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Abstract: In view of the difficulties of fruit cluster identification, the specific harvesting sequence
constraints of aggregated fruits, and the balanced harvesting task assignment for the multiple
arms with a series-increasing symmetric shared (SISS) region, this paper proposes a multi-objective
optimization algorithm, which combines genetic algorithm (GA) and ant colony optimization (ACO)
stepwise, to optimize the multiarm cooperative harvesting trajectory of straw-rotting fungus to
effectively improve the harvesting efficiency and the success rate of non-destructive harvesting.
In this approach, firstly, the multiarm trajectory optimization problem is abstracted as a multiple
travelling salesman problem (MTSP). Secondly, an improved local density clustering algorithm is
designed to identify the cluster fruits to prepare data for harvesting aggregated fruits in a specific
order later. Thirdly, the MTSP has been decomposed into M independent TSP (traveling salesman
problem) problems by using GA, in which a new DNA (deoxyribonucleic acid) assignment rule is
designed to resolve the problem of the average distribution of multiarm harvesting tasks with the
SISS region. Then, the improved ant colony algorithm, combined with the auction mechanism, is
adopted to achieve the shortest trajectory of each arm, which settles the difficulty that the clustered
mature fruits should be harvested in a specified order. The experiments show that it can search for a
relatively stable optimal solution in a relatively short time. The average harvesting efficiency is up to
1183 pcs/h and the average harvesting success rate is about 97%. Therefore, the proposed algorithm
can better plan the harvesting trajectory for multiarm intelligent harvesting, especially for areas with
many aggregated fruits.

Keywords: straw-rotting fungus; multiarm harvesting trajectory optimization; multiobjective
optimization; cluster fruit; genetic ant colony stepwise algorithm

1. Introduction

Straw rotting fungi are fungi that absorb the decayed humus of grass straws (such
as straw and wheat straw) as the main source of nutrition [1], mainly including Agaricus
bisporus, Agaricus blazei, straw mushrooms, capsule mushrooms, etc. Its factory pro-
duction usually adopts the bed planting method. The growth of its fruit is similar to a
round or spherical shape, easy to cluster, the combination of fruit and culture medium
(soil) is relatively rigid and compact, the ripening time of each fruit is different, and the
fruit is tender and vulnerable. This kind of fruit usually needs to be harvested by selective
harvesting, and the aggregated mature fruits need to be harvested in the specified order;
otherwise, the fruit is easy to be damaged. Therefore, it is difficult to achieve effective
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automatic nondestructive harvesting [2]. Under the trend of serious labor shortages, al-
though the cultivation of such crops can achieve factory-like and intensive production,
the labor-intensive harvesting process [3] still relies on manual labor, which has become
the main bottleneck affecting further production and efficiency improvement. Therefore,
there is an urgent need for harvesting robots that can adapt to the factory and intensive
cultivation environment for intelligent and efficient harvesting.

In the 1990s, Reed, J. N. and Tillett, R.D. [4] proposed the first selective harvesting
robot for Agaricus bisporus, which made selective autonomous harvesting of straw-rotting
fungus feasible. Since then, scholars have carried out many researches to on the edible
fungus harvesting robot technology but mainly focused on visual recognition and end-
effectors to improve the harvesting success rate [5–13], and few studies on trajectory
planning. Yang [14] aimed at the issue of mushroom harvesting path planning. GA was
used to optimize the harvesting path to improve the harvesting efficiency after obtaining
the location coordinates of all the mushrooms that can be harvested. In order to improve
the harvesting efficiency of the mushroom harvesting robot, Hu et al. [15] proposed an
improved simulated annealing algorithm to find the optimal path, which can increase the
harvesting efficiency by 14–18%. However, both of the above studies are all optimized for
the path of the single-arm harvesting robot, which can improve the harvesting efficiency to
a certain extent, but far from manual efficiency. In addition, these methods do not consider
the specific harvesting order of the aggregated fruits and are merely suitable for harvesting
the fruits, which are relatively sparse. When the fruits grow densely, take Agaricus bisporus
as an example, as shown in Figure 1, for the clustered fruits in the red circled area, the
height of fruit body A is higher than B and C. If B or C is harvested before A, B and C will be
damaged or even be harvested unsuccessfully because their cap is covered by A. Moreover,
a may be pushed down, which will cause its cup center to deviate greatly, resulting in
failure when picking A. So, the aggregated fruits should be harvested in order of height.
Otherwise, the success rate of non-destructive harvesting and the harvesting quality will
be reduced. So, it is significant to greatly improve harvesting efficiency; meanwhile, to
take into account the harvesting order of aggregated fruits to improve the success rate of
non-destructive harvesting further.
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Figure 1. Schematic diagram of aggregated fruits.

Because the fruit is delicate and vulnerable and the harvesting environment is complex,
the harvesting operation is usually limited to slow and time-consuming [16]. So, the
harvesting efficiency is normally much lower than manual efficiency, which leads to the
situation that the harvesting robot cannot be widely used in actual production. To solve
this issue, using multiple harvesting arms is a typical approach.

A cotton harvesting robot with multiple robotic arms has been developed to achieve
multiple plucking of crops, which increases the yield by 20–25% [17].

Zion [18] developed a melon harvesting robot with multiple Cartesian arms to acceler-
ate the speed. The robot travels along a two-dimensional field at a constant velocity. The
multiarm assignment is modeled as a k-colorable sub-graph problem and uses a greedy
algorithm to achieve an optimal solution. Because the greedy algorithm focuses on local
optimization, the effect of global optimization may not be very good.
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A strawberry harvesting robot with dual cartesian arms was developed to reduce the cost
and optimize the harvesting efficiency. The fruits were partitioned into several subsections
equally for each arm to harvest. The harvesting speed can be reduced to 4.6 s [19].

An oyster mushroom harvesting robot with four harvesting arms connected in parallel
on a common mobile platform is provided to improve efficiency [20]. Each arm is allocated
to harvest in the divided area independently, which is divided from left to right with an
approximately equal number of target fruits, and the mature fruit closest to the end actuator
is picked first in each area.

A multiple robot arm system for kiwifruit harvest has been designed to reduce the
harvesting cycle time, thereby increasing the efficiency to meet the requirements of com-
mercial applications [21]. The multiarm harvesting robot sorts and partitions target fruits
according to their x coordinates and assigns them to the harvesting arms so that the amount
of the harvested fruit is approximately equal for each arm. However, for fruits growing in
clusters, the clustered fruits are completely allocated to the same arm to be harvested from
low to high to avoid touching or moving other fruits’ positions. Although this method can
improve the picking success rate of fruit clusters, it will affect the distribution uniformity
of each arm, thereby reducing the picking efficiency.

