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Abstract: The eggshell is the major source of protection for the inside of poultry eggs from microbial
contamination. Timely detection of cracked eggs is the key to improving the edible rate of fresh eggs,
hatching rate of breeding eggs and the quality of egg products. Different from traditional detection
based on acoustics and vision, this paper proposes a nondestructive method of detection for eggshell
cracks based on the egg electrical characteristics model, which combines static and dynamic electrical
characteristics and designs a multi-layer flexible electrode that can closely fit the eggshell surface
and a rotating mechanism that takes into account different sizes of eggs. The current signals of intact
eggs and cracked eggs were collected under 1500 V of DC voltage, and their time domain features
(TFs), frequency domain features (FFs) and wavelet features (WFs) were extracted. Machine learning
algorithms such as support vector machine (SVM), linear discriminant analysis (LDA), decision tree
(DT) and random forest (RF) were used for classification. The relationship between various features
and classification algorithms was studied, and the effectiveness of the proposed method was verified.
Finally, the method is proven to be universal and generalizable through an experiment on duck
eggshell microcrack detection. The experimental results show that the proposed method can realize
the detection of eggshell microcracks of less than 3 µm well, and the random forest model combining
the three features mentioned above is proven to be the best, with a detection accuracy of cracked eggs
and intact eggs over 99%. This nondestructive method can be employed online for egg microcrack
inspection in industrial applications.

Keywords: electrical characteristics; poultry eggs; nondestructive detection; cracked eggs; machine
learning

1. Introduction

As one of the main sources of protein nutrition in human daily life, the importance of
poultry eggs and related products is self-evident. From 2010 to 2030, global egg production
will be increased by 35%, with Asia contributing 64.8% to the total global growth [1].
In the preliminary processing of eggs, such as cleaning, testing, transportation, and other
procedures, eggshell damage may occur, and bacteria and other microorganisms may
enter the eggs from the cracks and cause spoilage before infecting the surrounding good
eggs. This may not only lead to a shortened shelf life and lowered value but also make
the food unsafe to eat, causing economic losses to enterprises in the end. Traditional
eggshell crack detection mainly depends on artificial light or the sound produced upon
impact to the eggs to identify cracked ones, which not only sets high requirements for
the experience and physical condition of workers, but the efficiency and reliability cannot
meet the growing market demand. Therefore, it is of great significance for consumers,
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enterprises, and agricultural modernization to study a highly reliable, non-destructive, and
automatic cracked egg removal system [2].

In recent years, researchers both nationally and internationally have been trying to find
an automatic online approach to detecting eggshell cracks so as to lower labor intensity and
improve the efficiency and accuracy of detection. The related research mainly focuses on
acoustic analysis and machine vision. Acoustic analysis has been proven to be an effective
method for detecting cracked eggs [3]. Li Sun et al. built an equivalent mechanical model
based on an automatic excitation device and analyzed the transient impact. They used
cross-correlation analysis and Bayesian classification to detect eggshell cracks, which could
reach a detection level of 97% [4]. P. Coucke et al. proposed exciting the eggs with a
small impact hammer and extracting the spectral features of acoustic signals as the input
vector of the classification algorithm, whose detection accuracy could reach 90% [5]. A non-
destructive detection technique proposed by Cho et al. based on acoustic impulse response
employed eight frequency domain indexes, such as the average area of the power spectrum,
as input vectors, where multivariate discriminant analysis and multivariate regression
analysis were used to establish a classification model. Its detection accuracy could reach
95% [6]. Deng et al. proposed a crack detection method based on a continuous wavelet
transform and support vector machine (SVM). They integrated four wavelet features such
as the first resonance scale and achieved a detection accuracy of 98.9% [7]. Sun et al., based
on acoustic resonance, analyzed the difference in the frequency response signals between
intact eggs and cracked eggs, extracted five excitation resonance frequency characteristics,
such as the spectral peak, as input vectors, and achieved a detection accuracy of 96.11% [8].
Lai et al. measured the acoustic signals of intact duck eggs and cracked duck eggs, and
they selected the five most significant frequency features as the input vectors in logistic
regression analysis. The overall detection accuracy could reach 87.6% [9]. Wang et al. de-
veloped an excitation device driven by solenoids, producing sound signals by striking
the eggs. The time domain and frequency domain features of 12 kinds of sound signals
were extracted while using a neural network with feature dimension reduction as the
classifier. The detection accuracy was as high as 99.2% in the training set, but it was slightly
lower—about 95%—in the test set [10]. The detection approach for cracked eggs based on
acoustic signals is very effective, and its accuracy can basically meet the requirements for
application. However, this approach is susceptible to such factors as an uneven eggshell
thickness, surrounding noise, the egg shape, crack position, striking angle, and so on. More-
over, a lack of stability or knocking with too much strength may cause secondary damage to
the eggs [11,12]. In addition, the detection of egg cracks based on machine vision has also
made great progress [13,14]. Elster et al. first applied machine vision technology to eggshell
crack detection and could find the cracked eggs among the samples with an accuracy of
95.6%. However, it took 25.3 s to identify a cracked egg, which was relatively slow [15].
The cracked egg detection system designed by Gooddrum et al. was able to adjust the speed
of the rotating device according to the size of the egg. Three images were taken for each
egg at an interval of 120° near the equator, with a recognition accuracy of up to 90% [16].
Li et al. proposed a vacuum pressure chamber-based detection system which imposed a
vacuum pressure of 18 kPa to enlarge the microcrack and reached a detection accuracy of
100% under a situation without stains [17]. However, at present, this method is only in
the laboratory stage, so it cannot be used in actual industrial production lines. Wang et al.
proposed a method for detecting cracks in eggs using multi-information fusion of a natural
light image and polarization image with an accuracy of 94% [18]. Bao et al. aimed at
the phenomenon of dark spots on the surface of eggshells under backlight conditions,
adopted a negative LOG operator for image enhancement, set a threshold to eliminate black
spots, and finally detected cracks through the LFI index, with the detection accuracy being
up to 92.5% [19]. Muammer proposed a machine vision detection system based on deep
learning, in which six images of egg surfaces were captured in the process of the continuous
rotation of an egg, and the depth features were extracted by a pretrained residual network
in parallel and then input into the BiLSTM network to carry out the detection of cracked
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eggs. The accuracy rate was up to 99.17% under experimental conditions [20]. Most of the
above research methods were implemented in a laboratory environment, and in industrial
production, the identification accuracy will be greatly affected due to the difference in
the size, shape, depth, and other features of eggshell cracks, as well as such factors as
the shooting angle and bright spots and stains on the shell. Therefore, it is still an urgent
problem to study a new method that can meet the requirements of automatic detection of
eggshell cracks in industrial production.

