
Citation: Liu, C.; Feng, Q.; Tang, Z.;

Wang, X.; Geng, J.; Xu, L. Motion

Planning of the Citrus-Picking

Manipulator Based on the TO-RRT

Algorithm. Agriculture 2022, 12, 581.

https://doi.org/10.3390/

agriculture12050581

Academic Editor: Wen-Hao Su

Received: 16 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Motion Planning of the Citrus-Picking Manipulator Based on
the TO-RRT Algorithm
Cheng Liu 1 , Qingchun Feng 2,* , Zuoliang Tang 1 , Xiangyu Wang 3, Jinping Geng 1 and Lijia Xu 1,*

1 College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an 625014, China;
2020317017@stu.sicau.edu.cn (C.L.); zuoliang_tang@stu.sicau.edu.cn (Z.T.);
2020217010@stu.sicau.edu.cn (J.G.)

2 Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

3 Institute of System Science and Technology, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu 611756, China; wxy1998@my.swjtu.edu.cn

* Correspondence: fengqc@nercita.org.cn (Q.F.); xulijia@sicau.edu.cn (L.X.)

Abstract: The working environment of a picking robot is complex, and the motion-planning algorithm
of the picking manipulator will directly affect the obstacle avoidance effect and picking efficiency of
the manipulator. In this study, a time-optimal rapidly-exploring random tree (TO-RRT) algorithm is
proposed. First, this algorithm controls the target offset probability of the random tree through the
potential field and introduces a node-first search strategy to make the random tree quickly escape
from the repulsive potential field. Second, an attractive step size and a “step-size dichotomy” are
proposed to improve the directional search ability of the random tree outside the repulsive potential
field and solve the problem of an excessively large step size in extreme cases. Finally, a regression
superposition algorithm is used to enhance the ability of the random tree to explore unknown space
in the repulsive potential field. In this paper, independent experiments were carried out in MATLAB,
MoveIt!, and real environments. The path-planning speed was increased by 99.73%, the path length
was decreased by 17.88%, and the number of collision detections was reduced by 99.08%. The TO-RRT
algorithm can be used to provide key technical support for the subsequent design of picking robots.

Keywords: picking manipulator; motion planning; TO-RRT; step-size dichotomy; regression
superposition

1. Introduction

Citrus is one of the most economically important crops in the world, and it is also
the most cultivated fruit in southwestern China. Currently, citrus fruits are mainly picked
manually, which is time-consuming, laborious, and expensive. According to a survey, the
labor used in citrus picking operations accounts for 33 ∼ 50% of the whole production
process. With the sharp decline in the number of rural employees in China, the development
of the citrus industry has been severely restricted. To improve the efficiency of picking and
enhance the competitiveness of China’s citrus industry, both the research and development
of citrus-picking robots have become research hotspots at home and abroad, and the path
planning of the picking manipulator is one of the most difficult technologies.

In recent years, a series of path-planning methods have been proposed. The artificial
potential field (APF) can be used to prevent the manipulator from colliding with obstacles
when approaching the target. However, the APF easily falls into a local minimum, and
it easily falls into oscillation in a complex environment [1]. Compared to the APF, the
rapidly-exploring random tree (RRT) is more adaptable, faster, and more variable, but
it is difficult to find the best path when using this approach [2]. Bidirectional RRT and
RRT-connect algorithms are used to generate two random trees at the initial node and
the target node, respectively, which improves the search speed compared with the RRT

Agriculture 2022, 12, 581. https://doi.org/10.3390/agriculture12050581 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12050581
https://doi.org/10.3390/agriculture12050581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-6533-3023
https://orcid.org/0000-0001-8469-2582
https://orcid.org/0000-0003-0662-0924
https://doi.org/10.3390/agriculture12050581
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12050581?type=check_update&version=3


Agriculture 2022, 12, 581 2 of 23

algorithm, but the path is still not optimal [3,4]. The RRT-star (RRT*) algorithm is used to
make the path gradually converge with the optimum in the search process by reselecting the
parent node and rerouting, but its running time is longer than that of the RRT algorithm [5].
Mohammed et al. [6] defined a straight line connecting the initial node and the target node
so that the generation probability of the random tree node was normally distributed with
the distance from the straight line, preventing excessive searching and avoiding falling into
local extreme values. However, the searching ability in a complex environment still needs
to be improved. Akgun et al. [7] combined the bidirectional RRT and RRT* algorithms to
optimize the search time. Jeong et al. [8] proposed an RRT*-Quick method, which caused
the nodes to tend to share the same parent node in a circular (or spherical) neighborhood.
While the path generated using this method was smoother than the path generated by the
RRT* algorithm, the search time increased slightly. Jeong et al. [9] introduced an informed-
RRT algorithm into the RRT*-quick method to limit the sampling space of the random tree
and solve the problem of increased search time caused by expanding the search domain
in the process of improving the quality of the solution. When the tree nodes reached the
maximum, the RRT* Fixed Nodes (RRT*FN) algorithm was used to remove a weak node
and add a high-performance node so that the generated tree node was much smaller than
the one in the RRT* algorithm. However, this method had little performance gap with the
RRT* algorithm before the tree nodes reached the maximum number of nodes [10].

The RRT* algorithm has a strong ability to optimize the path cost, but its search
efficiency is low. Cao et al. [11] introduced the target gravity to the RRT algorithm, and
the attraction generated by the random node and the attraction generated by the target
node were used to jointly guide the generation of new nodes in the random tree. This
method improved the search speed of the random tree, but it could not escape the obstacle
area quickly when blocked by obstacles. Wang et al. [12] changed the sampling area
and assigned node state values so that the random tree could only be expanded through
boundary nodes to reduce the generation of invalid nodes, but many redundant nodes
were generated near obstacles. Zhang et al. [13] screened new nodes based on a biased-RRT
algorithm. If the distance between the new node and the parent node was greater than the
distance between the new node and any other nearby node, the new node was discarded.
This method can be used to prevent excessive searching of the space and reduce the total
number of nodes. Gong et al. [14] made the search direction of the random tree always
point to the target node and performed local path planning near the obstacles. Although
this method could reduce excessive searching of the space, its escape speed was slow
when the random tree was blocked by many large obstacles. Li et al. [15] put forward an
adaptive RRT-connect (ARRT-connect), which allowed the random tree to still have good
performance in a narrow environment, and path planning could still be completed in a
short time. Gao et al. [16] proposed a planning method based on an independent potential
field that made the manipulator explore the gradient direction when it was far away from
the target and avoided obstacles through the random search. Wang et al. [17] selected tree
nodes according to the geometric structure and position of obstacles so that a path with a
lower cost could be quickly obtained, but the effect of avoiding obstacles with irregular
shapes was poor.