Most of the above multiarm harvesting trajectory planning uses the traditional method,
which partitions target fruits approximately evenly according to the arrangement direction
of the harvesting arms and allocates them to the robot arms, and each arm harvests fruits
from left to right or from right to left. Normally, this method can achieve a good result.
However, the trajectory planning effect of this method will be greatly reduced when the
fruits are distributed seriously ununiformly and even with many fruit clusters. Moreover,
this method assumes that each fruit can be picked by each arm; that is, the accessibility of
the task to be executed to the individual is consistent. While the fact is that not every fruit
can be picked by each arm due to the size of the arm, which indicates that the accessibility
of the task to be executed in the instance is inconsistent. This shortcoming will also increase
the difficulty of equal allocation among each arm. Therefore, a more global and flexible
optimization approach is required to resolve the above issues. In order to effectively
improve harvesting efficiency and adapt to the environment of straw-rotting fungus factory
bed planting, the harvesting robot can be designed as a highly cost-effective Cartesian
coordinate harvesting robot as shown in Figure 2, equipped with multiple harvesting
arms [22]. Here, because the mature fruits of straw-rotting fungus are little difference in
height, it can be assumed that the time spent in the height direction (Z-axis) of each fruit
during harvesting is the same, so that the dimension of the harvesting trajectory planning
of such fruits can be reduced as a two-dimensional trajectory planning problem in the XY
plane. In addition, since the shape of the straw-rotting fungus is basically spherical, the
projection of the shape of the fruit on the XY plane is further approximated as a circle.
Just as the harvesting sequence planning problem of a single-arm harvesting robot can be
regarded as a TSP problem [23]. Given the above assumptions, the multiarm cooperative
harvesting trajectory planning problem studied in this paper can be simplified as a typical
MTSP as well.

Similar to most fruit and vegetable picking robots mentioned above, the harvesting
time for a straw-rotting fungus fruit is also time-consuming (about 5 s) due to the operation
of grasping the fruit and detaching it from the culture medium or soil cannot be too fast to
avoid damaging the fruit. Compared with the harvesting time (time required for harvesting
at the target fruit position), the moving time (time used to move from the picked fruit to
the next target fruit) is much shorter. Therefore, it is much more significant to allocate the
harvesting tasks to each arm as uniformly as possible before optimizing the shortest path for
each arm [24–26]. In the meantime, it is also necessary to take into account the harvesting
sequence of aggregated fruits to improve the success rate of non-destructive harvesting.
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For the sake of the uniform assignment of tasks for each harvesting arm, in addition to
the region segmentation method described in the previous literature analysis, the stepwise
algorithm used for MTSP is more appropriate to solve the issue, which is also superior to
the general heuristic algorithm [27–30]. A stepwise algorithm is proposed to resolve the
MTSP of multi-UAV cooperative airport bird repelling, which adopts a genetic algorithm
to divide the MTSP into M independent TSP. This paper shows that GA is suitable to
solve the task balance assignment of MTSP [31]. Lu et al. [32] combined the K-means
clustering algorithm with GA to solve multiobjective MTSP, although a better-balanced
task assignment is obtained, but it still has poor trajectory searchability.

The ant colony algorithm is widely used in combinatorial optimization problems due to
its strong search ability and fast convergence speed [33]. Necula et al. [34] used ACO as the
bi-standard surface for solving the multitraveling salesman problem. Changdar et al. [35]
adopted ACO to resolve the multi-stop multitraveling salesman problem with non-random
parameters. Although both of them achieve a good result, it is easier to fall into the local
optimal solution prematurely in MTSP with high complexity problems.

In addition to solving the problem of equal allocation of multiarm tasks under SSIS re-
strictions to improve efficiency, it is also necessary to take into account the harvesting order
of aggregated fruits to improve the success rate of non-destructive harvesting mentioned
above. To achieve this aim, the above algorithm for solving similar MTSP should be further
improved by combining a multiobjective optimization method. More than this, another
challenge is how to improve the algorithm so that the fruit clusters that need to be picked
in a specific order can be split and allocated to multiple different arms, to overcome the
shortcoming of the whole fruits in the same cluster being merely allocated to the same arm,
so as to further increase the efficiency even though the mature fruits are seriously unevenly
distributed on a culture medium (soil) and with many fruit clusters.

Through the above analysis, this paper proposes an improved genetic ant colony
multiobjective optimization algorithm, which makes comprehensive use of the advantages
of both the genetic algorithm and the ant colony algorithm to resolve the difficulties of
multiarm cooperative harvesting of straw-rotting fungus and achieve both high harvesting
efficiency and a high success rate. The main contributions of this approach are as follows:

(1) The trajectory planning problem of multiarm cooperative harvesting of straw-rotting
fungus is transformed into an MTSP problem;

(2) To resolve the difficulty of accurately recognizing the fruit clusters of straw-rotting
fungus due to their different shapes and uncertain density, a density-based clustering
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algorithm is improved by designing a new method for calculating local density, which
can better meet the clustering analysis of straw-rotting fungus;

(3) A multiobjective optimization model is built for the trajectory optimization of an
intelligent multiarm straw rotting fungus harvesting robot;

(4) The improved ant colony algorithm combined with the auction mechanism is used
to achieve the shortest trajectory of each TSP problem. Meanwhile, the fruit clusters
that are required to be picked in a specific order can be allocated to different arms
instead of being allocated to a single arm by combining the auction mechanism with
an ant colony.

2. Description of Multiarm Cooperative Harvesting Trajectory Planning Problem
2.1. Intelligent Multiarm Straw-Rotting Fungus Harvesting Robot

As shown in Figure 2, an intelligent multiarm straw rotting fungus harvesting robot
consists of the following four main parts: (i) a mobile platform (MP) with a conveyor belt;
(ii) a visual position system (VPS), and (iii) multiple flexible arms (MFA); (iv) control system
(CS). The MP is placed on the rails of the multistory shelves to move along the rail with
the help of the MP, the VPS can recognize and locate all mature fruits. The CS can plan the
harvesting trajectory and control MFA to harvest the mature fruits and send them to the
convey for blanking.

MFA consists of at least two Cartesian arms with three DOF. As shown in Figure 2a,
the X-axis adopts the gear rack motor traverse multi-axis mechanism, and each is mounted
on a guide rail. The X-axis motor drives the gears in the gear rack through a synchronous
belt drive structure to move the end-effector along the X-direction. The Y-axis uses the
synchronous belt drive module to move the end-effector in the Y direction. The end-effector
is designed into a two-stage driving structure, as shown in Figure 2b, to adapt to the narrow
layer height of the edible fungus culture rack (available design height is only about 250 mm
while travel should be 160 mm). The first stage is driven by a rodless cylinder, and the
second stage is driven by a pen cylinder. The suction cup is connected to the pen cylinder,
which is connected to the rodless cylinder. During harvesting, the rodless cylinder drives
the pen cylinder lower. Firstly, the rodless cylinder inflates to drive the pen cylinder down.
Then, the pen cylinder deflates to cause the suction cup to drop under the action of gravity
until it touches the surface of the target fruit. Finally, vacuum to grasp the target fruit, rotate
or wobble, and pull up to detach the fruit from the soil. The structure can better adapt to
the large height difference in fruits and realize picking action by wobble or rotation motion.