High-voltage leak detection(HVLD) is a type of common and mature non-destructive
defect detection technology which is mainly used in the pharmaceutical industry and the
food industry, with the advantages of high speed and high precision. In this method,
electrodes are usually linked at both ends of a container with a non-flammable conducting
liquid, and a high voltage is applied. Equivalent capacitance is generated between the
liquid and the electrode due to the bottle wall. When the container is intact, there is a tiny
current in the circuit, but if the container has cracks and leaks, the capacitance disappears
and causes a discharge between the electrodes. Therefore, the discharge analysis technology
can be used to detect the tiny cracks and damages of the container with high precision.
Yoon S. Song et al. studied the important role the key variables play in the detection of
tiny pinhole leakages in flexible bags and semi-rigid cups using high-voltage technology.
They applied 0.25–10 kV to the packaging, and the results showed that the HVLD tech-
nology could detect defects of less than 10 µm [21]. Moll et al. studied and verified the
use of high voltage to detect the defects of blow-fill-seal containers with an accuracy of
100% [22]. Sun Jun et al. studied a non-destructive method to identify egg varieties based
on their dielectric properties. They used parallel plates to measure the dielectric properties
of eggs at 10∼200 kHz and established a fast identification and classification model of egg
varieties by using the SVM algorithm, which met the requirements of classification well [23].
However, as far as we know, no researchers have applied the relevant research methods
and ideas to the detection of cracks in poultry eggs.

Therefore, this research is aimed at proposing a novel and convenient nondestructive
method to detect cracks in poultry eggs in the industrial field. The main objectives of the
study are as follows:

• Focused on the analysis of the physical properties of the eggshell, study the elec-
tric field characteristics inside and outside the eggs under the action of electrodes
and establish the dynamic capacitance model and electrical breakdown model of an
egg innovatively;

• Design a microcrack detection system based on discharge analysis, with which microc-
racks on an eggshell can be detected by analyzing the weak current changes in the circuit;

• Analyze and compare the crack detection algorithms and feature selection of eggs;
• Verify the universality and generalization of the proposed method.

2. Electrical Characteristics of Poultry Eggs
2.1. Physical Characteristics of Poultry Eggs

A complete poultry egg is composed of an eggshell, egg membrane, egg white, yolk,
air chamber, etc. as shown in Figure 1a. The main component of the eggshell is calcium
carbonate, which accounts for about 11% of the volume of the whole egg. They are hard
and play an important role in protecting the egg white and yolk, exchanging gases with
the outside world, and providing minerals for embryonic development. Its structure is
shown in Figure 1b [24]. The common eggshell includes three layers with slightly different
microstructures, and its radial cross section is shown in Figure 1c [25]. The outermost
part of the shell is dense, meticulous, and has a certain strength, and thus it is called the
cuticle. The middle layer is spongy and densely covered with many small holes, while the
innermost layer, called the papillary layer, is pyramidal, and the spaces between the layers
can hold air. On the surface of the eggshell lie pores of about 30 microns in diameter. These
are called stomata, through which gas exchange and water evaporation occur.
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(a) (b) (c)

Figure 1. Schematic diagram of egg and eggshell structure. (a) Structure of the egg. (b) Microstructure
of the eggshell. (c) Radial cross section of the eggshell.

2.2. Model of Electrical Characteristics of Poultry Eggs

A dielectric in the electric field produces an equivalent bound charge on the atomic
scale under the electric field force, and this phenomenon is called dielectric polarization.
For an eggshell, when the electric field intensity exceeds a certain value, the bound charge
is forced to flow, causing dielectric breakdown and losing its insulation. Therefore, it is
very important for the detection of the eggshell cracks to calculate the electrostatic fields of
eggs and analyze the current change in the circuit. For this reason, we designed a dynamic
detection method for cracks. The microcurrent will be generated at the crack of an eggshell
when the egg rotates dynamically in the detection device, which is jointly generated by
two models that will be discussed below: one is the electrical breakdown, and the other is
capacitance jump. The total current is as follows:

I = I1 + I2 (1)

where I1 is the microcurrent generated by electrical breakdown and I2 is the microcurrent
generated by the capacitance jump.

2.2.1. Model of Capacitance of a Poultry Egg

An electrostatic field with the medium is produced jointly by the bound charge and
free charge. In order to represent the electric field, which is under the joint action of both
charges, another field vector–electric flux density

−→
D , also known as electric displacement,

is introduced, which is defined in Table 1, where
−→
E is the electric field intensity,

−→
P is the

electric polarization intensity, and ε0 is the vacuum dielectric constant.

Table 1. Formula table.

Formula Name Formula

The field vector–electric flux density −→
D = ε0

−→
E +

−→
P

The total spatial electrostatic field −→
E =

−→
E0 +

−→
E′

The electric polarization intensity −→
P = ε0Xe

−→
E

The Gauss theorem in the medium
∮

S
−→
D · −→S = ∑ q

As shown in Figure 2, when there are poultry eggs in the electric field, the properties
of the spatial electrostatic field are related to the free charge (q0) and the distribution of
the dielectric. The macroscopic electrical properties of the dielectric can be replaced by a

polarized charge (q′), and then the total spatial electrostatic field consists of
−→
E0 and

−→
E′ , as

shown in Table 1. Here,
−→
E0 represents the applied electric field formed by a free charge,

and
−→
E′ represents the electrolyte polarization electric field formed by a polarized charge.
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In a linear isotropic dielectric, the electric polarization intensity
−→
P is defined as ε0Xe

−→
E ,

which can be seen in Table 1, where Xe is the electric polarizability rate. Therefore, we have

−→
D = ε0(1 +Xe)

−→
E = ε0εr

−→
E (2)

In the above formula, εr = (1+Xe) stands for relative permittivity, which is a physical
parameter characterizing the dielectricity or polarization of dielectric materials, also known
as relative permittivity. After the electric displacement vector

−→
D is obtained, the Gauss

theorem in the medium can be formulated, which is defined in Table 1, where
−→
S denotes

any closed surface in the medium and q denotes a free charge.

