance [9,25].

The Biome-BGCMuSo model is a process-based ecosystem model developed from the
Biome-BGC model to improve its ability to simulate the carbon cycle in managed ecosys-
tems by integrating the multilayer soil module, soil-moisture-related plant senescence,
dynamic phenology, grazing, and so on. A detailed description of the Biome-BGCMuSo
model can be found in Hidy et al. [39]. In this model, HANPP and HANPP efficiency were
calculated step by step as follows.

The total NPPpot (NPP under a non-grazed scenario (gC/m2)) was calculated as follows:

NPPpot = Cveg + Clitter (1)
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where Cveg is the vegetative carbon and Clitter is the litter carbon.
This model defines grazing based on the “livestock unit” (LSU) terminology, where 1

LSU refers to an average animal. The grass eaten by domestic animals is considered to be
harvested by humans. Thus, the total NPPact (NPP under the grazed scenario (gC/m2))
was calculated as follows:

NPPact = Cveg + Clitter + harvest (2)

where harvest (g C/ha) is the carbon consumed by domestic animals.
Furthermore, HANPP was calculated as follows:

HANPP = NPPpot - NPPact + harvest (3)

HANPP efficiency was calculated as described by Fetzel et al. [41]:

HANPP efficiency = harvest/HANPP (4)

HANPP efficiency is used to express how efficiently the key natural resource NPP
entered the socio-ecological system and is closely related to the rationality of land use [41,42].

The Biome-BGCMuSo model developed by Hidy et al. [39] was originally used for
simulation at the site scale. In the present study, to apply the Biome-BGCMuSo model over
a large area, we assumed that the Qinghai grasslands consisted of many grids with a spatial
resolution of 10 × 10 km. A loop program was designed to run the Biome-BGCMuSo model
in each grid before the outputs of the Qinghai grasslands could be acquired. Then, the
spatiotemporal dynamics of HANPP and HANPP efficiency could be acquired according
to the statistics of the model outputs.

In the present study, we compared the simulated NPP with the observed NPP to
further validate the suitability of this model for the Qinghai grasslands. We found that
the Biome-BGCMuSo model performed well in the NPP simulation under both the grazed
(R2 = 0.92) and non-grazed (R2 = 0.96) scenarios (Figure 2).
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2.3. Data

The data used in the present study included the observed NPP, grazing, meteorological,
and ancillary data. The observed NPP data were used as model validation data, and other
data were used to drive the model. To facilitate the operation of the Biome-BGCMuSo
model at different grids, all regional data were extracted and smoothed to a 10 × 10 km
resolution using Python and R.
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2.3.1. Observed NPP Data

The observed NPP data were collected from previous publications [43,44] and field
observations of the Qinghai grasslands. A total of 55 plots were used to sample the annual
NPP data, among which 24 and 31 plots were used to collect annual NPP data outside and
inside the enclosure under the grazing and non-grazing scenarios, respectively. Among
all the sampling sites, five were used to collect annual NPP data under both the grazed
(outside the enclosure) and non-grazed (inside the enclosure) scenarios. We collected the
aboveground and belowground biomass at each plot at the end of the growing season. The
annual total biomass was then converted into the annual observed NPP by multiplying
the value by 0.45, which was the conversion coefficient adopted by JingYun and Wei [45].
In this study, the observed NPP values were compared with the simulated NPP values to
validate the reliability of the simulation results.