The working flow of the proposed robot is shown in Figure 3, as follows: First, the
camera traverses all fruit images within the current visual area; Secondly, the image is
transferred to the host computer, and the positions of the mature fruits are identified by
image processing; Thirdly, all of the coordinates of fruits to be picked are scheduled and
allocated to multiple harvesting arms; Fourth, the controller drives the arms to harvest fruits
after receiving the assigned task; Finally, the robot moves forward as a whole by MP to start
the next harvesting cycle until the harvest of one layer is finished. In addition to the use of
three arms, in order to improve efficiency, the following are also performed: (i) Multiple
economical depth cameras are used to shorten the photographing and identification time;
(ii) Visual processing and harvesting operation work in parallel rather than in series. In the
current cycle, the multiarm harvester harvests the fruits identified in the previous cycle.

As shown in Figure 4, the control system takes the motion controller (TRIO MC4N)
as the core. The motion controller communicates with the PC through the Ethercat bus
to obtain the picking task for each arm, then drives the motor of each axis and controls
the cylinder, sucker, and other actuators of the end-effector to work monitor the working
status of each actuator in real-time and returns it to the upper computer. The economical
and compact stepping servo motor is used for each axis motor, and the communication
between the motor and the controller is also via the Ethercat bus.
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2.2. Accessibility Analysis of Multiple Harvesting Arms

Generally, the MTSP problem assumes that all cities can be visited by each traveler,
but this is not the case with the multiple harvesting arm structure in this paper. As shown
in Figure 2a, multiple arms are arranged in a series along the X-direction. Due to the
unignorable width of the end-effector, each arm has a certain inaccessible area, and the
reachable range of each arm is different.

The accessibility of the picking arm in this paper is characterized by exclusive area,
partially shared area, and fully shared area, and they are symmetrically distributed as
shown in Figure 5, which is called the serial increasing symmetric shared (SISS) area. The
definition of the SSIS is described in detail in [36]. Such an SSIS area makes it more difficult
to assign the harvesting tasks equally among each arm.
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The range of each harvesting region can be described as follows:

Sk = (Xk−1, Xk), k ∈ {1, 2, . . . , 2M− 1} (1)

Xk =

{
W × k, k ∈ {1, 2, . . . , M}
L− (2M− 1− k)×W , k ∈ {M + 1, M + 2, . . . , 2M− 1} (2)

where L is the length of the harvesting region, W is the width of arm and end-effector, M is
the amount of harvesting arm, Sk is the k-th harvesting region, and Xk is the coordinate of
the end point in the X-direction of the k-th harvesting area.

Equation (3) shows the accessible harvesting arms per area as follows:

Sk( j1, j2) =
{

Sk(1, k) , k ∈ {1, 2 , . . . , M}
Sk(k−M + 1, M) , k ∈ {M + 1, M + 2, . . . , 2M− 1} (3)

where (j1,j2) indicate harvesting arms j1 to j2 can reach the k-th area, 1 ≤ j1 ≤ j2 ≤M.

2.3. Description of Trajectory Planning for Multiarm Cooperative Harvesting

As described in Section 1, the multiarm trajectory planning problem of this paper can
be abstracted to an MTSP problem with an SSIS Area. In which case, the aggregated fruits
should be harvested in the order from high to low in the Z direction. The goal of trajectory
optimization is to achieve both high harvesting efficiency and a high success rate with the
following constraints:

(1) Each harvesting arm’s accessible region is limited by the SISS region shown in the
above section;

(2) To avoid collision between the adjacent harvesting arms, a safety distance Dist
is required;

(3) After completing the harvesting tasks, each harvesting arm should go back to its start
point independently, which is (0,0), (W,0), . . . ,((M − 1) ×W,0).

3. Mathematical Model of Multiarm Cooperative Harvesting Trajectory
Planning Problem

It can be known from Section 2.3 that the trajectory optimization problem of an in-
telligent multiarm straw-rotting fungus harvesting robot is regarded as a multiobjective
optimization problem. Researchers mainly use multiobjective optimization methods such
as the weighted coefficient method, multiobjective genetic algorithm, multiobjective par-
ticle swarm optimization algorithm, etc. [37,38]. Among them, because the optimization
problem in this paper is a two-dimensional, that is, a low-dimensional objective optimiza-
tion problem, and to reduce the complexity of the problem, the simple and easy-to-use
weighted coefficient method is adopted, which decomposes multiobjective into a single
objective and then optimizes this single objective.

Suppose the robot has M arms and N fruits to be harvested. The average harvesting
efficiency of the robot is C pcs/h and the average manual working efficiency is M pcs/h;
R is the ratio of the average working efficiency of the robot and man. In order to obtain
the optimal solution to double the objectives of harvesting efficiency and success rate, take
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R and success rate P to solve the objective function E by the objective weighting method
as follows:

Max E = R×K1 + P×K2 (4)

R =
C
M

=
N

T×M
(5)

P =
N−Nlose

N
× 100% (6)

T = [max(t_ARMi) + Tc]/3600 (7)

t_ARMi =
N

∑
j=1

N

∑
k=1

tjkxijk+
N

∑
j=1

tdijxidij +
N

∑
j=1

tjdi
xijdi

, ∀i ∈ M (8)

xijk =

{
1, when Arm i from fruit j to k
0 , other

(9)

where,
K1 and K2 are weighting coefficients, K1 and K2 > 0 and K1 + K2 = 1;
Nlose is the number of fruits in the clusters that failed to be harvested in the order from

high to low in the Z direction when the fruits were gathered;
T is the total harvesting time required for harvesting all mature fruits;
TC is the avoidance time;
xid

ij
indicates that Arm i from the starting point di to fruit j;

xijdi
indicates that Arm i from fruit j to the starting point di

tjk is the time taken by the harvesting arm to perform the task from fruit j to k;
The objective function must satisfy the following constraints:
Given the mature fruits set is V = {1,2, . . . ,N}; U is the set of harvesting arms

(1 ≤M ≤ N), U = {1,2, . . . ,M); Since the working range of each harvesting arm is lim-
ited, di is the starting point of Arm i.

yij =

{
1, j ∈ Ii, when Arm i harvests fruit j
0 , other

(10)

where Ii means the mature fruits subset must be harvested by Arm i, Ii∈V
The sum of fruits picked by each arm should be equal to N as follows:

n

∑
j=1

yij = Qi, ∀i ∈ M, (11)

m

∑
i=1

Qi = n (12)

where Qi indicates the number of fruits allocated to Arm i, i∈U;
Each fruit can only be harvested by one arm as follows:

m

∑
i=1

yij = 1, ∀j ∈ V (13)

Each arm should start from and come back to its own start point after harvesting all
assigned fruits as follows:

n

∑
j=1

xidij =
n

∑
j=1

xijdi
= 1, ∀i ∈ M (14)
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4. Multiobjective Optimization Algorithm for Multiarm Cooperative
Harvesting Trajectory

As discussed in Section 1, there are the following two main difficulties required to
overcome: (1) The SSIS region restricts the working area of the harvesting arm as mentioned
in Section 2.2; (2) The allocation of cluster fruits to ensure the non-destructive success rate.

For the first problem, the stepwise algorithm, which can divide the MTSP into m-
independent TSPs to reduce the complexity of the problem, is an appropriate approach.

