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Abstract: Climate change has been projected to impact negatively on African agricultural systems.
However, there is still an insufficient understanding of the possible effects of climate change on crop
yields in Africa. In this study, a previously calibrated Environmental Policy Integrated Climate (EPIC)
model was used to assess the effects of future climate change on maize (Zea mays L.) yield in the
Eastern Cape Province of South Africa. The study aimed to compare maize yields obtained from EPIC
simulations using baseline (1980–2010) weather data with maize yields obtained from EPIC using
statistically downscaled future climate data sets for two future periods (mid-century (2040–2069)
and late century (2070–2099)). We used three general circulation models (GCMs): BCC-CSM1.1,
GFDL-ESM2M and MIROC-ES under two Representative Concentration Pathways (RCPs), RCP 4.5
and RCP 8.5, to drive the future maize yield simulations. Simulation results showed that for all
three GCMs and for both future periods, a decrease in maize production was projected. Maize yield
was projected to decrease by as much as 23.8% for MIROC, RCP 8.5, (2070–2099). The temperature
was projected to rise by over 50% in winter under RCP 8.5 for both future periods. For both future
scenarios, rainfall was projected to decrease in the summer months while increasing in the winter
months. Overall, this study provides preliminary evidence that local farmers and the Eastern Cape
government can utilise to develop local climate change adaptation strategies.

Keywords: climate change; agriculture; crop modelling; yield; future climate scenarios

1. Introduction

Climate change is anticipated to significantly impact the resilience of agricultural
systems in semi-arid developing countries such as South Africa. The Intergovernmental
Panel on Climate Change (IPCC) has projected that increases in greenhouse gases, particu-
larly carbon dioxide (CO2), are expected to modify global climate by increasing surface air
temperature, altering rainfall patterns and increasing the occurrence of extreme weather
events [1]. While the increased temperature may boost the yields of some crops in some
regions by increasing the rate of biomass accumulation [2], the negative effects of climate
change such as increased rainfall variability and droughts are expected to far outweigh the
positive benefits of climate change [3]. Several studies have predicted a decline in agricul-
tural productivity in most parts of Southern Africa due to increased rainfall variability and
elevated temperatures [4–6].

Maize (Zea mays L.) is a staple food in South Africa and vital for food security in the
country [7]. However, climate change threatens agricultural productivity in South Africa
and hence food security and the livelihoods of many subsistence farmers who rely on maize
production for their livelihoods [8,9]. A review by [10] showed that maize was projected
to decrease by as much as 8–38% under RCP 4.5 and RCP 8.5 scenarios by the end of the
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21st century. Several studies have investigated the impacts of climate change on maize
production in South Africa. A study by [11] in Southern Africa using a process-based
crop model (APSIM) combined with 17 general circulation models (GCMs) predicted a
decrease in future maize yields. However, many of these studies focused on the traditional
maize growing areas such as KwaZulu-Natal with limited studies focusing on the Eastern
Cape. However, many people rely on maize production for their livelihoods in the Eastern
Cape [9]. While the Eastern Cape has been predominantly a livestock producing area due
to the semi-arid climate, the government is driving efforts to increase cereal production,
especially maize, in an effort to increase the region’s food security [9,12,13].

Lately, predicting and evaluating the possible impacts of climate change on crop yields
has become important in order to develop effective climate change adaptation strategies
in agricultural systems. Early knowledge and understanding of potential climate change
effects on crops may help farmers and decision makers to make informed decisions that
minimise agricultural production risks and take advantage of opportunities arising from
climate change [11]. This knowledge of how the future climate may affect agricultural
production is important in semi-arid regions such as South Africa, where water scarcity
and increasing frequencies of droughts are already limiting crop production [14] and
threatening food security.

One way of predicting and evaluating the effects of future climate conditions on
agricultural production is by using crop models. Crop models have gained increasing
application in agriculture-related research to enhance crop growth, soil water balance and
nutrient management under various climate conditions [15,16]. Crop models have also
been used to assess the impacts of climate change on crop production and environmental
risks [17,18], and explore potential adaptation strategies [19]. In South Africa, studies have
applied crop models in the fields of hydrology and agriculture. For example, Warburton
et al. [20] investigated the impacts of climate change on the hydrology of catchments.
Abraha and Savage [21] assessed the potential effects of climate change on maize yields in
the KwaZulu-Natal area of the country. However, most of these studies in South Africa
used global climate data to run the crop models. Global climate data may not always be
representative of local climate conditions [22].

When simulating future crop yields, variables such as precipitation and temperature
are required as model inputs. General circulation models (GCMs) have been created to
use different greenhouse gas scenarios and complex earth–atmosphere interactions to
project future climate parameters such as precipitation. GCMs are numerical models that
use complex mathematical equations to simulate the earth’s atmospheric processes and
predict climate [23]. GCMs project climate parameters at a resolution of approximately
250 km2 [24,25]. While accurate predictions can be made at this resolution at the global scale,
the resolution is coarse at the local scale to support local decision making and planning [26].
To reduce the uncertainty involved with the use of GCMs, data from GCMs is usually
downscaled either statistically or dynamically to produce local climate data or regional
climate models (RCMs) that reflect local conditions more accurately [27].