2.3.2. Grazing Data

Grazing data were produced by integrating multi-source data. The grazing intensity
data for 2010 were extracted from the Food and Agriculture Organization (FAO) page
“Gridded Livestock of the World” (GLW) (12 June 2021). The GLW uses the reference
year of 2010 for global distributions of livestock, with a spatial resolution of 5 min of arc
(approximately 10 km at the equator). Moreover, it is a peer-reviewed spatial dataset. The
average spatial resolutions of the underlying census data are between 100 and 250 km2 in
Qinghai, China. In each of the census polygons, the livestock numbers were divided by
the surface area of the administrative unit polygon to estimate the densities of livestock,
and they were corrected by a mask excluding unsuitable areas [46]. To produce a time
series of the grazing intensity data for the years from 1979 to 2018, we corrected these data
using livestock statistics from the local government in different administrative regions from
1979 to 2018, which also further ensured a high accuracy of the grazing intensity data. A
grazing calendar was created using the information obtained from herders in the Qinghai
grasslands. In the present study, all livestock were converted into sheep units (a female
sheep that eats 1.8 kg of hay with 14% moisture per day) using the conversion coefficient
provided by the Ministry of Agriculture of the People’s Republic of China (16 June 2021)
and the data obtained from a survey of local herders—one cattle equals six sheep, one yak
equals 4.5 sheep, one horse equals six sheep, one goat equals 0.9 sheep, and one camel
equals eight sheep.

2.3.3. Meteorological Data

Meteorological data included the daily values of air temperature, precipitation, humid-
ity, radiation, and day length. The regional meteorological data for the Qinghai grasslands
in the period from 1979 to 2018 were derived from the China Meteorological Forcing Dataset
because their data were evaluated according to the observed data and proved to be more
accurate than the existing reanalysis data worldwide [47]. This dataset was produced by
integrating multi-source data (including ground-based observations and several gridded
datasets from remote sensing and reanalysis) and can provide driving data for land surface
process simulations in China [47]. The Biome-BGCMuSo code assumes that all years have
365 days; therefore, we omitted December 31 from leap years within the study period.

2.3.4. Ancillary Data

Soil data, including the texture and PH, were derived from the Harmonized World
Soil Database (HWSD) (10 January 2021). The HWSD is a 30 arc-second raster database. In
this database, the soil data for the China region were obtained from the second national
land survey by the Nanjing Soil Institute, Chinese Academy of Sciences. Elevation data
were derived from the Shuttle Radar Topography Mission (SRTM) (12 January 2021) with
a 30-m resolution. Ecophysiological parameters were mainly derived from the default
parameters of the model plant (C3 grass), which were acquired from a large number of
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ecophysiological studies [48]. In the present study, some key parameters were corrected in
accordance with the field investigations in the Qinghai grasslands.

3. Results
3.1. Interannual Variation in HANPP in Qinghai Grasslands

Figure 3A shows the interannual variations in the NPP components (HANPP, NPPpot,
NPPact, and harvest) in the Qinghai grasslands from 1979 to 2018. Generally, the NPPact was
slightly lower than the NPPpot, and the difference between the NPPpot and NPPact (NPPpot
minus NPPact) increased slightly as the grazing intensity increased from 1979 to 2018. From
1979 to 2001, the NPPpot and NPPact were both relatively stable; the NPPpot fluctuated
around 74.58 gC/m2/yr, while the NPPact fluctuated around 73.15 gC/m2/yr. From
2001 to 2018, the NPPpot and NPPact both showed fluctuating upward trends; the NPPpot
increased from 65.41 to 130.91 gC/m2/yr, with an average increase of 3.64 gC/m2/yr,
while the NPPact increased from 63.91 to 122.01 gC/m2/yr, with an average increase of
3.23 gC/m2/yr. From 1979 to 2018, HANPP increased in a fluctuating way from 6.36 to
31.85 gC/m2/yr, with an average increase of 2.14 gC/m2/yr. On an annual temporal scale,
harvest was the main contributor to HANPP in the Qinghai grasslands from 1979 to 2018.
The interannual variations in HANPP and harvest had a significant positive correlation,
with a correlation coefficient of 0.98 (p < 0.001).
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Figure 3B shows the interannual variations in HANPP efficiency and HANPP%NPPpot
(the percentage that HANPP accounted for NPPpot) in the Qinghai grasslands from 1979 to
2018. The HANPP efficiency showed a weak fluctuating downward trend from 1979 to 2018
(98.28% to 72.05%), with an average annual decrease of 0.66%. The interannual variations in
HANPP efficiency and harvest showed a negative correlation, with a correlation coefficient
of -0.46 (p < 0.01). HANPP%NPPpot showed a fluctuating upward trend from 1979 to 2018
(6.25% to 24.33%), with an average annual increase of 0.45%. The interannual variations
in HANPP%NPPpot and harvest had a significant positive correlation, with a correlation
coefficient of 0.90 (p < 0.001).