For the second sequence planning problem, the normal approach is to regard the
clustered fruits as a whole and assign them to a certain arm. However, when the number
of fruits in the same cluster is large and the distribution density of mature fruits in the
harvesting area is uneven (for example, most of the mature fruits are located on the left
and a few on the right), and if the fruits of a cluster can only be assigned to one arm, there
will be more harvesting tasks for one arm and fewer for the other arms, which will greatly
affect the harvesting efficiency. Therefore, for clustered fruits, it is necessary not only to
ensure that they can be harvested in order but also to be assigned to different arms to help
achieve the balanced allocation of the total harvesting task to each arm.

Therefore, an improved genetic algorithm and ant colony stepwise multiobjective
optimization algorithm (IGAACMO) is proposed. The algorithm flow is shown in Figure 6.
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In the first step, an improved local density bi-directional clustering algorithm is
designed to identify the clustered fruits to provide preparation for harvesting the clustered
fruits in the specified order; Then, in the second step, the MTSP problem is decomposed
into m independent TSP problems by a genetic algorithm with strong global optimization
ability, so as to settle uneven task assignment of the MTSP problem with SSIS region;
The third step is to use the fast convergence speed of the ant colony algorithm to plan
the trajectory of the above M-independent TSP respectively, and combined it with the
auction mechanism to resolve the allocation issue under the restriction of clustering fruit
sequence planning.

4.1. Clustering Algorithm Optimization for Fruits of Straw-Rotting Fungus

The clustering algorithms in the current research can be roughly divided into the
following five categories: partitional-based, hierarchical-based, grid-based model-based,
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and density-based [39]. The partitional-based algorithm is suitable for identifying datasets
with small sample sizes and spherical cluster shapes. However, it depends on the user
to specify the number of clusters in advance, and the processing for large-scale datasets
and clusters with complex shapes still needs to be improved further [40]. The hierarchical-
based clustering algorithm is sensitive to the noise and abnormal data points in the data
and cannot be rolled back after the upward or downward iteration [41]. The grid-based
algorithm runs at a high speed because its processing time is only related to the number of
cells and has nothing to do with the number of objects. However, the grid-based division
method may also reduce the clustering accuracy [42,43]. The advantage of a model-based
clustering algorithm is that it can find noise and isolated data points and can automatically
identify the number of classes. The disadvantage is that it is not suitable for clustering with
a large amount of data [44]. The density-based clustering algorithm can identify clusters
with different shapes. It can effectively eliminate abnormal data points or isolated data
points in the dataset, and has good noise resistance, but are sensitive to the density of
adjacent data points [45,46].

The fruit clustering state of straw-rotting fungus is relatively complex. Taking Agaricus
bisporus as an example, as shown in Figure 7a, it has the characteristics of complex
and different cluster shapes, and the number of clusters is unpredictable in advance,
which makes the partitional clustering algorithms and hierarchical clustering algorithms
unsuitable to discriminate against it. In addition, as shown in Figure 7b, it also has the
characteristics of many small clusters and many discrete values globally, which makes grid
clustering algorithms and model clustering algorithms less suitable.
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The density-based clustering algorithm can identify clusters with different shapes.
However, due to the different diameters of each fruit of the straw-rotting fungus, the density
of the fruit clusters of the straw-rotting fungus is uncertain, while the general density-based
algorithm is not effective in solving such clusters with variable density. Therefore, an
improved local density bi-directional clustering algorithm is designed in this paper. The
designed local density calculation method can better adapt to the problems of complex and
different cluster shapes, especially for uncertain density, so that the algorithm can better
meet the requirements of fruit cluster analysis of straw-rotting fungus.

4.1.1. Fruit Clustering Definition

In order to determine which cluster set should a fruit belong to; the following defini-
tions are given:

(1) If Dij, the center distance between fruit i and j, is less than or equal to the sum of their
radius, as Equation (15), fruits i and j belong to the same cluster;

Dij ≤ ri + rj (15)

where,
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ri, rj represent the radius of fruit i and j, respectively.

(2) If fruits i and j are in the same cluster, while fruits j and k are in the same cluster, then
fruits i and k are also in the same cluster;

(3) If the center distance between fruit i and any other fruit fails to satisfy Equation (15),
then the fruit i does not belong to any cluster, which is called discrete fruit.

4.1.2. Local Density Calculation

Let N be the set of all mature fruits and n be the set of the number of fruits. The local
density ρi represents the number of fruits that belong to the same cluster (that is, meet
the definition (1) in Section 4.1). The larger the local density, the more likely the fruit is
the center of the cluster center; when the local density is 0, the fruit is a discrete fruit. The
calculation process of local density is as follows:

ρi = ∑n
j=1 Cluij, i 6= j, i, j ∈ N, (16)

Cluij =

{
1, Dij ≤ ri + rj
0, Dij > ri + rj

, i 6= j, i, j ∈ N, (17)

where Cluij is used to determine if fruit i and j belong to the same cluster.

4.1.3. Improved Density-Based Clustering Algorithm

The improved clustering algorithm is divided into an ascending process and a de-
scending process, as shown in Figure 8.
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In the ascending process, calculate the local density of different fruit points, find the
high local density point closest to the fruit point, form a data chain from the data points of
low local density to high local density, and find the cluster center of the ascending process
for all fruits point. The codes in details are shown in Table 1.



Agriculture 2022, 12, 986 12 of 24

Table 1. The codes of ascending process of the improved clustering algorithm.

Algorithm 1.

Input: N // set of all mature fruits
Output: Unit[] //set of cluster centers corresponding to each fruit
1 Initialization();
2 UpProcess(a,b); // a is the data coordinate and b is the data serial number.
3 c = b; // If no other point within the cutoff distance has a higher cluster

density than it, its cluster center is itself
4 while i < n do;
5 if i! = b and density[i]> = density[b]; // The local density of i is greater

than the input fruit
6 Distance = math.sqrt((N[i][0]-a [0])ˆ2+(N[i][1]-a [1])ˆ2);
7 rc = Clu[i][2]+a [2] // Cluster radius
8 if x1<=x2: // Two fruits are clustered
9 c=i;
10 break;
11 return c;
12 while i < n do; #Ascending process, computing the cluster center for each fruit
13 Unit[i]=UpProcess(N[i],i)
14 return Solution;

In the descending process, the data point with the highest local density is used as the
cluster center, and then the data chain is merged. After all data points are traversed, and
finally, clustering is performed to complete the unified operation of all fruit clustering cen-
ters in the same cluster, the codes in detail are shown in Table 2. In addition, consolidation
operations were added to the descent. Because the growth characteristics of straw-rotting
fungus easily lead to the highest local density points within the same cluster, which may
not be unique, they need to be integrated into the same cluster. For example, the local
density values of A and B in Figure 9 are both equal to 3, which are both the highest local
density points in the cluster. In this case, fruit A and B may be the cluster centers of each
other, so it is necessary to integrate Fruit A and B into the same cluster. Its processing
method is shown in lines 9–10 in Table 2.

Table 2. The codes of descending process of the improved clustering algorithm.

Algorithm 2.