Figure 2. Schematic diagram of surface polarization of eggs in electric field.

We can think of the two electrodes and the egg in the middle as one capacitor, as shown
in Figure 3a, where the eggshell is an insulator and the egg liquid is approximately a
conductor due to a low resistance value. In an equilibrium state, there is no current in
the circuit. The egg liquid has a certain conductivity, so the dielectric constant εL of the
egg liquid is large. If the egg liquid is approximated as a good conductor, according to
the position of the upper and lower electrodes and the poor conductivity of the eggshell,
the electrical characteristic model under this connection mode can be approximated as
the series of two plate capacitors, as is shown in Figure 3b, and then the electric field
distribution under the intact eggshell is U = E1d1 + E2d2. Therefore, according to the plate
capacitance formula, the equivalent capacitance C1 is (d� L, d�W, where L is the length
of the electrode and W is the the width of the electrode):

C1 =
4πε lεrLW

d1 + d2
(3)

where d1 and d2 are the thickness of the upper and lower layers of eggshell, respectively.
text

(a) (b) (c)

Figure 3. Capacitance system diagram. (a) Schematic diagram of the capacitor system, composed of
the electrode and egg body. (b) Schematic diagram of equivalent capacitance of system when the
electrode is not at the crack. (c) Schematic diagram of equivalent capacitance of the system when
electrode is at the crack.
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When a crack exists in an eggshell, the electrical characteristics model of the egg
change as shown in Figure 3c, and then

U = U1 + U2 =
Q
C1

+
Q
C2

(4)

U1 =
Q
C1

=
UC1C2

C1 + C2
=

UC2

C1 + C2
=

U 4πε lεrS
d2

4πε lS
d1

+ 4πε l εrS
d2

=
d1εr

d2 + εrd1
U (5)

The electric field at a crack can be defined as

E′1 =
U1

d1
=

εr

d2 + εrd1
U (6)

When the air breakdown electric field is E′1p = 30 KV/cm, and d1 = d2 ≈ d = 350 µm,
then the breakdown voltage Up is

Up =
d2 + εrd1

εr
E′1p ≈ dE′1p = 3.5× 10−4 × 3× 104 × 102 = 1050 V (7)

At this time, the plate capacitance C2 is

C2 =
4πε lεrLW
εrd1 + d2

(8)

The experimental results show that if there is no crack in the eggshell of the egg
rotating in the middle of two electrodes, the equivalent capacitance value would stay
basically stable at C1 in the whole process. However, if there is a crack in the eggshell,
the equivalent capacitance will jump between C1 and C2 when the electrode passes the
cracks of the rotating egg, resulting in a transient current. Setting the egg rotation as an
angular velocity of α, the time to rotate the width of W is W

αR , where R is the radius of the
egg. Therefore, when the egg rotates from a no crack zone to a crack zone, the current
generated is

I =
∆Q
∆t

=
U∆C

W
αR

=
UαR

W
· 4πε lεrLW(

1
d1 + d2

− 1
εrd1 + d2

)

= UαR · 4πε lεrL · (εr − 1)d1

(d1 + d2)(εrd1 + d2)

(9)

If d1 ≈ d2 = d, then

I ≈ UαR · 4πε lε
2
r L

2(ε l + 1)d
(10)

The following data were obtained in the experiment: the angular velocity was 2 cy-
cles/SEC, α = 4π, the radius of the shell R = 3× 10−2 m, ε l = 8.85× 10−12, the CaCO3
dielectric constant of the eggshell εr ≈ 8.8, the length of the electrode L = 4× 10−2 m, and
the shell thickness was 350 µm. Then, we have

I ≈ 4π × 3× 10−2 × 4π × 8.85× 10−12 × 8.82 × 4× 10−2 ×U
2× (8.8 + 1)× 3.5× 10−4 = 1.894× 10−8 ×U (11)

where when U = 1500 V, I ≈ 28.4 µA.
Figure 4 shows the current curves collected when detecting intact eggs and cracked

eggs under the above electrode shapes and experimental parameters. The blue line repre-
sents intact eggs, and the red line represents cracked eggs. It is clear that there was a peak
in the data for cracked eggs. In the online detection system, the detected current value may
be the microcurrent generated by a capacitance jump or microcurrent superposed with that
produced in the electric breakdown.
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Figure 4. Comparison diagram of current measurement curves without cracks or cracked eggs under
discharge electric field.

2.2.2. Electric Breakdown Model of Poultry Eggs

According to the basic principle of electric breakdown, if the voltage applied to an
insulator is increased, the number of charge carriers in the material will increase sharply
under a certain electric field, and its resistivity will decrease, resulting in producing a
strong current. For poultry eggs, an intact one is not conductive under normal conditions,
but when there is a crack in the eggshell, an air interlayer with low insulation may occur in
the eggshell. Because the breakdown voltage of the air dielectric is much less than that of a
solid dielectric, when high voltage is applied on both sides of the egg body, an egg with
cracks is more likely to cause electrical breakdown, and there will be a significant difference
in the current.

Since the width of the crack is much smaller than the size of the eggshell or the
electrode, it can be approximated that the electric field in the crack area is uniform. The gap
breakdown voltage is subject to Paschen’s law when the air pressure is below 1 standard
atmosphere (about 0.1 mpa):

V = f (pd) (12)

where p is the air pressure and d is the distance between the electrodes.
The breakdown voltage Ub can be calculated according to the empirical formula:

Ub =
Bpd

ln(
Apd

ln 1
γ

)
(13)

where γ is the ionization coefficient and A and B are constants related to the composition
of the air. At standard atmosphere pressure, A = 43.66 and B = 12.8.