In the dynamic downscaling method, a regional climate model (RCM) is nested into the
GCM to represent a given boundary forcing. Statistical downscaling methods use empirical
relationships established between large-scale and fine-scale variables using historical data,
for example, statistical downscaling uses historically sourced data such as the quantitative
links between the state of the larger-scale climatic environment and local variations. In
contrast, dynamical downscaling employs boundary conditions (e.g., surface pressure
and wind) and an atmospheric circulation system (principle of physics) to generate high-
resolution data sets [28]. However, the dynamical downscaling method is computationally
and technically complex and expensive [29], limiting the number of institutions employing
the approach. In this regard, coupling local and regional baseline climate data with
statistically downscaled GCM outputs provides an invaluable way of reducing uncertainty
associated with climate projections. In this study, freely available climate data, statistically
downscaled to reflect local weather more accurately, were used for the climate simulations.
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In South Africa, research groups such as the Council for Scientific and Industrial
Research (CSIR) and the Climate Systems Analysis Group (CSAG) have developed local
downscaled future climate data. However, despite the availability of these locally devel-
oped, downscaled climate data, few studies have used these downscaled climate data to
assess the impacts of future climate change on crop yields in South Africa [30,31]. Therefore,
this study aims to compare current and future maize yields under different future climate
scenarios. While the focus of this study was not on climate uncertainty, three climate
models were compared to reduce the uncertainty of climate change projections associated
with different models that could affect crop response.

2. Materials and Methods
2.1. Background

This study follows up on our previous study using the EPIC model in the study
area. The previous study [32] provides a detailed description of the model calibration and
validation using limited data from field trials on maize at the Cradock Research Farm.
This present study applies the calibrated and validated EPIC model to simulate future
maize yields using future climate data sets. In this study, only a summary of the model
performance will be given. A detailed description of the calibration and validation steps can
be found in [32] and additional data on model performance can be found in Appendix A.

2.2. Study Area

Biophysical data for model calibration were collected from the Cradock Research Farm
(Figure 1) in the Eastern Cape province of South Africa (32◦13′11.09′′ S, 25◦41′11.86′′ E,
elevation 849 m). The area is predominantly fine-loamy mollic ustifluvent [33], with
elevated quantities of Beaufort sediments (alluvial sand and silt and colluvial materials).
A description of the major soil characteristics at the Cradock Research Farm is given in
Appendix A, Table A1. Rainfall in the area is bimodal, with winter rainfall on the western
side of the province and summer rainfall on the eastern side. The region receives an average
rainfall amount of 341 mm. The area is drought-prone, and since 2015, most of the Eastern
Cape has experienced droughts resulting in water supply shortages [34].
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The Eastern Cape has been predominantly a livestock production area due to frequent
droughts and semi-arid nature of the region. In addition, the soils are inherently infertile
and prone to erosion [9]. However, to improve food security in the region, government,
through programmes such as the Massive Food Production Programme (MFPP) has been
on a drive to increase maize production in the area [12]. Maize is a staple food in the area
and key to enhancing the region’s food security.

Projections by the South African Department of Environmental Affairs [35] predict
significant increases in climate variability for the region. Substantial reductions in both
annual and daily precipitation have been forecasted for the area [34,35]. The yearly tem-
perature is also anticipated to rise, accompanied by elevated evapotranspiration rates and
the likelihood of droughts. An assessment of mid-century (2040–2060) CMIP5 rainfall
predictions by Mahlalela et al. [34] estimate a levelling of the annual rainfall cycle over the
Eastern Cape, with summer becoming drier and winter becoming wetter. Generally, the
Eastern Cape is projected to have elevated temperatures, a higher frequency of extreme
rainfall events and drier conditions, especially in summer [35].

2.3. EPIC Model Description

The EPIC model (version 0810) is an agroecosystem model designed to simulate
over 70 crops at the field scale using values characteristic of each crop [36]. Crop yield is
estimated based on the biomass accumulated by the plant. Biomass accumulation is affected
by model parameters such as planting density (PD), photosynthetic active radiation (PAR),
vapor pressure deficit (VPD) and the biomass to energy ratio (WA) [37]. The daily stresses
caused by extreme temperature, water and nutrient stress or inappropriate aeration are used
to correct the potential daily biomass accumulation to daily actual biomass accumulation.
The model also requires weather inputs such as precipitation, minimum and maximum
temperature, wind speed and relative humidity. Stresses reduce the biomass accumulation
and the harvest index using the value of the most severe stress experienced by the crop [38].
To better reflect the specific site conditions, values of location-specific variables such as
potential heat units (PHU) accumulated, HI and optimum temperature (OT) have to be
adjusted according to the area or region in which the model is to be used [39].

2.4. Field Work

Field trials on maize were conducted by the Agricultural Research Council (ARC)
from 1999 to 2003 at the Cradock Farm to assess the yield potential of hybrid maize
cultivars within the Eastern Cape Province of South Africa. Data from these trials were
used to calibrate and validate the EPIC model. We selected two fields with similar soil
characteristics, one for calibration and one for validation. A randomised block design
(RBD) [40], with three replications, was used throughout the field trials. The two fields
with similarly performing maize hybrids were managed according to the same agricultural
management plan developed by the ARC based on local farmers’ management practices.
The management plan, including planting and harvesting dates, and irrigation and fertiliser
application dates, is shown in Appendix A, Table A2. The management practices were
performed around the same time each year. Each year, minor changes to the management
plan were carried out based on prevailing weather conditions. In the future climate
simulations, management practices including planting dates, fertiliser and irrigation levels
used during the maize cultivar evaluation trials were used as the baseline management
practices being used in the area.

2.5. Model Inputs

EPIC requires weather inputs such as rainfall, relative humidity, temperature and
solar radiation. We obtained weather files for the study area from the AgMERRA [41]
climate dataset at 0.5 × 0.5 arc-degree spatial resolution. Soil parameter values including
cation exchange capacity, soil texture, bulk density and electrical conductivity were taken
from a previous soil analysis in the Cradock Farm. We selected missing soil parameter
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values (i.e., soil albedo, organic carbon concentration) from the Harmonized World Soil
Database (HWSD) [42] based on the expert opinion given by the Cradock Farm Manager
(Mr G. Jordaan 2017, pers. comm).