Input: Unit[] // The set of cluster centers obtained during the ascent
Output: Unit[ ] // The final set of cluster centers corresponding to each fruit
1 Initialization();
2 DownProcess(a,b);
3 if a == b; // If the cluster center of the data point is itself
4 return b;
5 else;
6 a = DownProcess(Unit[a],a);
7 return a;
8 for i in range(n); // Descending process, if the cluster center of a data is another

point, it will be merged into its subclass.
9 if i == Unit[Unit[i]]; // If it is the cluster center with another point, select one

of the points as the cluster center and merge the two.
10 Unit[i] = i;
11 if Unit[Unit[i]]! = Unit[i]; // If the final cluster center corresponding to the

point is found
Unit[i] = DownProcess(Unit[i],i);
12 return Solution;
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4.2. Genetic Algorithm

A genetic algorithm is used to divide the MTSP into 2M-1 independent TSPs for
SSIS region constraint by designing an appropriate encoding so that the MTSP can be
decomposed into 2M-1 TSPs appropriately.

(1) Encoding

The gene sequence of GA is divided into 2M-1 corresponding segments to the 2M-1
different accessible regions in the SSIS region, as shown in Figure 10 so that the MTSP can
be decomposed the MTSP into 2M-1 TSPs. The gene indicates which arm the fruit should
be allocated to. The DNA fragment corresponds to the picking region Sk in Figure 5 one
by one.

Agriculture 2022, 12, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 10. Diagram of DNA sequence proposed in this paper. 

Each ripe fruit in the reachable region corresponds to each element in the correspond-
ing DNA segment. DNAk(j) indicates the picking arm allocated to the j-th fruit in the k-th 
area. Therefore, in order to be consistent with the harvesting arm allowed to enter each 
accessible region of Equation (3), the assignment rule of DNAk(j) in the initialization of the 
corresponding population is as follows: 

DNAk(j) = � random(1,k)   ,  k ∈ {1,2,...,M− 1}                      
random(k-M + 1,M) , k ∈ {M,M + 1,...,2M− 1} (18) 

where random (1,k) represents any integer in the randomly assigned closed interval 1 to 
k. 
(2) Selection operator 

Roulette is adopted as the selection operator to improve the optimization ability of 
the algorithm. In this method, two individuals are selected at a time, and then the indi-
vidual with the better fitness of the two individuals is selected by the probability of sur-
vival. 
(3) Crossover operator 

To increase the global search ability, a multipoint crossover is used to randomly se-
lect multiple segments in the gene sequence for crossover. 
(4) Mutation operator 

Different mutation rules are required for each DNA segment, and it can merely mu-
tate into the code for the harvesting arm accessible to the corresponding reachable area of 
the segment. 

All of the mature mushrooms in the current cycle were divided into M groups based 
on the DNA sequences of the best individuals in the population. 

4.3. Improved Ant Colony Algorithm 
In order to solve the problems of sequence harvesting of cluster fruits and collision 

avoidance when M harvesting arms work together, the respective trajectory planning of 
each harvesting arm should be carried out in parallel, so that it can be judged in real-time 
whether there the clustered fruits are harvested in the specified order and whether will be 
collisions between the arms. 

The ant colony algorithm has good parallelism and late convergence of the algorithm, 
so this paper adopts the ant colony algorithm to solve the trajectory planning problem of 
each of the M harvesting arms and combines the auction mechanism to deal with the se-
quence harvesting of cluster fruits when the M harvesting arms work together. 

In actual harvesting, in addition to harvesting efficiency, the harvesting success rate 
is also a very important indicator. According to actual harvesting requirements and ex-
periments, the trajectory planning algorithm designed in this paper needs to ensure that 
the harvesting success rate is more than 95%. Therefore, the following approach is de-
signed so that in the early stage of the evolution of the algorithm, the success rate is the 
main guide, while after the success rate meets the requirements, the pheromone concen-
tration of the current fruit to be harvested should be temporarily increased to increase the 
probability of its selection. 

The specific calculation process for the success rate is shown in Figure 11. 

Figure 10. Diagram of DNA sequence proposed in this paper.

Each ripe fruit in the reachable region corresponds to each element in the correspond-
ing DNA segment. DNAk(j) indicates the picking arm allocated to the j-th fruit in the k-th
area. Therefore, in order to be consistent with the harvesting arm allowed to enter each
accessible region of Equation (3), the assignment rule of DNAk(j) in the initialization of the
corresponding population is as follows:

DNAk(j) =
{

random(1, k) , k ∈ {1, 2, . . . , M− 1}
random(k−M + 1, M), k ∈ {M, M + 1, . . . , 2M− 1} (18)

where random (1,k) represents any integer in the randomly assigned closed interval 1 to k.

(2) Selection operator

Roulette is adopted as the selection operator to improve the optimization ability of the
algorithm. In this method, two individuals are selected at a time, and then the individual
with the better fitness of the two individuals is selected by the probability of survival.

(3) Crossover operator

To increase the global search ability, a multipoint crossover is used to randomly select
multiple segments in the gene sequence for crossover.

(4) Mutation operator

Different mutation rules are required for each DNA segment, and it can merely mutate
into the code for the harvesting arm accessible to the corresponding reachable area of
the segment.

All of the mature mushrooms in the current cycle were divided into M groups based
on the DNA sequences of the best individuals in the population.
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4.3. Improved Ant Colony Algorithm

In order to solve the problems of sequence harvesting of cluster fruits and collision
avoidance when M harvesting arms work together, the respective trajectory planning of
each harvesting arm should be carried out in parallel, so that it can be judged in real-time
whether there the clustered fruits are harvested in the specified order and whether will be
collisions between the arms.

The ant colony algorithm has good parallelism and late convergence of the algorithm,
so this paper adopts the ant colony algorithm to solve the trajectory planning problem
of each of the M harvesting arms and combines the auction mechanism to deal with the
sequence harvesting of cluster fruits when the M harvesting arms work together.

In actual harvesting, in addition to harvesting efficiency, the harvesting success rate
is also a very important indicator. According to actual harvesting requirements and
experiments, the trajectory planning algorithm designed in this paper needs to ensure that
the harvesting success rate is more than 95%. Therefore, the following approach is designed
so that in the early stage of the evolution of the algorithm, the success rate is the main
guide, while after the success rate meets the requirements, the pheromone concentration of
the current fruit to be harvested should be temporarily increased to increase the probability
of its selection.

The specific calculation process for the success rate is shown in Figure 11.
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The following are the detailed steps:
Step 1 Initialize.
Initialize the pheromone matrix, the path taboo table, the set containing the nominal

harvesting order of clustered fruits (for calculating the success rate), the set of coordinates
of the fruit to be harvested for each arm, and the matrix containing the information
corresponding to the time axis and displacement of the X-axis.

Step 2 Build trajectory.
Ants construct m-picking arms in parallel. First, the path taboo table is used to remove

the picked fruits and generate a preliminary candidate fruit set. Additionally, then, the
auction mechanism is used to determine the current candidate fruit set for each ant and
choose the fruit to be picked next from the set according to the pheromone concentration
until all ants have completed the trajectory construction.
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Step 3 Evaluation.
The objective function E, which can be calculated by Equation (4), is used for evalua-

tion. To make the success rate of harvesting meet the requirement of more than 95%, the K1
and K2 coefficients in Equation (4) are dynamically adjusted. When the success rate is less
than 95%, set K1 = 0.4, K2 = 0.6; after the success rate is greater than or equal to 95%, set
K1 = 0.6, K2 = 0.4.