For a static, intact egg, a sudden change in current occurs when solid dielectric
breakdown occurs. The breakdown voltage of a solid dielectric is much higher than that
of an air dielectric, so if we keep the voltage at both electrodes stable and only allow air
dielectric breakdown, we can identify cracked eggs according to the change in current
signals. Therefore, the key to the problem is to apply a stable electric field at the crack
that can break down the air but not the eggshell. This problem is solved by analyzing
the electrode shape and simulation experiments under different voltages. As is shown
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in Figure 5, there was a tiny crack in the Z direction on top of the egg. U-shaped linear
electrodes were applied to the upper and lower sides of the egg to wrap the eggshell to the
maximum extent and make the electric field uniform. By adjusting the electrode shape and
voltage, the current detection system was optimized in the simulation environment and
verified by experiments in the real scene.

Figure 5. Simulation analysis of egg electric field distribution with cracks.

At the same time, the conditions of the air in the crack gap, such as the temperature, hu-
midity, and other factors, will affect the ionization tendency of the air and correspondingly
affect the breakdown voltage or discharge voltage in the crack gap. When the temperature
decreases, the density of the air increases, the mean free path of free electrons in the air
is shortened, and it is not easy to cause collision ionization, thus causing the breakdown
voltage of the air to increase. As an electronegative gas, water vapor easily captures free
electrons and transforms them into negative ions when the humidity of the air increases,
which weakens the ionization and decreases the breakdown voltage of the air. Given the
potential influence of the high temperature and humidity in the egg production line, special
attention should be paid to these factors in the process of the analysis and experiment.

In short, the final current value is usually the superposition value of the current
generated by the above two cases. When the electrodes are passing the cracked area of the
rotating egg, if the detection voltage is less than the breakdown voltage threshold, the total
current in Equation (1) is mainly I2; otherwise, the total current is mainly I1.

3. System Design and Analysis Methods
3.1. Design of the Detection System

The experimental platform for poultry egg crack detection mainly consisted of five
parts: a detection platform, high-voltage power supply, controller, data acquisition circuit,
and industrial personal computer, as is shown in Figure 6. The detection platform was
composed of a rotating mechanism, discharge electrodes, electrode adjustment mechanism,
and other parts, as is shown in Figure 7a. To ensure perfect contact between the electrode
and the surface of the poultry eggshell, the upper electrode was made flexible and egg-like
and 10 cm wide, and it had four layers of conductive silica gel with different lengths stacked
on top of each other. The lower electrode was initially designed to imitate an egg as well,



Agriculture 2022, 12, 1137 9 of 23

but that led to uneven contact due to the different sizes of the eggs. The lower electrode
was later made into a long bar shape, but this shape still did not work because the exposed
part of the electrode outside the fixed seat was too short (2 mm) and required the lower
electrode to reach for it flexibly, which gave the egg an upward support force and made
it difficult to rotate. After a large number of experiments, we found that when the lower
electrode took an arc convex shape with little contact, it provided a stable and reliable
contact bottom without affecting the rotation. The rotating mechanism included three parts:
a servo drive, saddle-shaped support rollers, and an upper spring roller. The servo drive
provides a stable driving force to drive rollers on the left and right of the eggs and ensure
that eggs of different sizes can rotate evenly without shifting, while the upper spring roller
presses the egg to ensure that the eggs can still rotate evenly in place when they come
into contact with the electrode and generate friction. The electrode adjustment mechanism
can adjust the electrode position according to the egg so as to adapt to different egg sizes,
ensure that the electrode fits the egg surface better, and thus provide stable and reliable
surface contact. The data acquisition circuit used an STM32F103 microcomputer and 16-bit
A/D converter as the core, and the maximum sampling frequency was 12 MHz, which
could meet the requirements of the sampling speed and accuracy. The industrial personal
computer was used to record and process the current sampling data. Through the analysis
and processing of the current signals, it could identify whether there was a crack in the
eggshell and then drive the automatic device to remove the cracked egg. The experimental
device is shown in Figure 7b.

Figure 6. Data acquisition system block diagram.

(a) (b)

Figure 7. Egg crack detection device. (a) Model diagram. (b) Physical map.
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3.2. Electrode Shape Design

The eggshell is composed of a large amount of calcium carbonate containing tiny
pores, and it does not conduct electricity under normal conditions. The inner membrane
of the eggshell is a network of organic fibers made of keratin, which together with the
egg liquid is a conductor and can conduct electricity under normal conditions. The pores
are small in diameter and evenly dispersed. They usually have long and curved air paths
extending through the shell toward the inside of the egg, while cracks are characterized by
short air paths that extend horizontally on the shell and are concentrated along the crack.
Therefore, it is notable to distinguish the pores and cracks in the design of the discharge
electrode and ensure that the electric field in the egg body area is uniform. The effective
area of detection is another aspect to note. The detection area covered by the electrodes in
this paper did not include the tip and blunt end, and only the equatorial part of the egg
and the central area between the two ends were covered for crack detection. Moreover,
missing out on detection due to gaps between the electrode pieces may have occurred. All
these factors mentioned above added difficulty to the design, and they should be carefully
dealt with in the design of the electrode.

According to the analysis in Section 2, the charge density is proportional to the
curvature of the electrode tip, which means the tip electrode is most likely to produce high-
voltage and discharge phenomena. We selected six eggs randomly, made holes at the blunt
ends of the eggs, and poured out the inside liquid before we tested the discharge voltages
under smooth electrodes, single-tip electrodes, and multi-tip electrodes, as shown in
Figure 8. The experimental data shown in Table 2 show that the smooth electrode discharge
voltage matched with the polar plate discharge, and the single-tip electrode discharge
voltage was slightly higher than that of the smooth electrode. As for the single-tip electrode,
it may be difficult to align one end with the other end, which causes the breakdown voltage
to increase. On the other hand, this may be because the energy is excessively concentrated in
the tip and cannot form a large air column breakdown. The discharge voltage of the multi-
tip electrode was close to that of the smooth electrode, which indicates that the multiple
tips could reduce the breakdown voltage. Problems were still found in the experiment,
such as an increased electrode distance and fewer actual effective tips. The tip electrode
had the smallest coverage area on the eggshell surface. When it was in a crack-free area, it
could only cover a few pores. When it was in a cracked area, the area ratio of the covered
air area changed significantly, so it could effectively distinguish cracks and pores and had a
high detection ability. However, the point-shaped tip electrode could only detect eggshells
in a very small area near the electrode at one time, and the detection efficiency was low.
The spatial electric field generated by the tip electrode was also unevenly distributed, which
led to an unstable detection accuracy. Therefore, it is not an ideal electrode shape.