2.6. EPIC Model Set-Up
2.6.1. Framework

This study used a modelling framework for the EPIC model developed at the Interna-
tional Institute of Applied Systems Analysis (IIASA) [43]. Raster layers on weather, soil and
topography were combined and a modelling scheme applied at 5 × 5 arc-min resolution. A
grid was set up for the whole Eastern Cape and then divided into homogenous grids that
had similar site properties such as soil texture, weather and elevation. We then chose the
grid containing Cradock farm and used one soil profile based on the soil characteristics at
the farm [43]. The simulation grid containing the Cradock Research Farm was then chosen
for the simulations.

The Priestly–Taylor method was used to calculate the potential evapotranspiration
(PET). The Priestly–Taylor method was selected due to the method yielding PET values
close to the region’s reported values by [44]. The model was run for 31 years, corresponding
to the length of the weather records available, with the first 19 years serving as a warm-up
period for equilibrating EPIC’s soil erosion functions. Agricultural land management in the
model was set up according to the dates in the management plan (Appendix A, Table A2).
Irrigation and fertiliser applications were carried out in the model using the manual setting.
One soil profile (see Appendix A, Table A1) was used for all the simulations.

2.6.2. Model Calibration

The calibration and validation of the model were performed using grain yield data
from two fields at the Cradock Farm that had similar soil types. Other data such as biomass
accumulation rates and nutrient leaching were not available for model calibration and
validation as the trials were only designed to evaluate cultivar stability and potential yield.
Detailed steps of the calibration process are given in [32]. Model calibration used data from
one field and model validation used grain yield data collected from the other field. Grain
yield data were for the five-year period from 1999 to 2003.

2.6.3. Model Evaluation

We used four indicators, namely root mean square error (RMSE), the coefficient of
determination (R2), Nash–Sutcliffe efficiency (NSE) and per cent bias (PBIAS) to evaluate
model efficiency.

RMSE =

[
1
n ∑n

i=1(si − oi)
2
] 1

2
(1)

R2 =
[∑(Oi −Omean)(Si − Smean)]

2

∑(Oi −Omean)
2 ∑(Si − Smean)

2 (2)

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1(Oi −Omean)

(3)

PBIAS =
∑n

i=1 100(Oi − Si)

∑n
i=1 Oi

(4)

where n represents the sample number, Omean the observed mean value and Smean the simu-
lated mean value. Oi and Si are the observed and predicted values of the ith observation
(i = 1 to n), respectively. Regarding the RMSE, values close to zero signify a good fit
between observed and simulated yields [45]. An RMSE of zero indicates that the model
predicts the observations with complete accuracy. The coefficient of determination, R2,
has values ranging from 0 to 1, with higher values denoting less error variance [46]. NSE
varies from negative infinity to 1, with an NSE value of 1 representing perfect model fit
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between observed and simulated values. In contrast, negative NSE values indicate that
the mean observed value is a better predictor than the simulated value [46]. The PBIAS
measures the tendency of simulated data to be larger or smaller than the observed data.
PBIAS has an ideal value of 0, while positive values indicate model underestimation, and
negative values indicate model overestimation [47]. Lastly, the t-test evaluated variations
between simulated and observed mean values. We considered R2 ≥ 0.6, PBIAS ≤ ±25%
and NSE ≥ 0.4 as satisfactory model performance criteria following [48].

2.7. Climate Data

We used statistically downscaled climate input data from three general circulation
models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) [49].
The climate data were downloaded from the Climate Systems Analysis Group’s (CSAG)
Climate Information Portal (CIP) (http://cip.csag.uct.ac.za, accessed 27 July 2019). The
climate data come from two primary sources—the Computing Centre for Water Resources
located at the University of KwaZulu-Natal and the South African Weather Services. Prior
to uploading to the CIP, the data are collated and checked for quality by the CSAG [50].
Due to inherent uncertainties in individual models, three GCMs were used to encompass a
range of global mean temperature and precipitation changes and consider a wide range
of plausible future scenarios. The selected GCMs have been applied previously in South
Africa and found to represent the region accurately in terms of projection signal (see [51] for
example). The driving GMCs chosen for this study were the BCC-CSM1.1, GFDL-ESM2M
and MIROC-ES models (Table 1).

Table 1. List of driving GCMs and the model abbreviations used in this study.

Driving Regional General
Circulation Model Source Abbreviation of the Model Used

in this Study

BCC-CSM1.1 Beijing Climate Centre, China Meteorological
Administration, China BCC

GFDL-ESM2M Geophysical Fluid Dynamic Laboratory, USA GFDL

MIROC-ESM
Atmosphere and Ocean Research Institute (University of
Tokyo), National Institute for Environmental Studies and
Japan Agency for Marine-Earth Science and Technology

MIROC

For future greenhouse gas emission scenarios, two Regional Concentration Pathways,
RCP 4.5 and RCP 8.5, for two future 30-year periods, from 2040–2069 and 2070–2099, were
chosen to compare two different possible climate scenarios depending on the level of
greenhouse gas emissions. The GCAM modelling team at the Pacific Northwest National
Laboratory’s Joint Global Change Research Institute (JGCRI) in the United States developed
RCP 4.5. It is a stabilisation scenario that stabilises the radiative forcing, overshooting the
long-run radiative forcing target level, shortly after 2100 [52,53], whereas RCP 8.5 was
created using the MESSAGE model and the IIASA Integrated Assessment Framework
by IIASA in Austria. The RCP 8.5 pathway is characterised by increasing greenhouse
gas emissions over time and represents a scenario that results in high greenhouse gas
levels [54].