3.2. Spatial Pattern of HANPP in Qinghai Grasslands

The NPPpot and NPPact followed similar spatial patterns in the Qinghai grasslands.
High values mainly occurred in eastern and southeastern Qinghai, whereas low values
mainly occurred in central and western Qinghai (Figure 4A,B). In general, HANPP is used
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to evaluate the extent to which humans disturb ecosystems. Our estimates show that
the average HANPP was 16.90 gC/m2/yr, representing 18.80% of the Qinghai grassland
NPPpot. High HANPP mainly occurred in eastern Qinghai, whereas low HANPP mainly
occurred in central and western Qinghai (Figure 4C). The average HANPP declined with
increasing altitude, as follows: 56.61 (<3000 m), 38.56 (3000–4000 m), and 6.97 gC/m2/yr
(>4000 m). The HANPP efficiency was used to evaluate the efficiency of the human
utilization of ecosystems. We found that, in most grids, the average annual HANPP
efficiency values were between 80% and 100%; they were relatively low in southern and
eastern Qinghai and at different altitudes, as follows: 90.09 (<3000 m), 82.59 (3000–4000 m),
and 90.04 (>4000 m) (Figure 4D). In rare cases, the HANPP efficiency was greater than 1.
Overall, the average harvest in the Qinghai grasslands was 14.43 gC/m2/yr, contributing
85.38% to HANPP. High harvest mainly occurred in eastern Qinghai, whereas low harvest
mainly occurred in central and western Qinghai (Figure 4E). At different altitudes, the
average annual harvest decreased with increasing altitude, as follows: 51.25 (<3000 m),
31.49 (3000–4000 m), and 5.99 gC/m2 (>4000 m) (Table 1).
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of net primary productivity (HANPP), (D) average annual HANPP efficiency and (E) average annual
harvest in Qinghai grasslands in the period of 1979 to 2018.
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Table 1. NPPpot, NPPact, HANPP, HANPP efficiency, and harvest (consumed by livestock) at different
altitudes in Qinghai grasslands in the period of 1979 to 2018.

<3000 m 3000–4000 m >4000 m Whole Area

NPPpot

(gC/m2/yr)
157.86 244.41 33.48 84.93

NPPact
(gC/m2/yr) 152.50 237.32 32.55 82.45

HANPP
(gC/m2/yr) 56.61 38.56 6.97 16.90

HANPP
efficiency (%) 90.09 82.59 90.04 85.33

Harvest
(gC/m2/yr) 51.25 31.49 5.99 14.43

NPPpot—potential net primary productivity; NPPact—actual net primary productivity; HANPP—human appro-
priation of net primary productivity.

4. Discussion
4.1. Uncertainties in the Results

In the present study, the outputs of the Biome-BGCMuSo model were compared
with the observed data, which proved the reliability of the research results. However,
uncertainties in the present study were still inevitable due to the complexity of carbon
cycling in reality [49–52].

First, uncertainty was introduced by the method itself. In this study, we assumed
that grazing was the only human-related disturbance in the study area, which resulted
in uncertainties in the HANPP estimates. We assumed that grazing was the only human-
related disturbance due to the lack of sufficient data for assessing the impacts of other
human disturbances in this region. Although the grasslands in Qinghai were mainly
used for grazing, and other human disturbances contributed much less to the HANPP
estimates [9,25], ignoring other human disturbances would inevitably introduce uncertainty.
In addition, the model structure itself introduced uncertainty. All models are simplified
representations of the real world, which means the complex carbon cycle cannot be fully
considered in the Biome-BGCMuSo model. For example, the freezing–thawing cycle that
substantially influences plant growth could not be fully considered in the Biome-BGCMuSo
model because few studies have quantified its underlying effect on plant productivity in
alpine grasslands. Livestock trampling has an indirect impact on plant growth by directly
influencing soil compaction, water, and so on. However, the trampling effect could not
be included in the Biome-BGCMuSo model because it has been challenging to quantify in
previous studies [39,40].