(a) (b) (c)

Figure 8. Tip electrode experimental set-up. (a) Smooth electrode. (b) Tip electrode. (c) Multi-strand
tip electrode.
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Table 2. Experimental data of tip electrode.

Serial Number
Smooth Electrode

Discharge
Voltage (V)

Tip Electrode
Discharge

Voltage (V)

Multi-Strand Tip
Electrode Discharge

Voltage (V)

No.1 1800 2300 1800
No.2 1700 2500 1900
No.3 1800 2400 1600
No.4 1400 2000 1500
No.5 1400 2200 2100
No.6 1700 2400 1700

Conversely to the point electrodes, planar electrodes offer significant advantages in
terms of detection efficiency and spatial distribution of the electric field. However, the shape
and size of the egg body vary greatly, and it is difficult to make a flexible electrode that
perfectly fits the surface of the egg. The accumulated value of the current generated by too
many pores in the non-cracked eggs under the electrode was also close to the current value
generated by the cracked egg, resulting in a significant decrease in the detection accuracy,
so the planar electrode is also not an ideal shape for electrodes.

The linear electrode combines the advantages of the above two electrodes. It is better
in spatial electric field uniformity, more efficient in detection, and more accurate in iden-
tification. In addition, the line contact of the conductive material, which can contain the
outline of the egg and fit the surface of the eggshell, is an ideal form of contact.

3.3. Electrode Material Analysis

We selected conductive silica gel, conductive rubber, and a conductive brush as the
electrode materials for the experiments and found that the egg cracks could be identified
with all three materials. The resistivity of the conductive rubber was large, and the current
change was not obvious enough when it was used as an electrode. When a conductive
brush was used as the electrode, the conductive brushes would fuse after discharge and
cause a great loss of electrode material. In contrast, the resistivity of the conductive silica
gel was small and could produce an obvious current change when passing the cracked area.
Therefore, conductive silica gel was selected as the electrode material in this paper.

To sum up, the current is not only related to the resistivity of electrode materials
but also closely related to the contact area of the conductive materials. However, it is not a
case of “the larger the better” for the contact area, as too large a contact area will lead to a
large current for non-cracked eggs. The more ideal form of contact is line contact, which
is made according to the outline of the egg so as to fit the eggshell perfectly. The actual
structure of the electrode is shown in Figure 9.

Figure 9. Real figure of electrode.
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3.4. The Importance of Multi-Layer Flexible Electrodes

Since eggs vary somewhat in size and shape, the design of a flexible electrode can
better fit the eggshell and achieve full coverage of an effective detection area by dynamically
adjusting the angle according to the eggs. Although a single-layer flexible electrode can
effectively detect cracks, their coverage area is limited. When detecting larger eggs, gaps
between the electrode strips may cause omissions during the egg rotation if the cracks are
just perpendicular to the gaps. The use of multi-layer flexible electrodes can reduce the
chances of missed detection of egg cracks, which plays a significant role in improving the
overall detection accuracy and can also further reduce the detection voltage.

3.5. Lab Environment

We selected 10 eggs randomly and put 5 eggs in a group to test the electrical char-
acteristics under different humidity environments. The mean current curve is shown in
Figure 10. The experiment found that the measured current value in the environment with
a humidity of 72% and voltage of 1500 V was equivalent to that in the environment with a
humidity of 54% and voltage of 1800 V, which further proved the conclusion of Section 2
that the detection of egg cracks based on current signals was greatly affected by environ-
mental humidity. Therefore, during the data collection, the humidity and temperature of
the experimental environment should be stabilized within a certain range to reduce the
influence of the environment on the experimental data.

Figure 10. Standard deviation of the current signal of eggs at different voltages.

The voltage value used in HVLD is generally high, even reaching up to tens of thou-
sands of volts at certain times. If it is directly used for the detection of egg cracks, the protein
may be denatured. In order to avoid this, we had to choose an appropriate voltage range.
All things considered, we finally determined that the experimental environment was perfect
at an average temperature of 18.5 ◦C, a relative humidity of 40%, and a voltage of 1500 V.
We strictly controlled the current size, and the system current protection mechanism would
be triggered to cut off the power when the current was greater than 1 mA so it would not
cause damage to the eggs.

In order to quickly obtain a sufficient number of egg samples with microcracks and
avoid the instability of manual striking, we designed an egg crack striking machine to
control the size of the artificial cracks and prevent the egg contents from leaking. The ma-
chine is shown in Figure 11a. Eggs are fixed at the bottom of the track, and the rollers
are released from different heights and strike the egg at the equatorial part to generate
controllable microcracks. The width of the artificial microcracks is generally less than
3 microns, which is usually not easy to observe with the human eye. Microcracks are
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mainly located in the central area between two ends of the egg and only present in the
effective detection area. Egg samples with cracks at the tip or blunt end will be discarded.
In actual production, there are not only large cracks caused by strong striking but also a
large number of microcracks of several microns, which are difficult to detect by traditional
methods. The structure of a microcracked egg under an industrial microscope is shown in
Figure 11b,c.

(a) (b) (c)

Figure 11. Egg crack and its generating device. (a) Egg crack striking machine. (b,c) Pictures of cracks
of different sizes under the industrial microscope.