We used the weather data for 31 years from 1980 to 2010 for the Cradock Research
Farm obtained from the AgMERRA database [41] as input data for the baseline simulation
with EPIC. Weather data included daily maximum and minimum temperature and rainfall.
In the field trials, the time from physiological maturity to actual harvest date was not
recorded. Due to this lack of information on the actual time from physiological maturity to
harvest, changes in the length of the growing season under future climate scenarios were
not included in the simulations.

http://cip.csag.uct.ac.za
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2.8. Data Analysis

The model output variables for the simulations analysed included economic yield in
tonnes per hectare (t ha−1), seasonal irrigation water applied in millimetres (mm), seasonal
evapotranspiration in mm, nitrogen (N) leaching as N lost in percolate in kilogrammes
Nitrogen per hectare (kg N ha−1) and water use efficiency (WUE) computed as yield
per unit of water use (yield/(rainfall plus irrigation) in kg ha−1 mm−1). The means of
the output variables for the current scenario were compared to the means of the output
variables for the future periods. Model variables were analysed using analysis of variance
(ANOVA) computed with the Statistical Package for Social Scientists (SPSS) v21. Prior
to ANOVA, Shapiro–Wilks and Levene’s tests examined the normality and equality of
variance. Tukey’s post hoc tests were used to determine the means that significantly
varied when ANOVA indicated significant differences. An independent samples t-test
was performed to test for mean differences in the output variables between the two future
periods, 2040–2069 and 2070–2099. The ANOVA and t-tests were conducted in SPSS v21.

3. Results
3.1. Model Calibration

Before calibration, the following model performance values were observed: NSE = −3.34,
RMSE = 3.65 and PBIAS = 28.55. After calibration the following values were observed:
NSE = 0.53, RMSE = 1.17 and PBIAS = 0.31. Table 2 summarises model performance
after calibration. For the calibration simulation, the model underestimated yields for all
years using default parameters. Adjusting the parameters, Parm 20 (microbial decay rate
coefficient), Parm 47 (slow humus transformation rate), Parm 52 (tillage effect on residue
decay rate) and WSYF (minimum harvest index) decreased the RMSE% from 32.4% to 11.4%,
while the NSE value increased from negative values to 0.47. Adjusting PHU improved
model performance with a PHU value of 2480 producing the smallest RMSE% (10.7%) value
between observed yields and simulated yields. Further adjustments of PHU from 2480
did not produce any improvement in model performance. After PHU adjustment, model
performance came within the range set for satisfactory model calibration (i.e., R2 > 0.6
and PBIAS < ±25%). Further calibration of the crop parameters HI and WA was therefore
not conducted. The relationship between observed and simulated grain yield is given in
Appendix A, Figures A1 and A2.

Table 2. Showing Nash–Sutcliff efficiency (NSE), root mean square error (RMSE) and per cent bias
(PBIAS) for calibration and validation [32].

Observed
Mean

(t ha−1)

Simulated
Mean

(t ha−1)
NSE RMSE (t ha−1) PBIAS %

Calibration 11.26 11.23 0.53 1.17 0.31

Validation 11.12 11.23 0.61 1.018 −0.2

3.2. Validation

Observed yields ranged from 9 t ha−1 to 14 t ha−1, while simulated yields ranged
from 10 t ha−1 to 12 t ha−1. The following model evaluation statistics were observed:
NSE = 0.61, RMSE = 10.18 and PBIAS =−0.2. Model performance was within the set criteria
and considered satisfactory. Table 2 summarises model performance for the validation
simulation. The model overestimated maize yields for three out of the five years used for
validation. In the year 2000, there were unusually high observed maize yields (14.01 t ha−1),
which were underestimated by the model. In 2003, the trials had low observed yields, which
were slightly overestimated by the model. No indications were given in the management
records on why there were unusually high observed yields in the year 2000; however, in the
year 2003, management records indicated that the trial suffered a heavy weed infestation.
No statistical differences were revealed by the Student’s t-test (alpha = 0.05) between
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the observed and simulated mean grain yields. The relationship between observed and
simulated grain yield is shown graphically in Appendix A, Figures A3 and A4.

3.3. Climate Data Analysis
3.3.1. Temperature and Rainfall

All three GCMs revealed average temperature increases from March to October for
both scenarios (Figure 2a,b). For RCP 4.5 scenario (Figure 2a), the increase in average
temperature was lower than the RCP 8.5 scenario (Figure 2b). The highest monthly average
temperature in the RCP 4.5 scenario was 23.7 ◦C in January and February for the model
MIROC and approximately 21 ◦C for the GFDL and BCC models. The temperature increase
was more prominent in the RCP 8.5 scenario and the MIROC model, where average
temperatures in June and July were above 10 ◦C and approximately 6.8 ◦C higher than
the baseline average for the two months. In the months from September to December, the
temperatures were similar across all three models.
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Figure 2. Monthly average temperatures for the two 30-year future periods compared to 31 years of
baseline data, (a) RCP 4.5 and (b) RCP 8.5.

With respect to temperature differences from the baseline (Figure 3), the GCMs that
had the highest temperature increase for the RCP 4.5 scenario were the MIROC model, with
a monthly percentage difference from the baseline of about 51% in July and the GFDL model
with peaks of more than 40% in June and July for the period 2070–2099. RCP 8.5 showed
higher temperature differences from the baseline compared to RCP 4.5 for both climate
models and future time periods. The highest percentage difference from the baseline in
RCP 8.5 was given by the MIROC model, reaching a peak of 71% in July.

Regarding rainfall (Figure 4), an increase in winter rainfall was observed from May to
July for both RCPs with higher average rainfall values in RCP 8.5 (Figure 3b). The MIROC
model showed a different trend for rainfall from the other models for both the RCP 4.5
(Figure 3a) and RCP 8.5 scenarios (Figure 3b) with higher average monthly rainfall for the
months September to December, showing peaks of about 70 mm in November (Figure 3b).
The baseline, BCC and GFDL scenarios also showed peaks in November in the RCP 8.5
scenario but with rainfall peaks lower than the MIROC model (Figure 3b).
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Figure 3. Percentage variations from the baseline of average monthly temperatures for the two
thirty-year future periods for all three GCMs under the two RCPs, (a) BCC RCP 4.5, (b) BCC RCP 8.5,
(c) GFDL RCP 4.5, (d) GFDL RCP 8.5, (e) MIROC RCP 4.5 and (f) MIROC RCP 8.5).
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Figure 4. Monthly average rainfall for the two 30-year future periods compared to 31 years of baseline
data, (a) RCP 4.5 and (b) RCP 8.5.