In this paper, based on a citrus tree environment, taking the shortest time as the
optimization goal, and taking the Franka manipulator as the experimental platform, the
RRT algorithm is improved in multiple dimensions. Its main contributions are as follows:

1. On the basis of the biased-RRT, the potential field function and the adaptive probability
threshold are introduced, so that the random tree has corresponding growth strategies
in different potential fields. The above strategies improve the directional search ability
of random trees in the repulsive potential field and enhance the escape ability of
random trees in the repulsive potential field;

2. To solve the problem of “falling into a trap” in the repulsive potential field of random
trees, a node-first search strategy is proposed, which makes the selection of extended
nodes of random trees more purposeful;



Agriculture 2022, 12, 581 3 of 23

3. Proper step size is crucial to improve search ability. Using an attractive step size is
helpful to reduce the number of collision detections and computational complexities
outside the repulsive potential field. “Step-size dichotomy” solves the problem of
random trees colliding with obstacles many times due to too large of step size in the
repulsive potential field;

4. By introducing a regression superposition algorithm, the random tree can avoid
over-searching space in the repulsive potential field and enhance the escape ability.

The rest of this article is organized as follows: The basic principles of the RRT algorithm,
as well as some improvement methods and the design process of the TO-RRT algorithm,
including the adaptive probability threshold, the node-first search strategy, an attractive
step size, “step-size dichotomy”, and a regression superposition algorithm are introduced
in Section 2. In Section 3, the performance of various algorithms in MATLAB, MoveIt!, and
the real environment are compared. The main contributions of the article and future work
are discussed in Section 4. The full text is summarized in Section 5.

2. Materials and Methods
2.1. RRT Algorithm

The RRT algorithm, which is a spatial search algorithm based on random sam-
pling, aims to generate a collision-free random tree connecting the first and the last
positions [18,19].

Each time the Tree grows, a random node qrand is generated in the space. Then, the
tree node qnear closest to qrand is found in the tree, and a new tree node qnew is found in
the direction of qnear → qrand with a fixed step λ and is connected to qnear as qnearqnew. If
neither qnew nor qnearqnew collide with obstacles, qnew and qnearqnew are added to the random
tree. After several expansions, if the distance between qnew and qgoal is less than the given
threshold, the Tree finds a path connecting qinit to qgoal , as shown in Algorithm 1.

Algorithm 1. RRT Algorithm.

1: Tree← qinit
2: for i = 1 to n do
3: qrand ← RandomSample(C f ree);
4: qnear ← NearestPoint(Tree, qrand);
5: qnew ← Extend(qnear, qrand, λ);
6: if CollisionFree(qnear, qnew) then
7 : AddNewPoint(Tree, qnew);
8: end if
9 : if Distance(qnew, qgoal) < ρmin then
10: return Tree
11: end if
12: end for

2.2. Some Improvement Methods

The RRT algorithm can be used to effectively explore high-dimensional space, but the
path cost is high, and the algorithm takes a long time to reach completion. The biased-RRT
algorithm can be used to effectively solve the shortcomings of the RRT algorithm [20–23],
as shown in Algorithm 2.



Agriculture 2022, 12, 581 4 of 23

Algorithm 2. Biased-RRT Algorithm.

1: Tree← qinit
2: for i = 1 to n do
3: if RandomNumber <= m then
4: qrand ← RandomSample(C f ree);
5: else
6: qrand ← qgoal ;
7: end condition
8: qnear ← NearestPoint(Tree, qrand);
9: qnew ← Extend(qnear, qrand, λ);
10: if CollisionFree(qnear, qnew) then
11: AddNewPoint(Tree, qnew);
12: end if
13: if Distance(qnew, qgoal) < ρmin then
14: return Tree
15: end if
16: end for

In Algorithm 2, qrand is determined by the size between the random number, RandomNumber,
and the probability threshold m. If RandomNumber <= m, qrand takes any point in the
space; otherwise, the target node is taken as the sampling point.

The biased-RRT algorithm is used to guide the growth of the random tree, increase the
effectiveness of sampling points, and shorten the time of path planning. However, when
obstacles obstruct the growth of random trees, the biased-RRT algorithm cannot escape the
obstacles quickly. Therefore, some scholars have put forward corresponding solutions, as
shown in Table 1.

Table 1. Comparison of RRT improvement methods.

RRT Type Algorithm Name Solutions

Biased-RRT NC-RRT [12]
The random tree search is guided by gradually changing the sampling area, and it is
expanded through the boundary nodes as much as possible through the node control

mechanism.

Biased-RRT RRT-BCR [13] A regression mechanism is introduced to prevent excessive searching, and an adaptive
expansion mechanism is introduced to avoid the repeated search of expansion nodes.

RRT* MOD-RRT* [24] An initial path planner and a path replanner are proposed. When encountering
obstacles, the path replanner selects alternative paths to avoid collision.

P-RRT PBG-RRT [25] By giving weights to the goal and random points, the random tree deviates from
obstacles.

RRT* HSRRT* [26]
The random tree is guided to deviate from an obstacle through the APF, and the

heuristic sampling scheme of Gaussian function is used to generate sampling points
near the obstacle to improve the search efficiency.

Note: NC-RRT, Node Control-RRT; RRT-BCR, Biased-RRT algorithm with boundary expansion mechanism and
regression mechanism; MOD-RRT*, multi-objective RRT*; PBG-RRT, rapidly exploring random tree based on
heuristic probability bias-goal; HSRRT*, heuristically sampling-based rapidly exploring random tree.

2.3. TO-RRT Algorithm
2.3.1. Adaptive Probability Threshold

At present, some improved RRT algorithms have been used to add potential field
functions to the target node qgoal , random nodes qrand, and obstacles. The random tree
changes its growth direction under the action of a combined potential field, which makes
it expand to the target when avoiding obstacles [27–33]. This kind of algorithm improves
the search efficiency of the random tree, but each expansion of the random tree requires
several vector operations of the potential field force, which occupies a large amount of the
system memory. In addition, if the repulsive potential field of the obstacles is considered,



Agriculture 2022, 12, 581 5 of 23

the algorithm may fall into a local minimum problem, as is common in APF, resulting in
qnear being unable to generate a new node qnew, as shown in Figure 1.

Figure 1. The algorithm falls into a local minimum.

Considering the complexity and uncertainty of the above algorithm in different envi-
ronments, an attractive potential field and a repulsive potential field for the target node
and obstacle, respectively, based on the biased-RRT algorithm were established. Therefore,
the probability threshold changed according to the different types of potential fields.

Similar to the APF algorithm, the range of the attractive potential field was the whole
operating space, while the range of the repulsive potential field was limited to a certain
distance around the obstacle. In the range of the repulsive potential field, if the random
tree tended to search for the target node qgoal , the random tree had a strong ability to grow
biased. At this time, if the obstacle blocked qgoal , multiple failed growth near obstacles
could occur for the random tree, so it tended to search randomly within the repulsive
potential field. When the random tree left the range of the repulsive potential field, it
continued to tend to search for qgoal , as shown in Algorithm 3.

Algorithm 3. Probability Threshold under the Control of Potential Field.

1: if RandomNumber <= threshold(qnew, obstacle) then
2: qrand ← RandomSample(C f ree);
3: else
4: qrand ← qgoal ;
5: end if
6: return qrand

The growths of the random tree under both the control of the constant probability
threshold and the adaptive probability threshold are shown in Figure 2a,b, respectively.
Figure 2a shows that, if the random tree maintained a constant probability threshold
during the search process, the obstacle did not affect the goal of random tree expansion.
If the adaptive probability threshold was adopted, the random tree chose a better growth
direction according to the location tendency of the new node. It was learned through many
experiments that the probability threshold outside the scope of the repulsive potential field
was 0.3, and the probability threshold inside the range of the repulsive field was 0.7.

