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Abstract: Deficit irrigation (DI) is a widely recognized water-saving irrigation method, but it is
difficult to precisely quantify optimum DI levels in tomato production. In this study, the Root Zone
Water Quality-Simultaneous Heat and Water (RZ-SHAW) model was used to evaluate the potential
effects of different DI levels on tomato growth in a drip-irrigated field. Combinations of five DI
scenarios were tested in greenhouse field experiments under plastic film mulching according to
the percentage of crop evapotranspiration (ET), i.e., ET50, ET75, ET100, ET125, and ET150. The
model was calibrated by using the ET100 scenario, and validated with four other scenarios. The
simulation results showed that the predictions of tomato growth parameters and soil water were in
good agreement with the observed data. The relative root mean square error (RRMSE), the percent
bias (PBIAS), index of agreement (IoA) and coefficient of determination (R2) for leaf area index (LAI),
plant height and soil volumetric water content (VWC) along the soil layers were <23.5%, within
±16.7%, >0.72 and >0.56, respectively. The relative errors (REs) of simulated biomass and yield
were 3.5–8.7% and 7.0–14.0%, respectively. There was a positive correlation between plant water
stress factor (PWSF) and DI levels (p < 0.01). The calibrated model was subsequently run with
45 different DI scenarios from ET0 to ET225 to explore optimal DI management for maximizing water
productivity (WP) and yield. It was found that the maximum WP and yield occurred in ET95 and
ET200, with values of 28.3 kg/(ha·mm) and 7304 kg/ha, respectively. The RZ-SHAW demonstrated
its capacity to evaluate the effects of DI management on tomato growth under plastic film mulching.
The parameterized model can be used to optimize DI management for improving WP and yield
based on the water stress-based method.

Keywords: RZ-SHAW; drip irrigation; water productivity; plastic mulch; tomato production; water
stress; irrigation scheduling

1. Introduction

The tomato (Lycopersicon esculentum) is the second most widely grown vegetable in
the world after the potato, and has both tremendous economic and rich nutritive values [1].
Global planting areas of tomatoes has increased more than 3-fold from 1.68 million ha in
1961 to 5.05 million ha in 2020 [2]. The water consumption for tomato production also
increased along with growing demand and planting area. However, the area percentages
of high and very high agricultural drought hazard zones have reached 24% and 27% of the
total agricultural areas in the world [3]. Nowadays, water scarcity has become a widespread
concern affecting the sustainable production of tomatoes, especially in arid and semi-arid
regions [4,5]. It was projected that an additional 14 million ha planting area could be
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achieved b merely increasing water productivity (WP) by 10% from existing irrigation
capacities [6]. Therefore, there is a need to formulate strategies for enhancing the WP and
striking a favorable balance between water scarcity and tomato demand.

In the last decades, deficit irrigation (DI) strategy, which deliberately reduces the
water input at levels below full irrigation, was widely recommended by governmen-
tal water agencies in many countries to alleviate water scarcity, e.g., USA, China and
India [6–8]. An acceptable level of DI decreased water use with marginal yield reduction
of tomatoes, then increased WP and improved the tomato quality attributes, e.g., sugar
and antioxidant content [6]. Many studies focused on exploring the optimal DI manage-
ments without tomato WP penalties [9]. However, the optimal DI level ranged widely
in most studies, e.g., 50% crop evapotranspiration (ET) [10], 70% ET [11], 75% ET [12],
80% ET [13] and 100% ET [14]. These different observations were mainly because, in addition
to the DI levels, other factors also affected the yield change after DI adoption, e.g., tomato
cultivars [15], soil types [16], local climate [17] and fertilizers [18]. Meanwhile, an imprecise
DI strategy may lead to a severe yield and WP reduction, as tomatoes represents a high
water-dependent horticultural crop [6,19]. Chand et al. [16] summarized a number of
tomato field experiments and demonstrated that the reduction in tomato yield ranged
widely from 9% to 46%, when the DI strategy was conducted at 50% ET. Thus, a scientific
quantitative indicator for DI strategy should be provided to maximize sustainability goals in
tomato production. Moreover, plastic film mulching was widely used in tomato production
to decrease soil ET and irrigation amount, and, then, to improve plant transpiration and
yield [20]. Zan et al. [21] reported that the application of plastic film mulching increased
tomato yield by 11.1%, compared to no film mulching conditions. However, plastic film
mulching practice, combined with DI management, has combined effects on soil ET and
plant growth, which make it more difficult for farmers and policymakers to develop a
suitable DI strategy.