Second, the model input data can be an important limiting factor when estimating the
HANPP. The accuracy of the model simulation results is directly related to the accuracy
of the model input data. Previous studies have shown that meteorological input data
have the greatest impact on the accuracy of model simulation results [39,40,49]. Although
the meteorological data used in the present study were validated with observed data
(including observed data in Qinghai), showing that this dataset has higher accuracy than
other available reanalysis data [47], the accuracy of the data was still lower than that of the
observed data, which inevitably led to uncertainty in the results. The grazing data were
the key inputs used to estimate the grazing effects. The livestock distribution data for 2010
were extracted from the GLW database (12 June 2021), which was developed to provide a
statistically-informed estimate of how livestock may be distributed within a given census
unit. Although we corrected the data according to survey statistics from the government to
further ensure high precision, uncertainty was inevitable due to the macroscopic nature of
livestock statistics from the government.
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4.2. Interannual Variation in HANPP in Qinghai Grasslands

HANPP showed a fluctuating upward trend from 1979 to 2018, and the difference
between the NPPpot and NPPact (NPPpot minus NPPact) increased slightly in the Qinghai
grasslands during this period, indicating that the grazing pressure on the grassland ecosys-
tems increased [34,49]. In addition, we found that the NPPpot and NPPact significantly
increased in a fluctuating way from 2001 to 2018; we inferred that climate change led to
improvements in the ecological environment of the Qinghai grasslands in recent years.
This conclusion is inconsistent with some previous studies that have shown that the Qing-
hai grasslands have been somewhat restored in recent years by effective government-led
ecological restoration measures [53–56]. Apart from the increase in HANPP, we found that
the HANPP%NPPpot slightly increased from 1979 to 2018. This also indicates that grazing
pressure increased during this period. However, the NPPact showed a clear increase from
2001 to 2018 due to climate change, which alleviated grazing pressure on the grassland
ecosystem (Figure 3A). High HANPP would notably alter ecosystem energy flows, and
excessive HANPP would inevitably lead to a reduction in biodiversity and ecological
degradation [14,34]. In the present study, we found that HANPP efficiency showed a weak
fluctuating downward trend from 1979 to 2018, indicating that irrational utilization of
grassland resources was increasing in Qinghai during this period [41,42]. Nevertheless,
government efforts cannot be denied, and we believe that the situation would have been
worse without them. Implementing more effective measures to reduce anthropogenic
pressures on the grassland ecosystem in Qinghai is still required because the future impacts
of climate change are uncertain. To ensure future sustainable ecological improvements,
scientific and effective management measures must be implemented.

4.3. Spatial Pattern of HANPP in Qinghai Grasslands

Generally, in the Qinghai grasslands, the spatial pattern of HANPP was similar to that
of grazing intensity, indicating that the strong regional variation in HANPP was mainly
caused by the difference in grazing intensity. There were distinct differences in the natural
environments (climate, terrain, and so on) and government management practices among
the different regions within the Qinghai grasslands, which accounted for the difference
in grazing densities (Figure 1) [20,22,31,57]. Generally, grass growth was better in eastern
Qinghai because of relatively good hydrothermal conditions. Thus, more livestock were
supported in these regions, leading to higher HANPP. In contrast, grass growth in central
and western Qinghai was worse due to the relatively poor hydrothermal conditions. In
addition, the government implemented strict ecological protection measures in the central
and western regions, resulting in lower grazing intensity and HANPP [57,58]. To a large ex-
tent, the spatial patterns of HANPP efficiency were opposite to those of HANPP (Figure 4).
A low HANPP efficiency was mainly observed in the southern and eastern Qinghai grass-
lands, whereas a high HANPP efficiency was mainly observed in the central and western
Qinghai grasslands. There was relatively high vegetation growth and dense residents in
the eastern and southern Qinghai grasslands, which explains the low HANPP efficiency.
Excessive grazing activities in the eastern and southern regions became widespread due
to the need to support human survival and economic interests, resulting in severe and
widespread grassland degradation [20,22,58]. However, in the central and western Qing-
hai grasslands, grazing intensity was low due to the poor vegetation growth and stricter
ecological protection in these regions, resulting in low ecological degradation [22]. In rare
cases, the HANPP efficiency was greater than 1, indicating that overcompensation occurred
due to moderate grazing [31,49].