2.3.2. Node-First Search Strategy

According to the biased-RRT algorithm, when RandomNumber > m, qrand takes the
coordinate value of qgoal and then selects the qnear closest to qrand in the random tree as the
parent node of qnew. If the random tree only expands to the target in each search round
without considering the random search, then the new node in this search round will become
the parent node of the new node in the next search round, and the random tree is a straight
line segment connecting qinit and qgoal .



Agriculture 2022, 12, 581 6 of 23

Figure 2. Threshold comparison. (a) Constant probability threshold; (b) Adaptive probability
threshold.

As in Section 2.3.1, when the end node of the random tree expands to the range of the
repulsive potential field, the random tree tends to select any node in the space as qrand in
the next search selection, so the probability of random expansion of the end node is small.
If the next round of search satisfies RandomNumber > threshold, since the end node of the
random tree is closest to qgoal , qgoal will be expanded, causing the newly generated path to
collide with the obstacle. To summarize, when RandomNumber > threshold, the end node
collides with the obstacle; when RandomNumber <= threshold, any node in the tree will
be selected for expansion, which is no different from the traditional RRT algorithm. This
phenomenon is called “falling into a trap”, as shown in Figure 3.

Figure 3. The random tree falls into a trap in the repulsive potential field. (a) The random tree
entering obstacle potential field; (b) The random tree begins to expand randomly; (c) The random
trees collide with obstacles; (d) The random tree is expanded several times.

For this reason, a node-first search strategy was proposed in this paper, as shown
in Algorithm 4. When the qnew of the random tree grew into the range of the repulsive
potential field of obstacles, a virtual spherical surface with a radius r and center qnew was
generated. If RandomNumber <= threshold was satisfied in the next round of search, point
qrand on the virtual spherical surface was preferentially selected, and qnew was used as the
parent node of the next round of search to generate a new node qnew2. If qnew2 and the line



Agriculture 2022, 12, 581 7 of 23

segment qnewqnew2 did not collide with obstacles, the path and qnew2 were kept. A new
search round continued until the end node of the random tree was separated from the
obstacles, as shown in Figure 4.

Algorithm 4. Node-First Search Algorithm.

1: if RandomNumber <= threshold(qnew, obstacle) then
2: if Distance(qnew, obstacle) < Rrp f then
3: qrand ← sphere(qnew, rvirtual);
4: else
5: qrand ← RandomSample(C f ree);
6: end if
7: else
8: qrand ← qgoal ;
9: end if
10: return qrand

Figure 4. Schematic diagram of the node-first search strategy.

2.3.3. Attractive Step Size and Step-Size Dichotomy

From the above description, the node-first search strategy was used to prevent the
random tree “falling into a trap” within the range of the repulsive potential field. Since the
random tree has a certain probability of random search outside the range of the repulsive
potential field of obstacles, more iterations will be generated. An appropriate step size can
effectively reduce the iterations of the random tree. In the case that the length of the path is
determined, a small step size will cause more collision detections and distance calculations,
and a large step size will often make the random tree collide with obstacles. Therefore, the
step size should be expanded as much as possible on the premise of reducing the number
of collisions [34,35].

According to the APF algorithm, the attractive force of qgoal acts on the whole operating
space and is proportional to the distance between the end joints of the manipulator, which
is beneficial to control the growth step of the RRT. If obstacles are not considered, the
random tree should increase the step size when it is far away from qgoal to quickly expand
to qgoal . When the random tree is closer to qgoal , if it continues to maintain a large step
size, a large number of redundant nodes will be generated at qgoal , as shown in Figure 5a.
Therefore, the random tree should gradually approach qgoal with small step sizes, as shown
in Figure 5b.

For this reason, an attractive step size was proposed, which was defined as:

attStepsize = k× Distance(qnear, qgoal) (1)

where attStepsize represents the attractive step size, and k is the attractive parameter.



Agriculture 2022, 12, 581 8 of 23

Figure 5. Fixed step size and attractive step size. (a) Fixed step size; (b) Attractive step size.

If obstacles are considered, the step size of the random tree in the random search
is fixed, and an attractive step size is taken when growing toward qgoal . This method
ensures that the random tree grows toward qgoal as soon as possible outside the range of
the repulsive potential field and avoids collisions with obstacles due to excessive steps
within the range of the repulsive potential field.

The parameters of the potential field function of the manipulator are different in
different operating spaces. For example, when the attractive parameter k is too large,
attStepsize will increase accordingly. If Distance(qnear, obstacle) < attStepsize, qnew will
collide with obstacles. In addition, the end nodes tend to grow toward qgoal outside the
range of the repulsive potential field. Therefore, the random tree still has a high probability
of colliding with obstacles in the next round of search.

For this reason, a “step-size dichotomy” was introduced to solve the problem of
excessive step size. When qnear grew toward qgoal and there were obstacles between them,
the distance dnob between qnear and the obstacles was calculated. If dnob <= attStepsize,
the attStepsize was shortened to the original value of 2−1, and the sizes of attStepsize and
dnob were compared again until dnob > attStepsize; see Algorithm 5.

Algorithm 5. Step-size Dichotomy.

1: if Collision(qnear, qgoal) then
2: while adpStepsize > Distance(qnear, obstacle) do
3: adpStepsize = adpStepsize/2;
4: end while
5: else
6: attStepsize = k× Distance(qnear, qgoal);
7: end if
8: return attStepsize

2.3.4. Regression Superposition Algorithm

From Section 2.3.3, if the random tree grows within the range of the obstacle repulsive
potential field, a large number of redundant nodes will be generated on the surface of the
obstacle due to the high probability of the random search, as shown in Figure 6a. As a
result, a regression superposition algorithm is proposed in this section to adaptively select
extended nodes and change the step size of the random search, as shown in Figure 6b.



Agriculture 2022, 12, 581 9 of 23

Figure 6. Differences before and after improvement. (a) The random trees generated a large number
of nodes on the surface of obstacles; (b) The random tree had fewer nodes on the obstacle surface.

The regression superposition algorithm consists of a regression algorithm [36] and a
step-size superposition algorithm. In the regression algorithm, if the distance between qnew
and qnear was larger than the distance between qnew and any node qi in the random tree
except qnear, it was considered to meet the regression conditions:{

Distance(qnear, qnew) > Distance(qnear, qi)
qi ∈ Tree

(2)

If Formula (2) was satisfied, qnew was regarded as a regression node. The regression
node would not become the tree node of the random tree, but it was removed until a new
node that did not meet the regression condition was found, as shown in Figure 7a.

Figure 7. Regression superposition algorithm. (a) Regression algorithm; (b) Regression superposition
algorithm; (c) Step-size superposition algorithm. Note: λ, the initial step size; ε, the step size of
superposition; ρ, the distance between qnew and any node.

To further reduce the number of tree nodes, the step-size superposition algorithm
was incorporated based on a regression algorithm. When the random tree was searched
randomly, the initial step size was set to λ, and the step size was increased by ε after each
round of the random search until the extended branches of the random tree collided with



Agriculture 2022, 12, 581 10 of 23

obstacles. Then, the search step size of the next round was returned to the initial step size
λ, and the step size was superimposed again until the random tree searched toward qgoal ,
as shown in Figure 7c.