3.6. Classification Modeling Methods
3.6.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) [26] is widely used in the field of high-dimensional
data classification as a supervised dimensionality reduction technology. It takes the sepa-
rability of pattern data as the goal and finds a set of optimal discriminant vectors, which
maximizes the between-class scatter measures while minimizing the within-class scat-
ter measures. In this study, the eggshells could be divided into intact eggs and cracked
eggs. This was a classification problem. Letting C be the number of categories, where C = 2,
x is the n-dimensional features of the training sample, and N is the number of samples,
the sample’s within-class scatter matrix SW and between-class scatter matrix SB are shown
below in Equations (14) and (15), respectively:

SW =
1
N

C

∑
i=1

∑
x∈ci

(x− µi)(x− µi)
T (14)

SB =
C

∑
i=1

pi(µi − µ)(µi − µ)T (15)

where pi = Ni/N is the prior probability of each class, Ni is the number of training
samples of class Ci(i = 1, 2, . . . , C), µi is the mean value of sample Ci, and µ is the mean of
all samples.

The goal of LDA is to find the best projection matrix W so that the Fisher criterion is
the largest, and its formula is

J(Wopt) = arg max
W

∣∣WTSbW
∣∣

|WTSWW|
(16)

3.6.2. K-Means Classification Algorithm

K-means [27] is a common unsupervised learning algorithm that is often used to
discover the inherent regularities between datasets. The principle is that K samples are
first randomly selected as cluster centers of K categories, and then, the Euclidean distance
between the sample data and the k-th centroid is calculated to judge the correlation with
this category. Then, it belongs to the category with the highest correlation. Such centroids
will also be recalculated with the addition of new samples until the iteration is completed
or the preset number of iterations is reached. The Euclidean distance between samples is
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D(xi, xj) =

√√√√ N

∑
n=1

(xi,n − xj,n)2 (17)

where Dxi ,xj is the Euclidean distance between samples xi and xj and N is the dimension
of the sample data. xi represents the i-th sample data, and xj represents the j-th sample
data. If the sample has C categories, Ck is used to represent the k-th cluster center, where
k = 1, 2, . . . , K. First, K points in the sample are selected as centroids, followed by calculat-
ing the similarity between other points and the cluster center points and dividing them into
K sets, denoted by Ck. Finally, the new cluster center is recalculated. The formula for Ck is

Ck =
1

mk
∑

x∈Ck

xk (18)

where mk is the number of k-th category elements. During this process, the K-means
clustering algorithm continuously reclassifies and updates the cluster centers, and this ends
when the iteration reaches the maximum limit or the objective function is smaller than the
threshold. Its objective function is

J =
K

∑
i=1

∑
xi∈Ci

Dxi ,xj(xi, Ck) (19)

3.6.3. SVM

A support vector machine (SVM) is based on statistical learning and can solve linear
and nonlinear problems at the same time. It shows good performance [28,29], especially in
small-sample data when applied in a series of challenging practical problems. The basic
idea of SVM is to find the optimal hyperplane that distinguishes the two classes by training
the sample set and maximizing the distance between the segmentation plane or hyperplane
and the data points in the given dataset.

The current signal obtained in this paper was not linearly separable, so it was necessary
to first select an appropriate kernel function to map it to a high-dimensional space and then
optimize it. Up to now, there has been no generally accepted selection criterion for the
selection of the kernel function. The commonly used kernel functions mainly include
Gaussian kernel function, polynomial kernel function, linear kernel function, and sigmoid
kernel function. Owing to its advantages of few parameters and fast convergence speed,
Gaussian kernel function was used for kernel transformation in this paper. Its mathematical
definition is shown in Equation (20) [30]:

K(x, y) = e−
‖x−y‖2

2σ2 (20)

where x and y are the eigenvectors of the current signal.

3.6.4. CART Decision Tree

A decision tree [31] is a supervised machine learning algorithm that can be used to
classify or predict unknown objects. The construction of the decision tree is a process of
top-down and recursive branching. First, we selected the most effective division method for
the samples according to the features, formed a new decision branch, and then pruned the
branch to optimize the decision tree. Commonly used decision tree generation algorithms
mainly include ID3, C4.5, and CART. We employed the CART model in this study and
used the GINI index to select the optimal division points of the optimal features. The basic
principle is to form a decision tree structure in the form of a binary tree by cyclic analysis
of the training dataset and select the attribute that minimizes the GINI index value of the
child nodes as the classification scheme.
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3.6.5. Random Forest

A random forest [32] uses a decision tree as the base classifier. It improves the overfit-
ting problem of a decision tree by combining the bagging ensemble learning theory and
random subspace method. Based on the idea of multiple decision trees, the random forest
generates the training data of each tree by random extraction from the original dataset
and then randomly extracts n features from N feature variables before finally selecting
the optimal feature variables from these n features as split features to construct multiple
decision trees. Finally, each of the decision trees gives a class prediction, and the class with
the most votes becomes the model’s prediction.

4. Experiments and Results
4.1. Data Acquisition

We purchased 770 eggs at a farmer’s market near the laboratory and collected cur-
rent signals for model training and algorithm verification, including 367 intact eggs and
403 cracked eggs. To avoid the noise introduced by stains on the eggshells, which may
have affected the experiment, the cleaning and drying process in the actual egg factory
was simulated before data acquisition. As for the impact of cleaning on the test results,
we came to the conclusion after small-scale experiments that cleaning could remove the
stains on the surface of the eggshell and reduce the interference with the current signal
acquisition. Meanwhile, the water molecules during cleaning could wet a part of the crack
gaps that were generated and had been blocked for a long time, which contributed to the
conductivity of the cracks.

At the initial stage of data acquisition, each egg was used only once for the current
signal, which resulted in a lot of waste. In order to improve the utilization rate of the sample
eggs and efficiency of data acquisition, the eggs that were detected to be intact would be
used again as cracked eggs after being slightly cracked by our crack striking machine. The
physical and experimental parameters of the tested eggs are shown in Table 3.

Table 3. Physical and experimental parameters of tested eggs.