4.4. Significance

To date, HANPP has been estimated on different scales [15,16,33–35]. However, there are
relatively few specific or systematic reports on this topic in grassland ecosystems [15,16,33–35].
Baeza and Paruelo [59] studied the HANPP in 2001/2002 and 2012/2013 in the Rio de la
Plata grasslands of South America, which showed that HANPP accounted for more than
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40% of the annual productivity. In their study, the NPPpot was assumed to be equal to the
NPPact in perennial forage resources, indicating that the effect of grazing on productivity was
not considered, whereas the NPPact estimates were based on official agricultural statistics
or modeled from a time series of satellite images. The harvest in perennial forage resources
was calculated as a fixed proportion of the aboveground NPP using the biomass harvest
index by domestic herbivores. Notably, the estimate of HANPP through the combined
application of multiple methods inevitably increased the uncertainty of the results due to
the methodological differences [16,17,31]. Huang et al. [31] estimated and analyzed the
spatiotemporal patterns of HANPP in Central Asian grasslands using the Biome-BGC model,
which showed that HANPP was 47 gC/m2/yr, accounting for 34% of grassland productivity.
In their study, the NPPpot, NPPact, and harvest were estimated using the same Biome-BGC
model, adopting a functionally holistic approach. In the present study, to obtain more
accurate results, we selected the Biome-BGCMuSo model and designed a loop program
to run this model over a large area to estimate and analyze the spatiotemporal patterns of
HANPP from 1979 to 2018 in the Qinghai grasslands. The Biome-BGCMuSo model is an
upgrade of the Biome-BGC model that can obtain a more accurate simulation of vegetation
productivity in terrestrial ecosystems, especially under energy and water stress [39]. In this
study, the NPPpot, NPPact, and harvest were estimated using the same Biome-BGCMuSo
method when estimating HANPP, which is also a functionally holistic approach. Our study
contributes to a deep understanding of grassland HANPP and provides more reliable and
detailed data to support the scientific management of local grassland resources.

5. Conclusions

In the present study, we quantitatively assessed the spatial and temporal distribution
of HANPP in the Qinghai grasslands from 1979 to 2018 using the spatially explicit Biome-
BGCMuSo model. HANPP and HANPP%NPPpot showed fluctuating upward trends, and
the difference between the NPPpot and NPPact (NPPpot minus NPPact) slightly increased
in the Qinghai grasslands from 1979 to 2018, indicating an increase in grazing pressure
on this grassland ecosystem. From 2001 to 2018, the NPPpot and NPPact both showed
fluctuating upward trends, indicating that climate change has improved the ecological
environment of the Qinghai grasslands in recent years. The HANPP efficiency showed a
weak fluctuating downward trend from 1979 to 2018, indicating that irrational utilization
of the Qinghai grasslands was increasing during this period. There was a strong regional
variation in HANPP, mainly caused by the difference in grazing intensity. High HANPP
mainly occurred in eastern Qinghai, with high grazing intensity, whereas low HANPP
mainly occurred in central and western Qinghai, with low grazing intensity. The average
harvest contributed 85.38% to HANPP in the Qinghai grasslands. The HANPP efficiency
values in most grids were between 80% and 100%, being relatively low in southern and
eastern Qinghai with relatively high plant productivity and density of residents, indicating
that grazing was relatively irrational in this region. In rare cases, the HANPP efficiency was
greater than 1, indicating that moderate grazing promoted plant growth in this region. This
study furthers our knowledge of HANPP in grasslands and indicates that local management
of grassland resources should be optimized to ensure sustainable ecological resource use in
the future.
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