The random tree used an attractive step size when searching toward qgoal to reduce
the generation of redundant nodes. During the random search of the random tree, the
regression superposition algorithm was used to enhance the ability of the random tree to
search the unknown space, as shown in Figure 7b.

The TO-RRT algorithm was used to dynamically adjust the growth direction of the
random tree by the probability threshold controlled by the potential field and to define
two different growth methods according to the different growth directions. Therefore, the
random tree could quickly grow to the target outside the range of the repulsive potential
field and quickly determine the escape path within the range of the repulsive potential
field. The algorithm flow chart is shown in Figure 8.

Figure 8. Flowchart of the TO-RRT algorithm. Note: A, yes; N, no.

3. Results
3.1. Comparative Experiment of Path Planning in a Complex Environment

To verify the speed, stability, and low path cost of the TO-RRT algorithm, the RRT
algorithm, the biased-RRT algorithm with a target offset probability of 50%, the TO-RRT
algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm are compared in this
section using complex environments (i.e., a multi-sphere environment, a multi-rectangle
environment, a single-channel environment, and a multi-channel environment).

In the simulation experiment, the initial step size was 2, the maximum number of
failed growth times was 100,000, the map size was 50× 50× 50, the starting point was
(1, 1, 1), and the target point was (49, 49, 49). The blank area in the map represented the
obstacle-free area, other colors represented the obstacle area, the blue path represented the
random tree, the black path represented the collision-free path from the starting point to
the target point, and the red path represented the path optimized by the greedy algorithm.

Figure 9a,e,i,m,q show that, although the RRT algorithm can be used to find a collision-
free path from the initial point to the target point, the whole space was searched, so that
the highest amount path nodes were generated. Compared with the RRT algorithm, the
biased-RRT algorithm did not search too much invalid space, so there were fewer path
nodes. When using the RRT-BCR algorithm and the NC-RRT algorithm, the sizes of the
random trees were reduced through a regression mechanism and an adaptive sampling
area, respectively. The TO-RRT algorithm was used to greatly reduce the number of nodes
in the space, and its complexity was the lowest. Figure 9b,f,j,n,r show that the RRT algo-
rithm still searched the whole space. Although the biased-RRT algorithm generated fewer



Agriculture 2022, 12, 581 11 of 23

nodes than the RRT algorithm, the search tree generated a large number of nodes on the
surface of obstacles, which increased the number of iterations. The NC-RRT algorithm
made the random tree tend to expand through boundary nodes through the node control
mechanism, so it had fewer redundant nodes. It can be seen from Figure 9c,d,g,h,k,l,o,p,s,t
that the RRT algorithm and the biased-RRT algorithm could not quickly find the “escape
channel”. Although the RRT-BCR algorithm limited the expansion of nodes that were
prone to collision, it increased the expansion times of other nodes. Due to the regression
superposition algorithm and node-first search strategy introduced into the TO-RRT algo-
rithm, the random tree could quickly search the nearby area to find the “escape channel” in
the repulsive potential field.

There are certain errors and contingencies in a single experiment. To better reflect
a real situation, 10 simulation experiments were carried out in the same environment as
described above, shown in Figure 10.

Figure 10 shows that the TO-RRT algorithm maintained strong stability in 10 experi-
ments and did not traverse the whole space due to being blocked by obstacles, while the
RRT algorithm and the biased-RRT algorithm both generated a large number of nodes in the
space. In addition, the RRT-BCR algorithm had fewer path nodes than the biased-RRT algo-
rithm, and in the NC-RRT algorithm, there was little difference in the path in each search.
The comparison of the running times of the three algorithms in different environments
is shown in Figure 11. Figure 11 shows that the RRT algorithm had the longest running
time and poor running-time stability, especially in a single-channel environment, with the
longest running time at 45.6057 s and the shortest running time at 1.2880 s. Compared
with the RRT algorithm, the biased-RRT algorithm had a much shorter running time and
strong running-time stability, but the search time in a complex environment was longer.
The longest running times of the TO-RRT algorithm in the four environments were 0.0225 s,
0.0420 s, 0.0618 s, and 0.0443 s, and the shortest running times were 0.0056 s, 0.0134 s, 0.0101
s, and 0.0115 s. The difference between the longest search time and the shortest search time
in a single environment did not exceed 0.06 s, which not only indicated a short search time
but also a strong and stable running time. The NC-RRT algorithm performed poorly in a
multi-rectangle environment, with a difference of 4.44 times between the longest running
time and the shortest running time, while the RRT-BCR algorithm was only 3.82 times.

Table 2 shows the average values of each index of the 3 algorithms over 10 experiments
(biased-RRT represents the biased-RRT algorithm with a target offset probability of 50%). In
the multi-sphere environment, the TO-RRT algorithm had a running time that was 99.74%
less than the RRT algorithm, which was mainly because the number of collision detections
and the number of failed node growths of the former were reduced by 99.39% and 97.17%,
respectively, compared with the latter. In addition, compared with the RRT algorithm, the
number of path nodes in the TO-RRT algorithm was reduced by 82.92%, which shortened
the length of its search path by 18.99%. When the random tree encountered a large area
of obstacles, the TO-RRT algorithm was used to reflect the advantages in the search time
more than the RRT algorithm. For example, the number of tree nodes and the number of
failed growths of nodes of the RRT algorithm in the multi-rectangle environment reached
17,358.3 and 3144.8, respectively, resulting in a running time of 7.8822 s, while the running
time of the TO-RRT algorithm was only 0.0213 s. In addition, the RRT-BCR algorithm
performed better than the NC-RRT algorithm in a multi-rectangle environment, and its
running time was shortened by 29.14% compared with the NC-RRT algorithm because the
RRT-BCR algorithm removed nodes that collided many times when facing obstacles with
large occlusion areas. The biased-RRT algorithm produced too much failure growth when
encountering obstacles with large areas. For example, in a multi-channel environment,
the node failure growth rate of the biased-RRT algorithm was 62.54%, while the RRT
algorithm and TO-RRT algorithm had node failure growth rates of only 36.40% and 15.82%,
respectively. Therefore, the biased-RRT algorithm was not ideal in a complex environment.
Since the NC-RRT algorithm always took the area between the configuration point and the
target as the sampling radius and tended to use boundary nodes for expansion, it could not



Agriculture 2022, 12, 581 12 of 23

produce valid nodes when the obstacle was between the configuration point and the target.
For example, in multi-channel and multi-rectangle environments, the collision detection
times of the NC-RRT algorithm were 21,487 times and 55,077 times. In summary, compared
with the other algorithms, the TO-RRT algorithm had significant advantages in searching
speed and the number of nodes in the random tree.

Figure 9. The performances in different environments of: the RRT algorithm (a–d); the biased-RRT
algorithm with a target offset probability of 50% (e–h); the TO-RRT algorithm (i–l); the RRT-BCR
algorithm (m–p); and the NC-RRT algorithm (q–t).



Agriculture 2022, 12, 581 13 of 23

Figure 10. Ten experiments each of: the RRT algorithm (a–d); the biased-RRT algorithm with a target
offset probability of 50% (e–h); the TO-RRT algorithm (i–l); the RRT-BCR algorithm (m–p); and the
NC-RRT algorithm (q–t).