3.3.2. Yield Simulations

Simulation results displayed a similar trend among all the three GCMs used in the
RCPs. There was a reduction in maize yield, WUE and seasonal irrigation requirements,
and an increase in N leaching and seasonal evapotranspiration for all GCMs under the two
future periods (Table 3).

Table 3. Average model output values and mean comparison test for the different scenarios, climate
models and future time periods. Different superscript letters on means in the same column indicate
significant differences (p < 0.05) revealed by a Tukey’s post hoc multiple comparison test. Identical
superscript letters on means in the same column indicate no significant differences (p > 0.05).

Yield
(t ha−1)

Irrigation Water
Used (mm)

WUE
(kg ha−1 mm−1)

N Leaching
(kg N ha−1)

Seasonal Et
(mm)

Scenario

Baseline 12.24 A ± 0.58 562.89 A ± 82.53 24.13 A ± 1.33 19.91 B ± 24.17 907.78 C ± 46.79

RCP 4.5 11.51 B ± 1.10 541.09 A ± 74.29 23.46 A ± 1.96 36.79 B ± 34.09 943.10 A ± 39.08

RCP 8.5 10.20 C ± 0.81 460.81 B ± 61.86 22.40 B ± 1.19 66.13 A ± 53.58 918.84 B ± 40.94

General Circulation Model

BCC-ESM 10.89 A ± 1.17 509.23 A ± 66.43 23.24 A ± 2.34 49.22 A ± 41.35 922.45 A ± 32.91

GFDL 11.05 A ± 1.32 510.82 A ± 92.8 22.95 B ± 1.33 47.34 A ± 52.37 933.88 A ± 45.78

MIROC 10.62 A ± 0.95 481.52 A ± 73.55 22.58 BC ± 1.09 56.49 A ± 48.18 936.34 A ± 44.62

Period

2040–2069 11.31 * ± 0.73 525.26 *±6 8.77 23.37 * ± 0.76 39.35 * ± 34.14 938.76 * ± 36.59

2070–2099 10.39 * ± 1.33 475.82 * ± 81.78 22.48 * ± 1.33 62.78 * ± 55.77 922.62 * ± 45.13

* Indicates a significant difference at α = 0.05 for independent samples t-test. WUE = water use efficiency,
Et = evapotranspiration.
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Regarding percentage differences between the baseline and future periods, maize
yield decreased by up to 23.8% for MIROC, RCP 8.5, (2070–2099). The largest decrease
in seasonal irrigation (13.6%) was for GFDL, RCP 8.5 (2040–2069). For WUE, the most
significant percentage decrease (22.7%) occurred under MIROC, RCP 8.5, (2070–2099).
Concerning N leaching, a significant percentage increase of 375.4% occurred under GFDL,
RCP 8.5 (2070–2099). Table 4 shows the percentage differences (future–baseline) between
the simulated mean baseline values and simulated mean future values for yield, WUE,
seasonal irrigation requirements and N leaching.

Table 4. Percentage differences (future–baseline) between the simulated mean baseline values and
simulated mean future values for yield, WUE, seasonal irrigation requirements and N leaching.

Scenario and Period Yield Seasonal
Irrigation

Water Use
Efficiency N Leaching

BCC

RCP 4.5 2040–2069 −8.2 −5.4 −4.3 −26.4

RCP 4.5 2070–2099 −7.4 −5.9 −5.1 108.8

RCP 8.5 2040–2069 −10.7 −5.9 −7.0 148.4

RCP 8.5 2070–2099 −15.6 −8.0 −14.1 215.5

GFDL

RCP 4.5 2040–2069 0.0 −1.9 0 17.4

RCP 4.5 2070–2099 −2.5 0.3 −2.8 39.4

RCP 8.5 2040–2069 −14.8 −13.6 −13.4 207.5

RCP 8.5 2070–2099 −20.8 −13.6 −21.7 375.4

MIROC

RCP 4.5 2040–2069 −8.2 −13.2 −6.6 113.5

RCP 4.5 2070–2099 −13.1 −8.7 −12.1 178.8

RCP 8.5 2040–2069 −10.7 −12.9 −9.6 153.2

RCP 8.5 2070–2099 −23.8 −13.6 −22.7 373.8

3.3.3. BCC Model

In the second future period, 2070–2099, where the gap from the baseline was more
highlighted, maize yield was on average equal to 10.3 t ha−1 for RCP 8.5 and 11.3 t ha−1 for
RCP 4.5. RCP 8.5 2070–2099 gave the most considerable yield difference from the baseline
yield (Figure 5a). The seasonal irrigation amount showed a decreasing trend in the future
periods compared to the baseline (Figure 5b). The decrease in seasonal irrigation amount
was comparable between RCP 4.5 2040–2069, RCP 4.5 2070–2099 and RCP 8.5 2040–2099,
with the three periods having similar seasonal irrigation requirements. RCP 8.5 2070–2099
had the largest seasonal irrigation requirement decrease compared to the baseline scenario,
with a seasonal irrigation amount 8% lower than the baseline. Future WUE also showed a
decreasing trend from the baseline scenario for all future periods (Figure 5c). The largest
decrease in WUE was in RCP 8.5 2070–2099, which was 22.7% lower than the baseline WUE.
N leaching increased in all future scenarios except in RCP 4.5 2040–2099, where N leaching
slightly decreased compared to the baseline scenario (Figure 5d). RCP 8.5 2070–2099 had
the largest increase in N leaching compared to the baseline scenario.
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Figure 5. EPIC model outputs from the simulations using BCC-ESM climate data. Values are plotted
and shown for the two 30-year periods compared to the baseline simulation; (a) yield, (b) seasonal
irrigation, (c) water use efficiency (WUE), (d) N leaching.