The use of an agricultural system model is a good option for making more scientific
decision-making for tomato production [22]. Among the agricultural system models,
the hybrid Root Zone Water Quality-Simultaneous Heat and Water (RZ-SHAW) model
was ranked as the top model to simulate hydrologic and crop growth processes [23].
Previous studies demonstrated the effectiveness of RZ-SHAW in simulating the effects of
DI management on crop growth under mulching conditions. Qi et al. [24] tested RZ-SHAW
performance in simulating full-irrigated and deficit-irrigated maize fields, and accurately
simulated leaf area index (LAI) and soil volumetric water content (VWC) with coefficients
of determination (R2) ≥ 0.64 and Nash–Sutcliffe efficiency (NSE) ≥ 0.57, and the maize
yield was also simulated satisfactorily with a relative error (RE) < 5%. Then, Zhou et al. [25]
applied RZ-SHAW to quantify the effects of plastic film mulching on soil temperature
during seedling emergence of spring maize with the NSE ≥ 0.68. Studies have suggested
RZ-SHAW could provide accurate simulations on soil water, temperature and crop growth
under mulching conditions [26,27]. However, to our best knowledge, few studies evaluated
the performance of RZ-SHAW in predicting the vegetable production under mulching
conditions, and RZ-SHAW has also not been applied to develop the best DI management
for tomato production.

Therefore, a series of greenhouse experiments under plastic mulch conditions was
carried out to test the hypothesis that the RZ-SHAW model was able to simulate the effects
of DI management on tomato growth parameters (i.e., tomato LAI, plant height, biomass
and yield) and soil water (i.e., VWC). Then, the water stresses under different DI levels
were evaluated by using the calibrated model. The optimal DI management was obtained
for maximizing yield and WP based on the water stress method.

2. Materials and Methods
2.1. Experimental Site and Plant Material

This study was carried out on an experimental field of Yangzhou University (32◦23′ N,
119◦25′ E) in Yangzhou, China. Soil texture in the study area was sandy loam. The
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volumetric water content (VWC) of field capacity and permanent wilting point were 18%
and 8% along the soil layers, respectively. The average soil pH was 7.1. Other detailed soil
characteristics are shown in Table S1 (Supplementary Materials (SM)). This experimental
area is located in a subtropical monsoon climate with 3.5 m altitude and 1030 mm annual
average precipitation. Annual average temperature and sunshine are 15 ◦C and 2177 h,
respectively. The tomato cultivar (Jin Guan No. 1), which is a mid-early type cultivar
with good potential soluble solids content (average: 4.5%) and a high level of fruit weight
(average: 200 g), was employed in the field experiment.

2.2. Field Management

A semicircular shaped greenhouse, which was covered with plastic film and oriented in
a north–south direction, was employed for the tomato experiment. Six-week-old seedlings
were transplanted in the early spring (13 March 2013), and the final harvest date was
13 July 2013. The row spacing was set to 0.6 m, and the distance between plants was 0.3 m
with a plant density of 2.8 plant/m2. The inline emitter of the drip system discharged 3 L/h
with the distance being 0.3 m apart. The layout of installed drip system and experimental
design in the greenhouse are illustrated in Figure S1 in the SM.