Agriculture 2022, 12, 581 14 of 23

Figure 11. The running times of the RRT algorithm, the biased-RRT algorithm with a target offset
probability of 50%, the TO-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm.
(a) Multi-sphere environment; (b) Multi-rectangle environment; (c) Single-channel environment;
(d) Multi-channel environment.

Table 2. Experimental results of each algorithm in different environments.

Algorithm
Type

Running
Time (s)

Path Length
(cm)

Tree Nodes
(Number)

Path Nodes
(Number)

Collision
Detection
(Number)

Failed Node
Growth

(Number)

Node
Failure
Growth
Rate (%)

Multi-sphere

RRT 5.6342 124.6008 10,454.3 60.9 10,693.7 229.4 2.15
Biased-RRT 0.0617 100.1367 140.1 54 228 87.9 38.55

TO-RRT 0.0147 100.9338 22.9 10.4 65.5 6.5 9.92
RRT-BCR 0.0545 101.9241 113.4 54.3 123.2 9.8 7.95
NC-RRT 0.0324 94.3765 50.6 50.2 183.7 133.1 78.46

Multi-
rectangle

RRT 7.8822 140.9832 14,213.5 68.7 17,358.3 3144.8 18.12
Biased-RRT 0.1860 125.8082 414.3 62.9 1033.9 619.6 59.93

TO-RRT 0.0213 110.1866 32.7 13.2 135.5 17.3 12.77
RRT-BCR 0.1121 121.8465 243.8 60.4 294.4 50.6 17.19
NC-RRT 0.1709 107.2454 55.8 53.6 55,077 54,519 99.99

Single-
channel

RRT 12.4436 131.1145 8333.9 64.2 13,560.3 5226.4 38.54
Biased-RRT 0.1074 108.6431 242.2 55.5 607.3 365.1 60.12

TO-RRT 0.0254 107.4978 32.8 12.7 130.7 20 15.30
RRT-BCR 0.0707 109.4179 159.3 55.8 203.8 44.5 21.83
NC-RRT 0.0406 96.7172 49.8 49.8 659 609.2 92.44



Agriculture 2022, 12, 581 15 of 23

Table 2. Cont.

Algorithm
Type

Running
Time (s)

Path Length
(cm)

Tree Nodes
(Number)

Path Nodes
(Number)

Collision
Detection
(Number)

Failed Node
Growth

(Number)

Node
Failure
Growth
Rate (%)

Multi-
channel

RRT 8.0047 134.4688 11,702.5 64.7 18,399.5 6697 36.40
Biased-RRT 0.1461 114.4721 322.9 56.9 861.9 539 62.54

TO-RRT 0.0301 117.5516 51.8 16.1 222.5 35.2 15.82
RRT-BCR 0.1276 120.4389 278.8 61.8 369.3 90.5 24.51
NC-RRT 0.0821 102.7622 55.3 52.8 21,487 20,934 97.43

Average
index

RRT 8.4912 132.7918 11,176.05 64.625 15,002.95 3824.4 23.8025
Biased-RRT 0.1253 112.2650 279.875 57.325 682.775 402.9 55.285

TO-RRT 0.0229 109.0425 35.05 13.1 138.55 19.75 13.4525
RRT-BCR 0.0912 113.4070 198.825 58.075 247.675 48.85 17.87
NC-RRT 0.0815 100.2753 52.875 51.6 19,351.675 19,061.48 92.08

Note: RRT, rapidly-exploring random tree; Biased-RRT, rapidly-exploring random tree with target Bias; TO-RRT,
time-optimal rapidly-exploring random tree; RRT-BCR, Biased-RRT with boundary expansion mechanism and
regression mechanism; NC-RRT, Node Control-RRT.

3.2. Obstacle Avoidance Test Based on the Robotics Toolbox

To verify the feasibility of the TO-RRT algorithm on the manipulator, Robotics Toolbox
10.2 in MATLAB was used to model the Franka manipulator. Franka is a 7-DOF robot with
high precision and fast response. Its payload is 3 kg, and the maximum contact area is
855 mm. The Franka manipulator can realize two-way communication between itself and
the workstation through the Franka Control Interface (FCI) and an Ethernet connection.
Therefore, complete real-time control can be achieved with a sampling frequency of 1 kHz.
In terms of picking performance, Franka’s pose repeatability is within 0.1 mm. Even at the
highest speed of 2 m/s, the path deviation can be ignored, which provides good working
conditions for fruit picking. The physical object of the Franka manipulator and its D-H
parameters are shown in Figure 12a and Table 3, respectively.

Figure 12. Materials and results of simulation experiments based on using Robotics Toolbox. (a) The
physical object of the Franka manipulator; (b) Trunk model; (c) The Franka manipulator avoids
obstacles.



Agriculture 2022, 12, 581 16 of 23

Table 3. D-H parameters.

Link i Link Offset ai(m) Link Length di(m) Link Twist αi(rad) Link Twist θi(rad)

1 0 0.333 π
2 θ1

2 0 0 0 θ2
3 0 0.316 0 θ3
4 0.0825 0 π

2 θ4
5 −0.0825 0.384 −π

2 θ5
6 0 0 0 θ6
7 0.088 0 π

2 θ7

To simplify the trunk and improve the operation speed of the TO-RRT algorithm, the
trunk was regarded as a combination of spheres [29], as shown in Figure 12b and Table 4.
To judge whether the manipulator collided with obstacles, the shortest distance dcollision
from the center of the sphere to the origin of the coordinate system of adjacent links of the
manipulator was used. The three-dimensional coordinates of each joint of the manipulator
were obtained through a forward kinematics solution, and if the manipulator did not collide
with the tree trunk, the following conditions must be met:

dcollision > R + r (3)

Table 4. Obstacle parameters.

Number Obstacle Coordinates (cm) Obstacle Radius (cm)

1 (25,55,48) 5
2 (25,53,47) 5
3 (25,51,46) 5
4 (25,49,45) 5

In the formula, R = 5 cm is the radius of the obstacle ball, and r = 3 cm is the radius
of the cylinder.

Figure 12c shows the Franka manipulator using the TO-RRT algorithm to plan its
path, and the minimum-snap trajectory optimization algorithm was used to smooth the
trajectory of the manipulator [37,38]. Figure 13 shows the shortest distance.

3.3. Comparative Experiments in a Virtual Picking Environment

The motion-planning experiment of the Franka manipulator was initially realized
through Robotics toolbox, which proved that the TO-RRT algorithm was feasible in the
motion of the manipulator. MoveIt! was used in this section to build a virtual picking
environment and to conduct comparative experiments on different algorithms in this
environment. The experimental parameters are shown in Table 5.

During the experiment, the maximum search time was 10 min, the maximum number
of failed searches was 10,000, and the search domain was {x, y, z| − 1 < x < 1,−1 < y <
1,−1 < z < 1}(m). Due to the large number of sampling points generated, the global
search time of the RRT algorithm was 243.322451 s. Compared with the RRT algorithm,
the search time of the biased-RRT algorithm was only 3.720342 s. However, affected by
the nature of obstacles and the probability threshold, the collision-free path generated
by the biased-RRT algorithm was less smooth. In contrast, since the NC-RRT algorithm
controlled the sampling interval, its trajectory was the smoothest among all the algorithms.
Compared with the previous algorithms, the TO-RRT search time and path length were
only 0.074915 s and 0.63548128 m, respectively, due to the generation of smaller random
trees. The simulation results are shown in Table 6 and Figure 14.