3.3.4. GFDL Model

For the GFDL model, crop yield was similar to the baseline yields but slightly lower
(Figure 6a). For RCP 4.5 and RCP 8.5, there were only slight differences in yield in the
two future periods for the GFDL scenario. The two future scenarios for RCP 8.5 showed
lower yields compared to both RCP 4.5 and the baseline scenario. Seasonal irrigation was
similar to the baseline period for the two future periods in RCP 4.5. However, both future
periods for RCP 8.5 showed a marked decrease in seasonal irrigation amount compared to
the baseline scenario. The largest decrease in seasonal irrigation compared to the baseline
scenario was observed for 2040–2069 in RCP 8.5 (Figure 6b). WUE slightly decreased in
the future climate scenarios ranging from 15.91 kg ha−1 mm−1 in RCP 8.5 2070–2099 to
20.61 kg ha−1 mm−1 in RCP 4.5 2040–2069 compared to 20.61 kg ha−1 mm−1 in the baseline
scenario (Figure 6c). N leaching increased in all future climate periods for all the scenarios
compared to the baseline scenario (Figure 6d). RCP 8.5 2070–2099 had the largest increase
in N leaching with an average of 91.64 kg N ha−1.
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Figure 6. EPIC model outputs from the simulations using GFDL climate data. Values are plotted
and shown for the two 30-year periods compared to the baseline simulation; (a) yield, (b) seasonal
irrigation, (c) water use efficiency (WUE), (d) N leaching.

3.3.5. MIROC Model

The MIROC model showed a similar trend of decreasing yield for all the future periods
with respect to the baseline period. Maize yield decreased by up to 23% in RCP 8.5 2070–
2099 (Figure 7a). Seasonal irrigation also reduced significantly in the future periods for all
RCPs. Seasonal irrigation amount decreased by up to 13% in RCP 4.5 2040–2069 and the
two time periods for RCP 8.5 compared to the baseline period (Figure 7b). For WUE, the
model simulated a slight decrease over time, particularly in RCP 8.5 2070–2099 (Figure 7c).
N leaching increased for all future periods compared to the baseline scenario. RCP 8.5
2070–2099 had the most significant increase in N leaching compared to all the other periods
for all three models (Figure 7d).
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Figure 7. EPIC model outputs from the simulations using MIROC climate data. Values are plotted
and shown for the two 30-year periods compared to the baseline simulation; (a) yield, (b) seasonal
irrigation, (c) water use efficiency (WUE), (d) N leaching.

4. Discussion
4.1. EPIC Model Calibration and Validation

Notwithstanding the limited data available to calibrate and validate the model in
this study, the calibration results revealed satisfactory agreement between observed and
simulated yields. In the initial simulation with default parameters, the agreement between
observed and simulated crop yields was unsatisfactory, suggesting the need for calibration.
After adjustment of site-specific model parameters, the model performance improved,
showing the value of calibrating models with parameters that are site-specific. Our re-
sults provide further evidence to support previous studies that have demonstrated that
adjusting parameters with local-scale data increase can increase the accuracy of simulations
and reduce model uncertainties considerably [55]. For example, Xiong et al. [56] and An-
gulo et al. [57] demonstrated that fine-tuning PHUs to local conditions could significantly
improve model simulation accuracy. In this study, model simulations improved on adjust-
ing the PHU value. The PHUs are closely related to biomass growth and its final yield
allotment, indicating the substantial influence of PHU adjustment on simulated crop yields.



Agriculture 2022, 12, 794 15 of 24

Trials conducted in the USA by Williams et al. [58] showed that the PHUs required for
maize to reach maturity ranged between 1000–2900. In this study, 2480 PHUs brought model
performance into the range set for satisfactory model calibration. The ARC in South Africa
states that maize typically requires 120 days to mature from the day of planting. However,
this period is hugely dependent on weather conditions and 120 days is generally for the
warmer traditional maize growing regions in South Africa such as KwaZulu Natal [59].
The Cradock area is relatively cooler than the traditional maize growing regions in South
Africa, which may account for the higher PHU value found in this study.

Concerning the HI, the default value in the EPIC model is 0.5, which is representative
of HI values for improved high yielding maize varieties [60], similar to the varieties used in
the field trials for this study. The default HI value of 0.5 used in this study, has been used
in studies such as those by [39,61].

In this study, we did not adjust the biomass to energy ratio (WA) since adjusting PHUs
improved the model performance considerably to within the range set for satisfactory model
calibration. For example, PHU calibration gave an RMSE of 1.17 kg ha−1 and PBIAS of 0.31
between observed and simulated yields. The small RMSE and PBIAS values suggested that
no additional WA and HI adjustments were required since the conditions for satisfactory
model performance had been met. Regarding WA, we left WA at the default value of
40 kg ha−1 MJ−1 m2. Similar studies have also used the value of 40 kg ha−1 MJ−1 m2

for WA (see, e.g., [39,62]). The biomass to energy ratio can significantly influence crop
yields [63], and [36] explains that WA can substantially alter crop growth and yield rate.
Reference [36] further emphasises that WA should be adjusted only as a final resort and
based on experimental data.