Step 4 Update the pheromone matrix.
The trajectory with maximum E in Equation (3) is selected to update the pheromone matrix.
Step 5 Determine the number of iterations.
If the maximum number of iterations is reached, turn to End, otherwise go to step 1.
Step 6 End.
Output the final optimal trajectory.

5. Experiments and Analysis
5.1. Experiments of Clustering Algorithm

To verify the effect of the improved local density clustering algorithm (ILDCA) in this
paper, the agaricus bisporus was taken as an example to test, and the test data were all
from the site of the planting factory. The data is shown in Figure 12a. The pictures were
taken on the spot by the harvesting robot, and the mature fruits recognized by visual are
marked with red circles. The mature fruit data obtained from the image identification are
processed by the clustering algorithm proposed in this paper, and the obtained clustering
result is shown in Figure 12b, in which the fruits belonging to the same cluster are marked
with the same color. Comparing a and b of Figure 12, it can be seen that the success rate of
clustering is close to 97%, which fully meets the requirement of clustering identification in
robotic harvesting.
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Figure 12. The processing result of clustering algorithm processing. (a) visual identity map of ripe
fruits; (b) The processing result of the improved clustering algorithm.

In order to further verify the effectiveness of the algorithm, this paper selects much
more samples with different fruit numbers, cluster numbers, and discrete point numbers
to conduct multiple sets of experiments and compares them with the commonly used
clustering algorithm K-means algorithm and Gaussian mixture algorithm. The results are
shown in Table 3. It shows that the K-means algorithm has the worst effect in processing
the clustering of the fruits in this paper, whose average success rate is only 68%. Compared
with the K-means algorithm, the Gaussian mixture algorithm is more flexible in the shape
of the clustering, but it is more difficult to adapt to the characteristics of this paper with
many small clusters and many discrete values, and the average success rate is merely 78%.
However, the effect of the improved algorithm is much better than the other algorithm,
with its average success rate is up to 97%. Additionally, as the number and complexity
of clusters increase, the superiority of the improved clustering algorithm remains stable.
So, the improved clustering algorithm is suitable to solve the clustering problem of straw-
rotting fungus.
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Table 3. Clustering algorithm comparison of many groups of samples.

Group Num of
Fruits

Num of
Cluster

Num of
Discrete Points

The Recognition Success Rate of Clustered Fruits

K-Means Gaussian
Mixture

Improved Clustering
Algorithm

1 40 18 12 82% 88% 99%
2 40 25 20 78% 85% 99%
3 55 27 16 72% 80% 98%
4 55 38 27 68% 78% 96%
5 70 36 28 63% 73% 96%
6 70 45 36 57% 66% 95%

AVG 55 189 139 68% 78% 97%

5.2. Experiments of Multiobjective Optimization Algorithm for Multiarm Cooperative
Harvesting Trajectory

Take the three-arm Agaricus bisporus harvesting robot as an example to verify the
effect of the proposed approach, as shown in Figure 13.
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Figure 13. The multiarm intelligent harvesting robot working in the multistory shelf trays in the
factory environment.

Three sets of data containing 40, 55, and 70 fruits, respectively, are selected as the first
experimental data, which are shown in Figure 14. The detailed harvesting information for
the fruits to be harvested in Figure 14 is shown in Appendix A, where (X, Y, Z, C) is used to
express the harvesting information for fruits. X, Y, and Z represent the coordinates of the
center point of the fruit to be harvested. C indicates the cluster number the fruit should
belong to, which can be obtained by the clustering algorithm proposed in this paper.

The proposed IGAACMO algorithm is used to optimize the harvesting trajectory
of the real fruit data (Figure 14). Furthermore, the two-chromosome genetic algorithm
(DCGA) and the genetic stepwise algorithm (GAGA) are also used to plan the trajectory of
the three-arm robot with the experimental data to compare with the processing results of
the algorithm proposed in this paper.
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The parameter settings are as follows: (1) the crossover probability is set to 0.15, the
population is set to 30, the mutation probability is set to 0.015, and the maximum iteration
number is set to 500. (2) In the ant colony algorithm, let 1 be the set of the important factors
of pheromone, let 30 be the set of the number of ants, let 5 be the set of the intensity of
pheromone, and let 10 be the set of the important factors of heuristic pheromone, let 0.1
be the set of the volatile factors and let 500 be the set of the maximum iteration number;
(3) the moving speed of the harvesting arm (V) is given as 100 mm/s and the harvesting
execution time (t1) is given as 5 s.

The convergence performance of the algorithm is shown in Figure 15. It indicates that
when the picking scale is 40 (i.e., 40 fruits need to be picked), the iteration number of the
proposed algorithm is about 50% less than that of DCGA, 67% less than that of GAGA,
and the optimal harvesting time of GAAC is 14% better than DCGA and 11% better than
GAGA; When the picking scale is 55, the iteration number of GAAC is about 67% less than
that of DCGA, and 75% less than that of GAGA, and the optimal harvesting time of GAAC
is 22% better than DCGA, and 15% better than GAGA; When the picking scale is 70, the
iteration number of the proposed algorithms is about 28% less than that of GAGA, about
22% less than that of GAGA, and the optimal harvesting time of the proposed algorithm is
26% better than DCGA, and 19% better than GAGA. Therefore, compared with the other
two methods, the convergence speed and optimization ability of the algorithm proposed in
this paper are better.
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The other results obtained by the three algorithms and the important parameters are
shown in Table 4. By comparing these parameters, the following can be seen: (1) The
algorithm proposed in this paper has the best multiarm task distribution uniformity and
the highest utilization of multiarm cooperation. The greater the number of fruits to be
harvested, the more obvious the advantages compared with the other two algorithms;
(2) The harvesting success rate after using the improved algorithm in this paper can always
be guaranteed to be above 95%.

Table 4. Comparison of experimental results of the three algorithms.

Num of
Fruits Algorithm Avoid Times Harvesting

Time(s)
Harvesting

Efficiency(pcs/h)
Harvesting

Success Rate

40
DCGA 2 130.21 1106 96%
GAGA 1 126.54 1138 98%

IGAACMO 0 113.81 1265 100%

55
DCGA 5 196.16 1009 90%
GAGA 3 185.42 1068 94%

IGAACMO 1 161.31 1227 98%

70
DCGA 9 283.29 890 82%
GAGA 6 267.95 940 87%

IGAACMO 2 224.64 1122 96%

The harvesting trajectory optimized by the IGAACMO algorithm is presented in
Figure 16. The harvesting assignment task of each harvesting arm is relative balance, and
there is basically no redundancy in the trajectories.
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Because the larger the ratio of the number of clusters to the total number of fruits is,
the more it will affect the performance of the algorithm. Another 10 more experiments are
added to verify the stability of the proposed algorithm further. The number of ripe fruits
ranges from 40 to 70, with the proportion of clusters ranging from 20% to 60% as well.