Agriculture 2022, 12, 581 17 of 23

Figure 13. The shortest distance from the center of the sphere to the origin of the coordinate system
of adjacent links of the manipulator. (a) Obstacle with coordinates (25,55,48); (b) Obstacle with
coordinates (25,53,47); (c) Obstacle with coordinates (25,51,46); (d) Obstacle with coordinates (25,49,45).
CiCi+1 represents the distance between the line segment between coordinate system i and coordinate
system i + 1 and the center of the sphere.

Table 5. Experimental parameters.

Initial Pose Pose of Citrus 1 Pose of Citrus 2

Position (0.3595, 0, 0.643499) (0.106155, 0.227978,
0.744871)

(−0.234434, 0.360095,
0.737649)

Orientation (−0.65328, −0.270598,
0.653283, 0.270599)

(−0.636052, 0.309414,
0.231336, 0.66797)

(−0.771505, 0.309187,
0.226895, 0.507644)

Table 6. Experimental data using MoveIt!.

RRT Biased-RRT TO-RRT RRT-BCR NC-RRT

Global planning time(s) 243.322451 3.720342 0.074915 1.222014 0.181070
Global waypoints(number) 41 29 7 20 15

Path length at obstacle
avoidance(m) 1.89919096 1.46801193 0.63548128 0.592291 0.53239712



Agriculture 2022, 12, 581 18 of 23

Figure 14. The use of MoveIt! with: the RRT algorithm (a–c); the biased-RRT algorithm with a target
offset probability of 50% (d–f); the TO-RRT algorithm (g–i); the RRT-BCR algorithm (j–l); and the
NC-RRT algorithm (m–o).

3.4. Contrastive Experiments in Real Environments

To test the performance of TO-RRT in actual picking, the Franka manipulator was
taken as the moving object, the citrus as the operation object, and the tree trunk as the
obstacle avoidance object to construct a multi-objective citrus-picking environment. The
environmental parameters are shown in Tables 7 and 8. First, the manipulator adjusted



Agriculture 2022, 12, 581 19 of 23

its pose to the initial state, and its joint angle was (0,−π
4 , 0,−π

2 , 0, π
3 , 0). Second, the three-

dimensional coordinates of the citrus, the parameter information of obstacles, and the
picking pose of the manipulator were transmitted to the planning thread, and the continu-
ous and collision-free trajectory was obtained through inverse kinematics. Finally, MoveIt!
published the trajectory through moveit_commander to move_group and transmitted the
control signal to the robot controllers to complete the picking action. The control block
diagram is shown in Figure 15. The experimental results showed that the TO-RRT algorithm
could be used to effectively reduce the nodes, shorten the planning time, and reduce the
movement time of the manipulator, as shown in Figure 16 and Table 9.

Table 7. Obstacle information.

Number Obstacle Coordinates (m) Obstacle Radius (cm)

1 (0.369822, −0.153781, 1.04791) 1
2 (0.426765, −0.149826, 1.00189) 1
3 (0.45418, −0.186812, 0.947317) 1
4 (0.330284, −0.344084, 1.01095) 1.5
5 (0.384351, −0.371103, 0.94411) 1.5
6 (0.48388, −0.335959, 0.897789) 1.5

Table 8. Target information.

Coordinates (m)

Base coordinates (0,0,0)
Citrus 1 coordinates (0.208763, −0.432806, 0.764728)
Citrus 2 coordinates (0.423718, 0.0602042, 0.994)

Figure 15. Control block diagram.



Agriculture 2022, 12, 581 20 of 23

Figure 16. The manipulator reached Citrus 1 and Citrus 2 and avoided the branches. (a) Initial state of
manipulator; (b) The manipulator reaches the first citrus; (c) Obstacle avoidance of the manipulator;
(d) The manipulator reaches the second citrus.

Table 9. Comparison of the planning time and movement time.

Algorithm Type Planning Time(s) Movement Time(s)

RRT 53.873985 84.3975
Biased-RRT 0.0883 18.0498

TO-RRT 0.0508 17.3703
RRT-BCR 0.0771 17.9238
NC-RRT 0.0649 17.7131

4. Discussion
4.1. Analysis

From Figure 10a–d, since the RRT algorithm did not consider the effect of target offset
probability, the entire workspace was searched in all environments. The above problems led
to the huge scale of the random tree and caused more collision detection times. Therefore,
the path length and movement time of the manipulator were the longest among all the
algorithms, as shown in Tables 6 and 9. From Table 2, the biased-RRT algorithm avoided
redundant searching through heuristic guidance, effectively reducing the number of tree
nodes and collision detection times. From the average index in Table 2, since the RRT-BCR
algorithm removed nodes that collided multiple times, its node failure growth rate was very
low. However, this approach took a considerable amount of computation time, only 0.0112 s
less than the biased-RRT algorithm, as shown in Table 9. From the average index in Table 2,
the path length of the NC-RRT algorithm was the shortest, and the running time was second
only to the TO-RRT algorithm. As can be seen from the multi-rectangle environment in
Table 2, the NC-RRT algorithm had to continuously expand its sampling space when facing
obstacles with large occlusion areas, resulting in 55,077 collision detections (which was
the highest among all the algorithms). From Table 2, the TO-RRT algorithm reduced the
numbers of path nodes and collision detections through an attractive step size, reduced
the number of node failure growth through the node-first search strategy, and, finally,
enhanced the escape ability through the regression superposition algorithm. However, the
TO-RRT algorithm produced larger steps near obstacles, which led to a slightly longer path
length than the other improved algorithms, as shown in Table 6.

4.2. Future Work

Industry 5.0 is a new generation of the industrial revolution representing “personal-
ization”, in which personalized products and services are created for humans by using the
creativity of human experts to interact with efficient, intelligent, and precise machines. The
key technologies of Industry 5.0, such as human–computer interaction, collaborative robots,
and edge computing (EC), can provide ideas and technical support for Agriculture 5.0 [39].

As the number of China’s aging population increases by the year, the number of
rural employees has dropped sharply, and original agricultural production methods can



Agriculture 2022, 12, 581 21 of 23

no longer meet the development needs of the current citrus industry. Through the high
integration of artificial intelligence and mechanical equipment, the transformation and
upgrade of the production mode of China’s agricultural industry can be realized. The
improved method proposed in this paper can be used in the fields for picking robots and
pruning robots and for the path planning of orchard patrol robots [40–42]. By analyzing
the characteristics of a citrus tree environment, the work presented in this paper aimed
to optimize the time required and improve it on the basis of a traditional algorithm to
greatly shorten the planning time of the manipulator and reduce the movement time of
the manipulator to a certain extent. However, the detection of obstacles is an objective
challenge faced by this method.