The EPIC model potentially overestimates yields, even at low observed yields during
calibration and validation (see [32]. Studies conducted by [64,65] also found that the
EPIC model tended to overestimate low observed yields. It has been suggested that
the overestimation of plant available water at field capacity could potentially lead to the
overestimation of yields in the dry years by the EPIC model (see [66]). Thus, Kiniry et al. [66]
proposed measuring the maximum depth of water extraction using local cultivars as a
solution. However, the solution was not applied as it is beyond the scope of the calibration
and validation study. The overestimation observed in this study may be attributed to
the influence of weed outbreaks. Agricultural management records used during the field
trials note that in 2003 the maize fields were affected by heavy weed outbreaks. At the
time of model calibration and validation, the EPIC model had not yet been developed to
accurately account for competition from weeds [67]. As such, competition from weeds was
not accounted for in the simulations, which may explain why the model overestimated the
low yields observed in 2003.

4.2. Climate Change Impacts on Maize Yield

Model ensemble results predicted a decrease in maize yield for all future scenarios
with a more pronounced reduction in RCP 8.5 2070–2099. This decrease can be attributed to
an increased temperature that would shorten the growth stage of the maize crop. Increased
temperature increases the rate of accumulation of growing degree days, thereby influencing
growth duration. Several studies have shown that temperature increases lead to early
crop maturing, allowing less time to accumulate biomass and form grain yield [68–70].
The projected decrease in maize yield in this study agrees with other studies in Southern
Africa. For example, studies by [71] projected decreases in maize yield in Zimbabwe
under irrigated and rain-fed agriculture. In their study, [71] used the CERES model driven
by GCMs (specifically the GFDL and the Canadian Climate Centre Model). Walker and
Schulze [72] also studied the response of smallholder maize production in Potshini village,
KwaZulu-Natal, South Africa, up to the late 21st century climates. The study by [72]
projected a decrease in average maize yields of approximately 30% and showed that more
efficient management of fertiliser and manure applications would be a viable management
strategy to adapt to climate change.



Agriculture 2022, 12, 794 16 of 24

A study by [73] in Ethiopia for mid-century maize production projected a shortening
of maize maturity period by approximately 9–13% due to elevated temperatures. The
reduced maturity period would reduce the amount of time the maize crop was able to
capture solar radiation and assimilate carbon dioxide, resulting in a reduction in biomass
and yield accumulation [74]. Other studies such as those by [75,76] have reported that
photosynthesis is affected by elevated temperatures and low water availability, which in
turn can reduce the yield. In this study, projections showed an increase in temperature
and decrease in rainfall during the early growing season, leading to a reduction in yield.
Although rainfall is predicted to be lower in a portion of months in the growing season,
studies have shown that maize requires the right amount and distribution of rainfall [77,78].
In this study, GCM projections predicted low rainfall in the critical growing months for
maize. While there was an increase in rainfall in winter, the maize plant would already
have been affected by water stress, and hence the reduction in yield.

Rainfall can also influence crop yield as water is key to crop growth and development.
In this study, rainfall was predicted to decrease in the early months of the maize growing
season. Similar to this study [79], found a shift in precipitation during the growing season.
The shift in precipitation may affect yield as studies have shown maize to be sensitive to
moisture amount and distribution [80]. Furthermore, the decrease in rainfall projected
has implications for food production as rainfall supplements irrigation in the study area.
Rainfall is the ultimate source of irrigation water in the study area. A reduction in rainfall
would lead to decreased flows in the Great Fish River, leading to further water shortages
in an already water-scarce area. Further water shortages would significantly impact food
production in the area as the Great Fish River supplies most of the irrigation water used
by conventional farmers in the area. A previous study by [81] showed that rain-fed maize
yields in the Eastern Cape are very low without irrigation even when sufficient fertiliser
is provided.

Regarding nitrate leaching, all future simulations predicted significant increases in
N leaching. Generally, increases in temperature accelerate phenological development,
leading to a shorter growing period and less nutrient uptake. The shorter growing period,
coupled with the increased rainfall towards the end of the growing found in this study,
can explain the increased leaching for the future period. The increased N leaching found
in this study is similar to the findings of [16]. In the study by [16], under future climate
scenarios, nitrate leaching was found to increase significantly compared to the baseline
scenario. He et al. [16] attributed the increased leaching to the future high temperature stress
and increased precipitations, explaining that the high temperature stress and increased
precipitations resulted in low crop N removal and increased drainage. Without matching
the amount of fertiliser applied to crop N needs, excess N can be lost to the environment
through leaching. This indicates the need to take into consideration the impacts of climate
change on N leaching when developing future agricultural land management strategies
aimed at maximising the use of N by plants and minimising N losses to the environment.

Considering the predicted impacts of climate change in the study area, farmers may
need to obtain financial and technical support to implement on-farm water adaptation
strategies such as rainwater harvesting and the use of field water conservation strate-
gies such as mulching. Several studies analysing climate and weather trends in South
Africa have shown that average temperatures in the country have increased in the last
decades [35,82,83]. A study by [50] on observed and modelled trends for rainfall and tem-
perature for South Africa found significant increases in temperature and rainfall variability
in the Eastern Cape. Temperature increases and the decreased rainfall season length pre-
dicted in this study suggest that short-term growing maize varieties and drought-tolerant
maize varieties may be needed in the Eastern Cape if crop production is to be sustained.

It is worth noting that we did not consider farmers implementing agricultural land
management strategies aimed at minimising the effects of climate change in the simulations.
This is unlikely to be the case in practice. Agroecosystems are human-managed, and
farmers have a variety of possible adaptation options [84,85]. While the study did not show
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possible yield changes due to the implementation of climate change adaptation measures,
the study does provide a clear picture on maize yield and N leaching rates if no climate
change adaptation measures are taken. While there is uncertainty associated with climate
projections, several studies in sub-Saharan Africa (e.g., [86,87]) have shown that projections
of climate impacts appear robust across model ensembles [11].