Long Axis
Average

Short Axis
Average

Weight
Average Voltage Frequency Number of

Sampling Points
Average

Humidity
Average

Temperature

Eggs 57.4 mm 44.5 mm 62.7 g 1500 V 100 Hz 450 40% RH 18.5 °C

4.2. Extraction of Data Features

As shown in Figure 12, the current signals of eggs with different sizes, which included
three small ones and three large ones, were found to fluctuate significantly. The current
signals collected in the experiment were mixed with noise and were easily affected by the
environment, reducing the classification accuracy. Therefore, we introduced six common
time domain features, three frequency domain features, and wavelet packet coefficients
to extract stable and comprehensive feature information from the current signals for the
classification models. The six time domain features were the weighted mean, average,
standard deviation, range, skewness, kurtosis, and their expressions are listed in Table 4.
In the six expressions given in Table 4, xi (i = 1, 2, . . . , N) is the current data, N is the
length of the data, and w is the coefficient. The three frequency domain features were the
frequency of the center of gravity, root mean square frequency, and standard deviation of
the frequency, and their expressions are described in Table 5. In the three expressions given
in Table 5, f is the frequency value and P( f ) is the power spectrum.
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Figure 12. The effect of egg size on current signal.

Table 4. Time domain features.

Time Domain Features Formula

Weighted mean x̄ = ∑n
i=1 xiwi

∑n
i=1 wi

Average µ = 1
N ∑N

i=1 xi

Standard deviation σ =

√
∑N

i=1(xi−µ)2

N
Range r = max(x)−min(x)

Skewness s = 1
n ∑n

i=1 [(
xi−µ

σ )3]

Kurtosis k = 1
n ∑n

i=1 [(
xi−µ

σ )4]

Table 5. Frequency domain features.

Frequency Domain Features Formula

Frequency of center of gravity FC =
∫ +∞

0 f P( f )d f∫ +∞
0 P( f )d f

Root mean square frequency RMSF =

√ ∫ +∞
0 f 2P( f )d f∫ +∞

0 P( f )d f

Standard deviation of frequency RVF =

√ ∫ +∞
0 ( f−FC)2P( f )d f∫ +∞

0 P( f )d f

4.3. Analysis of the Results

In the process of acquiring an egg’s current signal, there are various discharge phe-
nomena, such as corona discharge, small air gap breakdown, and creeping discharge, which
make the current signal mix with a lot of noise. The interference of noise plus the relatively
weak current signal at the microcrack cause the current signal to be submerged in the
noise. To solve this, the method of wavelet threshold denoising was adopted to remove
the high-frequency noise in the signal while retaining the useful high signals. The wavelet
threshold denoising was such that, due to the continuity of the real signal f (t), after the
discrete wavelet transform, the wavelet coefficients generated at different scales were large,
while the wavelet coefficients produced by a corresponding noise signal e(t) were small.
Therefore, noise can be effectively suppressed by first selecting appropriate thresholds on
different scales to process high-frequency wavelet coefficients, and then performing an
inverse wavelet transform on the signal can effectively suppress noise. It is noteworthy
that the selection of a wavelet base is of great significance to the effect of wavelet threshold
denoising. By analyzing the shape of the current signal at the crack position, the Sym2
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wavelet base was finally selected, and it had better symmetry, which could, to a certain
extent, reduce the phase distortion when analyzing and reconstructing the signal.

The current signals of two intact eggs and two cracked eggs were randomly selected
from the dataset, as shown in Figure 13, where blue represents the signal before denoising
and red represents the signal after denoising. The following can be observed from Figure 13:
(1) The current signal of the cracked eggs had an evident peak within one cycle, while that of
the intact eggs did not. As mentioned in Section 2, when the experimental voltage is smaller
than the breakdown voltage, the change in the current curve is mainly dominated by the
capacitance jump during the rotation. The experimental voltage in this paper was higher
than the breakdown voltage, so the change in the current curve was mainly dominated by
the electrical breakdown at the crack. When the crack was small, the experimental voltage
may not have reached the breakdown voltage, and the change in the current curve may
have also been dominated by a capacitance jump. In addition, we also designed the circuit
protection function, where the system would automatically cut off the circuit to protect the
safety of the equipment and eggs when the current exceeded the set threshold. (2) The jitter
of the current curve was relatively smooth due to the small changes in capacitance of the
intact eggs. However, the two wave shapes of the intact eggs were not exactly identical
and even had big differences, which may have been related to the different roughnesses of
the eggshells.
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Figure 13. Egg current waveform. (a,b) Waveforms of intact eggs. (c,d) Waveforms of cracked eggs.

After the wavelet threshold denoising, the time domain, frequency domain, and
wavelet packet coefficients of the current signal were extracted. It can be seen from
Figures 14 and 15 that most of the features of the intact eggs and cracked eggs had obvious
differences, but some of the differences were not obvious.

We put the time domain, frequency domain, and wavelet packet coefficient features
into the SVM model. The experimental results showed that the recognition rate of each
feature was different and that the eggs incorrectly recognized by different features were also
not the same. This indicates that features in different domains had different classification
effects. Therefore, this paper used the multi-domain features to fully reflect the inherent
characteristics of the original current signal so as to improve the detection accuracy.
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Figure 14. Feature distribution diagram. (a) Time domain features. (b) Wavelet domain features.
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Figure 15. Three-dimensional distribution diagram of frequency domain features.

Finally, we adopted a variety of machine learning methods such as K-means clustering,
linear discrimination analysis, and a support vector machine, as mentioned in Section 3.6,
for pattern classification, and performance measures such as accuracy, precision, and the
recall rate were calculated from the testing data. The experimental results are shown in
Table 6.
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Table 6. Combination feature classification effect in time domain, frequency domain, and wavelet domain.

Accuracy Precision Recall F1 AUC

SVM 98.79% 98.27% 99.48% 98.87% 98.75%
LDA 99.31% 99.47% 99.21% 99.34% 99.31%
DT 99.35% 99.29% 99.47% 99.38% 99.36%
KM 99.05% 97.45% 98.73% 99.08% 99.09%
RF 99.44% 99.68% 99.51% 99.59% 99.43%

The following conclusions can be drawn from the experimental results:

1. By selecting a suitable wavelet base for wavelet denoising, the noise in the raw
current signal could be effectively suppressed, and thereby, the classification accuracy
was improved;

2. By combining the features in various transform domains, more informative and
discriminative features could be obtained.