In recent years, path planning through deep reinforcement learning (DRL) has become
a research hotspot. A robot senses environmental information through sensors and trains
the samples in the process of continuous interaction with the environment to complete an
efficient, accurate, and low-environment-dependence path-planning method. The fusion
of deep reinforcement learning and traditional path-planning algorithms has gradually
become a research trend. For example, LM-RRT determines the selection probability of
extension and connection trees based on reinforcement learning and guides the trees to
pass through narrow channels quickly [43]. Based on this, the research on improving the
TO-RRT algorithm by reinforcement learning will be discussed in the next stage.

5. Conclusions

A time-optimal RRT algorithm based on the characteristics of the complex environment
of citrus trees was proposed in this paper. The constructed algorithm had an attractive
potential field and a repulsive potential field for the target node and obstacle, respectively.
In addition, dynamic adjustment of the probability threshold under the action of the
superimposed potential field was achieved, and a node-first search strategy was used to
solve the “falling into a trap” problem. In addition, an attractive step size and a “step-
size dichotomy” were introduced in this algorithm so that the random tree could expand
the step size as much as possible on the premise of reducing the number of collisions.
Finally, a regression superposition algorithm was used to improve the search efficiency
of the random tree in the range of the obstacle repulsive potential field. The TO-RRT
algorithm was simulated in complex environments, and the motion-planning of the Franka
manipulator was carried out using Robotics Toolbox and MoveIt! It can be seen from the
simulation results that the TO-RRT algorithm had fewer tree nodes, collision detection
times, and failed growth times, so this algorithm had a shorter planning time than the RRT
algorithm, the biased-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm,
especially when the random tree faced a large obstacle area. To obtain the performance
of the algorithm in real work, we built a real picking environment indoors. Through the
performance evaluation of various indicators of the different algorithms, it was proved that
the TO-RRT algorithm still had a good performance in movement time.

Author Contributions: Conceptualization, C.L., L.X. and Q.F.; methodology, C.L., L.X. and Q.F.;
software, C.L., Z.T. and X.W.; writing—original draft preparation, C.L. and L.X.; writing—review
and editing, C.L., L.X. and Q.F.; visualization, C.L., Z.T., J.G. and X.W.; supervision, L.X. and Q.F.;
funding acquisition, L.X. and Q.F. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Beijing Science and Technology Plan Project: Z201100008020009;
Key R&D project of Science and Technology Department of Sichuan Province: 2020YFN0025;
Key Projects of Innovation and Entrepreneurship of Sichuan Science and Technology Department:
2021JDRC0091; Chengdu Technology Innovation R&D Project: 2021-YF05-01744-SN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.



Agriculture 2022, 12, 581 22 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 396–404. [CrossRef]
2. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf (accessed on 10 March 2022).
3. LaValle, S.M.; Kuffner, J.J. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
4. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. Proceedings 2000 ICRA. Millennium

Conference. In Proceedings of the IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001. [CrossRef]

5. Karaman, S.; Frazzoli, E. Incremental sampling-based algorithms for optimal motion planning. In Proceedings of the Robotics
Science and Systems 2010, Zaragoza, Spain, 27 June 2010; Volume 104. Available online: http://www.roboticsproceedings.org/
rss06/p34.pdf (accessed on 15 March 2022). [CrossRef]

6. Mohammed, H.; Romdhane, L.; Jaradat, M.A. RRT* N: An efficient approach to path planning in 3D for Static and Dynamic
Environments. Adv. Robot. 2021, 35, 168–180. [CrossRef]

7. Akgun, B.; Stilman, M. Sampling heuristics for optimal motion planning in high dimensions. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2640–2645.
[CrossRef]

8. Jeong, I.B.; Lee, S.J.; Kim, J.H. RRT*-quick: A motion planning algorithm with faster convergence rate. In Robot Intelligence
Technology and Applications 3; Intelligent Systems and Computing: Cham, Switzerland, 2015; pp. 67–76. [CrossRef]

9. Jeong, I.B.; Lee, S.J.; Kim, J.H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution
and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

10. Adiyatov, O.; Varol, H.A. Rapidly-exploring random tree based memory efficient motion planning. In Proceedings of the 2013
IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 4–7 August 2013; pp. 354–359.
[CrossRef]

11. Cao, X.; Zou, X.; Jia, C.; Chen, M.; Zeng, Z. RRT-based path planning for an intelligent litchi-picking manipulator. Comput.
Electron. Agric. 2019, 156, 105–118. [CrossRef]

12. Wang, X.; Luo, X.; Han, B.; Chen, Y.; Liang, G.; Zheng, K. Collision-free path planning method for robots based on an improved
rapidly-exploring random tree algorithm. Appl. Sci. 2020, 10, 1381. [CrossRef]

13. Zhang, H.; Wang, Y.; Zheng, J.; Yu, J. Path planning of industrial robot based on improved RRT algorithm in complex environments.
IEEE Access 2018, 6, 53296–53306. [CrossRef]

14. Gong, H.; Yin, C.; Zhang, F.; Hou, Z.; Zhang, R. A path planning algorithm for unmanned vehicles based on target-oriented
rapidly-exploring random tree. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia,
17–20 December 2017; pp. 760–765. [CrossRef]

15. Li, B.; Chen, B. An Adaptive Rapidly-Exploring Random Tree. IEEE/CAA J. Autom. Sin. 2021, 9, 283–294. [CrossRef]
16. Gao, X.; Wu, H.; Zhai, L.; Sun, H.; Jia, Q.; Wang, Y.; Wu, L. A rapidly exploring random tree optimization algorithm for space

robotic manipulators guided by obstacle avoidance independent potential field. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418782240.
[CrossRef]

17. Wang, J.; Li, X.; Meng, M.Q.H. An improved RRT algorithm incorporating obstacle boundary information. In Proceedings of the
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 625–630.
[CrossRef]

18. Veras, L.G.; Medeiros, F.; Guimaraes, L. Systematic literature review of sampling process in rapidly-exploring random trees. IEEE
Access 2019, 7, 50933–50953. [CrossRef]

19. Zu, W.; Fan, G.; Gao, Y.; Ma, H.; Zhang, H.; Zeng, H. Multi-UAVs Cooperative Path Planning Method based on Improved RRT
Algorithm. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun,
China, 5–8 August 2018; pp. 1563–1567. [CrossRef]

20. Li, H.; Liang, Y.; Wang, M.; Dan, T. Design and implementation of improved RRT algorithm for collision free motion planning of
high-dimensional robot in complex environment. In Proceedings of the 2012 2nd International Conference on Computer Science
and Network Technology, Changchun, China, 29–31 December 2012; pp. 1391–1397. [CrossRef]

21. Kang, G.; Kim, Y.B.; You, W.S.; Lee, Y.H.; Oh, H.S.; Moon, H.; Choi, H.R. Sampling-based path planning with goal oriented
sampling. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB,
Canada, 12–15 July 2016; pp. 1285–1290. [CrossRef]

22. Ahmadyan, S.N.; Kumar, J.A.; Vasudevan, S. Goal-oriented stimulus generation for analog circuits. In Proceedings of the 49th
Annual Design Automation Conference, New York, NY, USA, 3 June 2012; pp. 1018–1023. [CrossRef]