The results of the ten group experiments are shown in Table 5. The average harvesting
efficiency optimized by the proposed algorithm is 1183 pcs/h, which is about 21% higher
than that of the DCGA algorithm and about 15% higher than that of the GAGA algorithm.
In the meantime, the average harvesting success rate is 97%, much better than the other
two algorithms as well. All of the group results are basically consistent with Table 4. This
indicates that the algorithm designed in this paper can achieve a better harvesting trajectory
for the multiarm intelligent harvesting robot for fruits with different distributions.
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Table 5. Comparison of the three algorithms with 10 groups data.

Group Num of
Fruits

Ratio of
Cluster

Harvesting Efficiency (pcs/h) Harvesting Success Rate
GAGA DCGA IGAACMO GAGA DCGA IGAACMO

1 40 20% 1162 1182 1308 98% 99% 100%
2 42 38% 1112 1141 1258 97% 98% 100%
3 45 58% 1046 1093 1114 92% 95% 98%
4 49 21% 1068 1114 1238 95% 98% 100%
5 52 30% 1027 1074 1232 92% 95% 98%
6 57 45% 992 1034 1205 90% 94% 98%
7 60 60% 931 983 1161 85% 90% 95%
8 62 23% 945 1008 1186 86% 91% 97%
9 67 46% 892 947 1132 81% 87% 96%

10 70 57% 849 896 1106 78% 85% 95%
AVG 54.4 41% 977 1025 1183 88% 92% 97%

6. Discussion

The harvesting trajectory planning of a multiarm straw-rotting fungus harvesting
robot is a typical NP-hard problem. It can be better optimized by the IGAACMO algorithm,
which is proposed in this paper.

In terms of running speed, the IGAACMO is obviously superior to the other two
methods (DCGA and GAGA). Moreover, the larger the processing scale (the more fruits to
be picked), the greater the convergence advantage.

In terms of the optimization results, the amount and distribution of ripe fruits have
an impact on the results. The algorithm is sensitive to the distribution density of the fruit
to be picked. With the increase in fruit density, the picking efficiency will decrease. This
shows that the closer the fruit distribution is, the more difficult it is to avoid a collision,
which makes some picking arms have to wait and reduces the picking efficiency. However,
compared with the other two algorithms, the optimization effect of the proposed algorithm
is better under the same conditions, especially in the case of the fruit distribution with
high density.

In particular, there is another important issue with the fruit cluster that needs to be
harvested in a specific order. There are two ways to deal with this issue. One is to regard
the fruits in the same cluster as a whole and assign them to the same arm to harvest them
in a specific order, which is mostly adopted at present. The other is to allocate them to
multiple different arms on the premise of ensuring the required harvesting order, which is
an improved method proposed in this paper. The latter method is superior to the former
one, especially when the distribution of fruits in each accessible area is seriously uneven,
with large fruit clusters stretching across two different accessible areas as well, as shown in
Figure 17. The red circle represents the fruit to be picked, and the black circle represents
the immature fruit. The picking robot has three arms, and the working area is divided into
five accessible areas, where S1 (1,1) represents the exclusive area for Arm1, and the fruits in
this area can only be harvested by arm1, S2 (1,2) is the partial shared area that can only be
harvested by Arm 1 and Arm 2, S3(1,3) is the fully shared area that can be harvested by all
three arms, S4 (2,3) is the partial shared area that can be harvested by Arm 2 and Arm 3,
and S5(3,3) is the exclusive area that can only be harvested by arm 3. Most of the fruits to
be picked are distributed in the exclusive area S1 (1,1) and the partial shared area S2 (1,2),
and there is a large fruit cluster C1 over the two areas, meanwhile. The comparison of the
results of the above two methods is shown in Table 6. All of the fruits in the fruit cluster C1
are allocated to Arm2 and the number of fruits allocated to Arm1 is very few by using the
GAAC algorithm, which greatly increases the cycle time. However, by comparison, C1 is
split and assigned to Arm1 and Arm2 respectively, resulting in a more uniform harvesting
task among each arm, thereby improving the harvesting efficiency further.
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Table 6. Comparison results of different allocation methods for fruit clusters.

Algorithm Avoid Times Harvesting
Time(s)

Harvesting
Success Rate N1:N2:N3

GAAC
(assigned to the same arm) 1 126.29 100% 03:17:14

IGAACMO
(assigned to different arms) 1 105.25 100% 13:12:09

It can be shown that when the distribution of mature fruits is seriously ununiformly,
with some fruit clusters across multiple accessible areas as well, it is easy to cause the
uneven task assigned to each arm by assigning the total fruits in a cluster merely to the
same arm, which results in some arms waiting for no picking tasks meanwhile other arms
have too many picking tasks. This will greatly increase the cycle time of harvesting, thereby
seriously reducing the picking efficiency. The algorithm proposed in this paper, combined
with the auction mechanism, can allocate the fruits in a cluster to different arms on the
premise of ensuring the required harvesting order instead of allocating them to a single
arm, which can resolve this issue appropriately. Therefore, it can be concluded from all the
above discussions that the algorithm proposed in this paper has strong optimization ability
and good stability. For fruits with different densities, the picking tasks for each arm can
be evenly distributed even though the fruits are not uniformly distributed on the culture
medium or soil, with some fruit clusters across multiple accessible areas as well; thereby,
it can not only achieve higher harvesting efficiency but also a higher success rate. The
algorithm can better adapt to the issues of dense and uneven distribution of fruits caused
by the natural growth of straw-rotting fungus.

7. Conclusions

This paper takes a straw-rotting fungus multiarm harvesting robot as the research
object. Aiming at the problem of uniform task allocation and sequential harvesting for
clustered mature fruits in multiarm cooperative harvesting trajectory optimization, an
improved multiobjective optimization algorithm, IGAACMO, is proposed. The multiarm
cooperative harvesting trajectory planning is abstracted to an MTSP problem. We use an
improved local density bi-directional clustering algorithm to identify the clustered fruits
to provide preparation for harvesting the clustered mature fruits in the specified order;
Then, GA is adopted to decompose the MTSP into m independent TSP problems, where
a new DNA coding method is designed to make the harvesting task of each harvesting
arm evenly distributed under the constraining of the SSIS area. Subsequently, we use the
ant colony algorithm to plan the trajectory of the above M-independent TSP, respectively;
Here, by combining with the auction mechanism, the clustered fruits can be planned to be
harvested in their specified order.

From all the above experiments and discussion, it can be shown that the optimization
ability of the proposed algorithm, IGAACMO, is significantly stronger than the other two
methods. The average harvesting efficiency optimized by the proposed algorithm is up to
1183 pcs/h, and the average harvesting success rate is 97%.

In addition, since the hourly harvesting efficiency of the multiarm robot has reached
the manual efficiency, the daily harvesting efficiency of the robot will be significantly higher
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than the manual, even if it can be up to at least twice that of the manual. Because the robot
can work for at least 16 h per day (considering battery replacement, layer change, and
other auxiliary work), while people generally work for 8 h per day. This efficiency greatly
increases the feasibility of the robot applied to the actual harvesting of straw-rotting fungus
instead of manual.