5. Discussion

This paper studied the electric field characteristics of eggs under the action of elec-
trodes on the basis of analyzing the physical properties of the eggshell and established
two discharge models. The high-precision detection of eggshell cracks was realized by
designing an egg crack detection platform, comparing machine learning classification
algorithms, and analysis of the current signal. The most important element of this study
is proposing a novel method for crack detection in eggshells based on discharge analysis.
The vision-based method has higher requirements for the light source and image processing
technology, and the acoustic method has higher requirements for the percussion equipment
and environmental noise. However, the method in this paper has high precision, stable
results, and less dependence on the environment. It only needs to control the humidity,
voltage, and a few other experimental conditions. This section will further discuss the
electrical characteristics of poultry eggs and explore the universality and generalization of
the method proposed in this paper.

It is worth noting that the classification accuracy did not change significantly under
different machine learning methods, which proves that the features extracted based on the
current signals were stable. Therefore, the current-based crack detection method is feasible
and can be used in actual production, with accuracy rates as high as 99%. In addition,
for misclassified eggs, by analyzing the position, condition, and corresponding current
signal of the cracks, we found the following problems. Although the cracks were distributed
in the effective detection area between the tip and the blunt end, they were blocked by
spilled egg liquid and dust due to a long storage time. Therefore, it should be possible to
further improve the classification accuracy by improving the design of the brushes.

In addition, we conducted further studies on the electrical properties of the eggs. We
randomly selected 10 eggs as samples and recorded the current signals at applied voltages
of 800 V, 1000 V, 1200 V, and 1400 V. According to whether there was an obvious discharge
that could be directly observed and heard, the eggs could be divided into discharged
eggs and undischarged eggs. The current signals of the two kinds of eggs are shown in
Figures 16 and 17. Figure 18 compares the current signals of both the discharged and
undischarged eggs in the same coordinate system. After analysis, it can be seen that the
higher the discharge voltage, the larger the dynamic current of the egg would be. However,
the voltage increases would also amplify the current fluctuation, which also indirectly
proves that the high voltage will cause breakdown in the eggs. In addition, not all eggs in
the discharged samples had cracks, which means it is not reliable for directly identifying
whether the eggs had cracks when only using the current signal, and it is very necessary to
conduct data analysis on the current signal.
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Figure 16. Current signal when the egg had no discharge phenomenon under different voltages.

Figure 17. Current signal when the egg produced the discharge phenomenon at different voltages.

Figure 18. Current signal of the eggs in the voltage range of 800–1400 V. The current signals of 3 eggs
with obvious cracks are set to blue, the current signals of 2 eggs with no cracks but obvious discharge
are set to green, and the current of the eggs without discharge signal is set to orange.
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Crack detection technology based on electrical characteristics is a new research di-
rection for the quality inspection of agricultural products in the future which has great
research value and market potential. The method proposed in this paper can not only
detect cracks in eggs but also achieve high-precision detection of cracks in duck eggs,
among others. It is a universal and generalizable method. We purchased 267 fresh duck
eggs from the Dabao Breeding Duck Incubation Base in Xintai Tianbao Town for current
signal acquisition, including 130 intact duck eggs and 137 cracked duck eggs. The phys-
ical and experimental parameters of the tested duck eggs are shown in Table 7. Based
on the analysis in Section 4.3, after the wavelet denoising, the time domain, frequency
domain, and wavelet packet coefficient features of the current signal of the duck eggs
were extracted and combined, and we selected the RF classifier for training. The results
are shown in Table 8. For the duck eggs, the accuracy of the model was slightly reduced
but still within a higher accuracy range. We speculate that there are two main reasons
for the slight fluctuation of the evaluation index: (1) The number of duck eggs used in
verification was quite different from that of the number of eggs.Therefore, according to the
equations for the precision rate and recall rate, it can be known that, when the overall base
is low, misclassification usually leads to a greater reduction in relevant indicators. (2) Eggs
are usually laid in industrialized chicken houses, where the environment is relatively dry
and hygienic. While ducks are typical waterfowl, they usually live outdoors and in water,
which also leads to a relatively humid and dark environment for duck eggs, and the cracks
are easily blocked by impurities such as dust. Although we simulated the cleaning process
of the egg factory before testing, the impurities that had been blocked for a long time had
solidified, and it was difficult for water molecules to enter the small cracks to wet the
blocked substance during flushing, so the conductivity at the cracks would decrease and
cause them to be missed during the inspection.

Table 7. Physical and experimental parameters of tested duck eggs.

Long Axis
Average

Short Axis
Average

Weight
Average Voltage Frequency Number of

Sampling Points
Average

Humidity
Average

Temperature

Duck
eggs 67.4 mm 50.3 mm 68.5 g 1500 V 100 Hz 450 55% RH 15 °C

Table 8. Detection results of cracked duck eggs.

Accuracy Precision Recall F1 AUC

RF 98.16% 98.41% 97.74% 98.04% 98.28%

6. Conclusions

In this study, we established the egg electrical characteristics model and designed a
microcrack detection system that has higher accuracy and is more convenient than the
traditional methods. Different types of features extracted from the time, frequency, and
wavelet domains of the current signals were proven to contain a mass of crack characteristics
after reducing the interference of noise in the signal with the sym2 wavelet. Based on the
above features, five typical machine learning algorithms were used to divide the eggs
into cracked eggs and intact eggs, which verified the proposed model. The experimental
results show that the RF had better robustness, and the fusion of multi-domain features can
effectively improve the accuracy of classification. It is worth noting that the classification
accuracy by different machine learning methods had little variation, with all being around
99%, proving that the model of detecting microcracks by using current signal features
has certain stability and reliability. The relevant experiments of duck eggs also confirmed
that the method proposed in this paper has a certain universality and generalization. Our
research will help relevant enterprises to quickly and accurately detect cracked eggs in the
production line, greatly reduce the number of cracked eggs in the end products, improve
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the quality of related products, and have good practical application prospects. In general,
this paper explored a new method for nondestructive testing for egg cracks which lays
a foundation for the development of nondestructive testing of egg cracks based on an
electrical characteristics model.
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