23. Wang, J.; Wu, S.; Li, H.; Zou, J. Path planning combining improved rapidly-exploring random trees with dynamic window
approach in ROS. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan,
China, 31 May–2 June 2018; pp. 1296–1301. [CrossRef]

http://doi.org/10.1109/robot.1985.1087247
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/ROBOT.2000.844730
http://www.roboticsproceedings.org/rss06/p34.pdf
http://www.roboticsproceedings.org/rss06/p34.pdf
http://doi.org/10.15607/RSS.2010.VI.034
http://doi.org/10.1080/01691864.2020.1850349
http://doi.org/10.1109/IROS.2011.6095077
http://doi.org/10.1007/978-3-319-16841-8_7
http://doi.org/10.1016/j.eswa.2019.01.032
http://doi.org/10.1109/ICMA.2013.6617944
http://doi.org/10.1016/j.compag.2018.10.031
http://doi.org/10.3390/app10041381
http://doi.org/10.1109/ACCESS.2018.2871222
http://doi.org/10.1109/ascc.2017.8287266
http://doi.org/10.1109/JAS.2021.1004252
http://doi.org/10.1177/1729881418782240
http://doi.org/10.1109/robio.2016.7866392
http://doi.org/10.1109/ACCESS.2019.2908100
http://doi.org/10.1109/ICMA.2018.8484400
http://doi.org/10.1109/iccsnt.2012.6526180
http://doi.org/10.1109/aim.2016.7576947
http://doi.org/10.1145/2228360.2228544
http://doi.org/10.1109/ICIEA.2018.8397909


Agriculture 2022, 12, 581 23 of 23

24. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A sampling-based algorithm for robot path planning in dynamic environment. IEEE Trans.
Ind. Electron. 2020, 68, 7244–7251. [CrossRef]

25. Yuan, C.; Zhang, W.; Liu, G.; Pan, X.; Liu, X. A heuristic rapidly-exploring random trees method for manipulator motion planning.
IEEE Access 2019, 8, 900–910. [CrossRef]

26. Wen, N.; Zhang, R.; Liu, G.; Wu, J.; Qu, X. Online planning low-cost paths for unmanned surface vehicles based on the artificial
vector field and environmental heuristics. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420969076. [CrossRef]

27. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079–1093.
[CrossRef]

28. Zaid, T.; Qureshi, A.H.; Yasar, A.; Raheel, N. Potentially guided bidirectionalized rrt* for fast optimal path planning in cluttered
environments. Robot. Auton. Syst. 2018, 108, 13–27. [CrossRef]

29. Yang, Y.; Liu, J.; Zheng, Y.; Huang, Q. Obstacle Avoidance Path Planning of Manipulator of Forestry Felling & Cultivation
Machine. Sci. Silvae Sin. 2021, 57, 179–192. [CrossRef]

30. Liu, Y.; Zhao, H.; Liu, X.; Xu, Y. An Improved RRT Industrial Robot Path Avoidance Planning Algorithm. Inf. Control 2021, 50,
235–246. [CrossRef]

31. Liu, C.; Han, J.; An, K. Dynamic Path Planning Based on an Improved RRT Algorithm for RoboCup Robot. Robot 2017, 39, 8–15.
[CrossRef]

32. Li, Y.; Xu, D. Cooperative Path Planning of Dual-arm Robot Based on Attractive Force Self-adaptive Step Size RRT. Robot 2020, 42,
606–616. [CrossRef]

33. Ruan, X.; Zhou, J.; Zhang, J.; Zhu, X. Robot goal guide RRT path planning based on sub-target search. Control Decis. 2020, 35,
2543–2548. [CrossRef]

34. Lin, N.; Zhang, Y. An adaptive RRT based on dynamic step for UAVs route planning. In Proceedings of the 2014 5th IEEE
International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 27–29 June 2014; pp. 1111–1114.
[CrossRef]

35. Wang, C.; Meng, Q.H. Variant step size RRT: An efficient path planner for UAV in complex environments. In Proceedings of the
2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016;
pp. 555–560. [CrossRef]

36. Li, Y.; Wang, S.; Jiang, L.; Meng, J.; Xie, Y. Motion Planning of Mobile Manipulator Based on RRT with Sparse Nodes. China Mech.
Eng. 2020, 32, 9.

37. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [CrossRef]

38. Richter, C.A.; Bry, A.P.; Roy, N. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments.
In Robotics Research; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 23 April 2016; Volume 114, pp. 649–666.
[CrossRef]

39. Reddy, P.; Pham, Q.V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling
technologies and potential applications. J. Ind. Inf. Integr. 2021, 26, 100257. [CrossRef]

40. Gadekallu, T.R.; Rajput, D.S.; Reddy, M.P.K.; Lakshmanna, K.; Bhattacharya, S.; Singh, S.; Jolfaei, A.; Alazab, M. A novel
PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. J. Real-Time
Image Process. 2021, 18, 1383–1396. [CrossRef]

41. Li, T.; Feng, Q.; Qiu, Q.; Xie, F.; Zhao, C. Occluded Apple Fruit Detection and Localization with a Frustum-Based Point-Cloud
Processing Approach for Robotic Harvesting. Remote Sensing. 2022, 14, 482. [CrossRef]

42. Li, T.; Qiu, Q.; Zhao, C. Task planning of multi-arm harvesting robots for high-density dwarf orchards. Trans. Chin. Soc. Agric.
Eng. (Trans. CSAE) 2021, 37, 1–10. [CrossRef]

43. Wang, W.; Zuo, L.; Xu, X. A learning-based multi-RRT approach for robot path planning in narrow passages. J. Intell. Robot. Syst.
2018, 90, 81–100. [CrossRef]

http://doi.org/10.1109/TIE.2020.2998740
http://doi.org/10.1109/ACCESS.2019.2958876
http://doi.org/10.1177/1729881420969076
http://doi.org/10.1007/s10514-015-9518-0
http://doi.org/10.1016/j.robot.2018.06.013
http://doi.org/10.11707/j.1001-7488.20210218
http://doi.org/10.13976/j.cnki.xk.2021.0259
http://doi.org/10.13973/j.cnki.robot.2017.0008
http://doi.org/10.13973/j.cnki.robot.190592
http://doi.org/10.13195/j.kzyjc.2019.0043
http://doi.org/10.1109/icsess.2014.6933760
http://doi.org/10.1109/RCAR.2016.7784090
http://doi.org/10.1109/icra.2011.5980409
http://doi.org/10.1007/978-3-319-28872-7_37
http://doi.org/10.1016/j.jii.2021.100257
http://doi.org/10.1007/s11554-020-00987-8
http://doi.org/10.3390/rs14030482
http://doi.org/10.11975/j.issn.1002-6819.2021.2.001
http://doi.org/10.1007/s10846-017-0641-3

	Introduction 
	Materials and Methods 
	RRT Algorithm 
	Some Improvement Methods 
	TO-RRT Algorithm 
	Adaptive Probability Threshold 
	Node-First Search Strategy 
	Attractive Step Size and Step-Size Dichotomy 
	Regression Superposition Algorithm 


	Results 
	Comparative Experiment of Path Planning in a Complex Environment 
	Obstacle Avoidance Test Based on the Robotics Toolbox 
	Comparative Experiments in a Virtual Picking Environment 
	Contrastive Experiments in Real Environments 

	Discussion 
	Analysis 
	Future Work 

	Conclusions 
	References