However, the operation time of the algorithm is not faster enough. In future research,
the algorithm needs to be improved to increase its efficiency of the algorithm to improve its
real-time control further.
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Appendix A

Table A1. The detail data with the information of the fruits to be harvested in Figure 14.

Group Number of Fruits Detail Information of Fruits

a 40

(168.43, 136.53, 163.29, 0.0), (72.03, 129.46, 170.47, 0.0),(130.93,121.4,165.45,0.0),
(183.02,162.07,149.93,0),(75.41,10.54,170.04,0),(33.48,35.3,190.66,0),(11.47,98.3,212.67,0),
(84.48,168.46,173.35,0),(62.15,75.78,183.99,0),(13.53,133.29,188.81,0),(124.38,8.55,159.71,0),
(406.7,39.63,143.94,0),(431.28,77.04,134.9,0),(288.84,157.6,169.56,0),(296.91,43.28,170.86,0),
(399.99,87.99,158.08,0),(332.95,7.87,162.36,0),(262.74,170.84,160.23,0),(325.74,175.71,168.02,0),
(514.44,43.76,156.76,0),(702.29,35.59,172.61,0),(646.05,34.69,171.18,0), (763.04,101.5,154.61,0),
(874.45,137.36,156.47,0),(892.59,65.13,159.9,0),(825.83,162.81,161.57,0),(741.06,76.6,167.01,0),
(1087.35,28.05,152.2,0),(1049.77,102.33,159.7,0),(1128.99,53.9,166.76,0),(1165.21,13.61,173.77,0),
(1013.76,10.89,175.49,0),(1167.15,171.3,161.97,1),(1054.98,64.92,169.91,1),(1385.3,155.13,173.38,2),
(1312.73, 160.07, 175.86, 2.0), (1239.82, 172.1, 176.6, 3.0), (1274.88, 117.37, 179.35, 3.0),
(1236.71, 9.1, 168.9, 4.0), (1347.87, 167.54, 160.21, 4.0)

b 55

(56.71,93.06,163.55,0.0),(167.53,97.5,155.25,0.0),(132.8,114.33,156.23,0.0),(134.06,77.44,135.51,0.0),
(229.94,9.72,159.53,0),(111.97,80.42,142.6,0),(172.3,6.49,160.79,0),(186.14,36.68,153.34,0),
(309.16,127.35,170.77,0),(257.31,124.79,170.59,0),(258.59,34.41,172.91,0),(294.92,20.13,170.75,0),
(293.61,58.17,178.57,0),(387.83,78.1,139.3,0),(326.2,142.62,171.57,0),(332.02,172.98,173.62,0),
(331.68,4.6,174.6,0),(449.56,176.44,179.32,0),(260.4,6.76,165.98,0),(256.9,106.31,250.58,0),
(330.21,51.61,159.84,0),(558.02,96.99,154.04,0),(675.93,90.7,158.23,0),(538.99,162.97,171.9,0),
(590.67,158.46,147.43,2),(587.62,143.37,160.68,2),(846.49,100.02,145.07,0),(813.59,151.48,152.09,0),
(823.82,67.78,155.26,0),(807.23,124.87,148.15,0),(877.89,104.9,155.6,4),(878.81,86.16,155.87,4),
(832.51,29.5,159.6,0),(908.39,50.74,169.97,0),(879.47,8.38,160.7,0),(741.88,81.64,184.95,0),
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Table A1. Cont.

Group Number of Fruits Detail Information of Fruits

(1186.72,90.04,162.32,3),(1140.91,100.87,159.13,3),(1172.68,40.46,169.81,3),(1150.34,71.37,160.56,3),
(1347,148.08,151.3,0),(1315.87,126.89,158.6,0),(1282.68,61.11,149.35,0),(1278.79,148.58,163.01,0),
(1312.53,159.13,147.72,0),(1316.57,45.91,154.21,0),(1231.16,60.71,167.48,0),(1350.77,36.87,165.88,0),
(1308.44,78.13,163.01,0),(1245.3,141.76,174.2,0),(1373.8,166.04,151.64,0),(1384.82, 18.79, 172.77, 4.0),
(1378.14,137.58,162.09,4.0),(1329.02, 93.26, 136.63, 5.0), (1309.99, 9.79, 173.65, 5.0)

c 70

(36.54,51.33,173.4,0.0),(34.66,18.28,172.73,0)(38.94,163.27,161.22,0.0),(39.91,156.28,169.74,0.0),
(43.31,81.47,159.44,0.0),(43.32,12.06,168.63,0.0),(52.59,40.87,167.5,0),(61.23,155.52,153.22,0),
(62.45,9.62,183.5,0),(181.64,103.87,144.54,0),(230.97,80.64,171.97,0),(268.83,153.14,161.5,0),
(270.25,23.83,174.2,0),(273.84,146.9,172.97,0),(284.45,49.35,157.29,0),(291.88,60.67,169.3,0),
(299.04,74.55,181.48,0),(351.08,113.39,162.1,0),(372.31,9.62,153.22,0),(386.24,135.54,167.47,0),
(402.12,68.05,207.25,0),(574.22,101.72,166.15,0),(586.16,114.01,158.9,0),(590.18,165.77,157.53,0),
(611.49,163.4,160.1,0),(626.03,69.38,172.7,0),(628.9,19.62,175.28,0),(631.23,105.9,183.47,0),
(633.71,59.05,175.13,0),(635.86,18.45,164.45,0),(640.67,139.46,150.91,0),(641.93,113.39,152.45,0),
(652.2,105.64,172.64,0),(661.64,155.52,169.74,0),(669.45,9.62,178.28,0),(699.63,109.9,172.31,0),
(705.25,69.05,267.25,0),(765.4,8.45,166.08,0),(878.4,45.15,168.06,0),(1018.96,145.14,172.04,0),
(1114.33,12.86,174.04,0),(1115.94,179,177.31,0),(1116.67,32.84,154.18,0),(1117.28,105.43,159.69,0),
(1118.38,66.59,162.1,0),(1122.56,18.75,153.22,0),(1122.93,163.7,183.5,0),(1130.49,162.3,239.41,0),
(1274.22,60.15,153.1,0),(1280.38,60.58,168.15,0),(1283.99,159.01,147.51,0),(1320.04,45.58,155.63,0),
(1331.13,126.89,158.6,0),(1334.07,148.09,151.35,0),(1341.03,78.13,163.01,0),(1363.14,166.09,151.68,0),
(1378.89,36.51,167.16,0),(1380.81,94.34,174.28,0),(1397.66,137.94,163.47,0),(277.82,174.17,165.13,1),
(318.43,169.18,164.42,1),(1127.94,37.02,146.94,2),(1115.54,18.48,164.17,2),(1311.72,148.48,163.4,3),
(1317.97, 141.62, 173.72, 3.0), (1325.74, 8.28, 177.16, 3.0), (336.15, 131.55, 249.33, 4.0), (305.25, 88.58,
157.51, 4.0), (611.4, 128.39, 144.99, 5.0), (612.86, 94.02, 152.85, 5.0)
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