However, the results of climate impact studies should not be taken in absolute terms
but rather as possible pathways for the future of maize production in the Eastern Cape.
Decision makers should consider other factors that may influence crop yield. In this study,
the combined influence of other factors such as the development of pests and disease on
crop yield was assumed to be fully controlled through appropriate management practices.
This study’s results can be used by farmers and policymakers to plan how to adapt to the
projected increases in temperature and decreased rainfall. It is vital to develop adaptation
strategies that consider the projected increases in temperature and minimise N leaching.
N leaching represents an economic loss to farmers (N fertiliser not utilised by plants) and
a potential water pollutant. It is recommended that studies that test the effectiveness of
adaptation strategies and current and future climate scenarios using the EPIC model be
carried out in the region.

5. Limitations of the Study

Downscaled climate projections inescapably inherit uncertainties from GCMs. Sources
of uncertainty arise from internal variability of the model, the greenhouse gas emission
scenario used (RCPs), the statistical downscaling process and imperfections in the GCMs
from which the downscaled data were derived. Other sources include using only one crop
model (EPIC) to project the impacts of climate change on crop yield. Asseng et al. [88]
suggested that ensembles of many crop models could give a better estimate of yield than
using one model. However, the use of multiple models was beyond the scope of this study.

The results of climate change effects are prone to many uncertainties resulting from
the limited knowledge of underlying geophysical processes of global change (GCM uncer-
tainties) and uncertain future scenarios (emission scenario uncertainties) [19]. Uncertainties
in climate projections with respect to climate models can have significant impacts on
crop model outputs [89,90]. To reduce uncertainties associated with individual climate
models, three different models under two contrasting climate scenarios were selected to
capture the full range of changes in temperature and precipitation projected by the models.
Reference [91] states that emission scenario uncertainties are less relevant until the middle
of the 21st century; hence, the 2040–2069 scenario was chosen as the starting period for
future climate simulations.

In this study, carbon dioxide (CO2) fertilisation effects were not considered due to the
lack of site-specific annual data on future CO2 levels for the periods used in the scenarios.
Klein [89] explains that model equations are all subject to variability and uncertainty. As a
result, processes included in simulation models, such as CO2 fertilisation effects, may not
always be fully understood or well implemented. For example, Free Air Carbon Enrichment
(FACE) experiments indicate productivity increases due to increased CO2 levels but do
not address important co-limitations arising from water and nutrient availability [89]. The
magnitude of crops’ responses to increased CO2 levels is thus uncertain and the subject
of current debates among researchers [2,92–94]. Biernath et al. [95] argue that many crop
models are currently unable to capture the complex underlying processes associated with
CO2 fertilization and are therefore unable to reproduce experimental results.

Additionally, we assumed crop management such as fertilisation to be similar across
the future periods, which may not be the case in reality as farmers adapt to changing
farming conditions. Additionally, by considering one maize cultivar, we assumed the
single cultivar would give similar responses to the impacts of climate change as those of
different cultivars.
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6. Conclusions

EPIC simulations predict that climate change will negatively affect maize production
and environmental water quality in the Eastern Cape. Maize yields are projected to decrease,
accompanied by an increase in N leaching. Mitigating the future impacts of climate change
will be vital to enhancing food security in the region. Models such as EPIC can help predict
and anticipate the possible effects of climate change on crop production and help plan
appropriate agricultural land management responses that contribute to sustainable food
production in South Africa. In this regard, this study’s results have demonstrated that the
EPIC model can be considered a valuable tool for exploring the future impacts of climate
change on crop yields and the environment. Future studies using EPIC should test the
effectiveness of various crop rotation and intercropping strategies based on farmers’ current
crop rotation and intercropping strategies.
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Appendix A

Supplementary information on the calibration and validation of the EPIC model.

Table A1. Representative soil characteristics of the Cradock Research Farm used as inputs into the
Environmental Policy Integrated Climate (EPIC) model (obtained from [32]). Clay, sand, silt, soil
organic carbon units are in percentages, whereas bulk density, soil organic carbon and ion exchange
capacity are in g cm−3 m and (cmol (+) kg−1), respectively.

Soil Parameters Soil Layer Number
1 2

Bulk density 1.48 1.52
Soil depth 0.3 1.2

Clay 20.4 15.1
Sand 52.8 42.5
Silt 26.8 42.4
pH 6.5 6.5

Soil organic carbon 0.91 0.2
Cation exchange capacity 14.3 13.4
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Table A2. Showing the agricultural management plan used during the study period (table obtained
from [32]).

Date 1 Operation Type Amount

22 October Planting Maize 50,000 plants ha−1

22 October Fertilizer application Superphosphate 476 kg ha−1

22 October Fertilizer application Ammonium sulfate 330 kg ha−1

22 October Fertilizer application Calcium sulfate 120 kg ha−1

22 October Irrigation Furrow 75 mm
15 November Fertiliser application Ammonium sulfate 300 kg ha−1

26 November Irrigation Furrow 75 mm
10 December Fertiliser application Ammonium sulfate 300 kg ha−1

17 December Irrigation Furrow 75 mm
28 December Irrigation Furrow 75 mm

18 January Irrigation Furrow 75 mm
8 February Irrigation Furrow 75 mm

19 February Irrigation Furrow 75 mm
11 March Irrigation Furrow 75 mm

5 June Harvesting Manual 11 tonnes hectare−1 (average)
1 The dates given in the table are not fixed for each year. They indicate the approximate times of year each
management activity was carried out during the trial period.
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Figure A1. Showing the crop yields (observed and simulated) since the model was in the range set for
acceptable model calibration for the study period after PHU calibration (figure obtained from [32]).
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Figure A2. Showing the simulated crop yields on observed maize yields with the calibrated maize
crop file (figure obtained from [32]).
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Figure A3. Simulated yields in the validation simulation using the calibrated model (figure obtained
from [32]).
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