Five different DI scenarios were designed in the field experiment according to the
actual percentage of tomato ET in previous studies [16]. The ET values were determined by
the Penman-Monteith equation [28]. The five levels of irrigation rates at 25% ET interval
were conducted as 50% ET, 75% ET, 100% ET, 125% ET, and 150% ET, which were named
ET50, ET75, ET100, ET125, ET150, respectively. All scenarios were set up in a randomized
block designed with three replicates (shown in Figure S1). The irrigation events were
conducted at an interval of 7–10 days during the growing season. Details of the irrigation
rates and scheduling are shown in Table S2 in the SM. Soluble NPK fertilizers (10-5-5) were
applied at the crop root zone of each scenario by the drip irrigation system. The N fertilizer
rate in each scenario was set to 200 kg/ha according to the local recommended dose for
tomato requirements.

In each scenario, leaf area index (LAI) was measured by using an LAI-3000A Plant
Canopy Analyzer (Li-Cor, Inc, Lincoln, NE, USA). Plant height was measured with a tape
measure, and samples were randomly collected at intervals of 10 days. Over 9 plant samples
in each scenario were randomly selected at the harvest date, and they were weighed to
obtain biomass and yield. Soil samples were collected from four soil layers (viz., 0–5, 5–15,
15–35 and 35–55 cm) within 2–3 days after each irrigation event. Then, soil volumetric
water content (VWC) of each sample was measured according to the gravitational method.
The meteorological information was measured by using the sensors in the greenhouse,
similar to our previous study [29]. The maximum/minimum temperature and relative
humidity during the growing season are shown in Figure 1.

2.3. RZ-SHAW Overview, Model Input and Calibration
2.3.1. Model Description

The RZ-SHAW model (version 4.2) is a process-oriented finite irrigation strategy eval-
uation model on frequent spatiotemporal measurements of driving variables [29]. This
model is a coupling of the Root Zone Water Quality Model 2 (RZWQM2) and the Simulta-
neous Heat and Water (SHAW) sub-model [30]. In RZWQM2, unsaturated soil water flow
and redistribution were modeled using one-dimensional Richards’ equation. The modified
Brooks-Corey equation was used to describe the soil water retention curve [31]. The po-
tential demand was calculated using the extended Shuttleworth–Wallace ET model [23].
The DSSAT crop model was incorporated into RZWQM2 to provide a detailed biophysical
crop model to better simulate tomato growth processes, e.g., phenological stage, LAI, plant
height, biomass and yield [32]. Water absorption by plants followed the Nimah-Hanks
equation [33]. Then, the RZWQM2 sub-model provided these soil-water-plant parameters
at each time step to the SHAW sub-model. In turn, the SHAW sub-model fed back to
RZWQM with the modifications of soil-water-plant parameters, e.g., VWC, soil temper-
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ature, soil ET, root distribution, crop growth parameters [34]. For plastic film mulching
conditions, the SHAW sub-model ignored head transfer due to evaporation and condensa-
tion between the cover and the soil surface, and assumed that soil moisture evaporated
only from the non-cover area [35].
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2.3.2. Model Input, Calibration and Validation

The model was calibrated by using the measured data of the full irrigation (viz., ET100)
in terms of tomato growth parameters (i.e., tomato LAI, plant height, biomass and yield)
and soil water (i.e., VWC). Then, the model was validated by using the data from the other
scenarios (viz., ET50, ET75, ET125, and ET150).

The daily weather data for running the model were obtained from the measured values,
including maximum and minimum air temperature, relative humidity, solar shortwave
radiation, wind speed, and precipitation. Natural precipitation and wind speed were
intercepted in the greenhouse production system. Thus, the precipitation and wind speed
were set to zero in this model. Soil profile in the model was divided into 7 horizons of 0–5,
5–15, 15–35, 35–55, 55–75, 75–100, 100–150 cm. The soil texture, bulk density, and organic
matter content along the horizons were set to the measured values. The soil hydraulic
parameters referred to our previous study [29] and were slightly modified by the VWC
calibration, which is present in Table 1. The faction plastic cover in the SHAW sub-model
was set to 0.7, according to the actual cover ratio of plastic mulch in the greenhouse.
Moreover, the plant parameters of the DSSAT sub-model were manually calibrated against
observed LAI, plant height, biomass, and yield, which are detailed in Table 2.

Table 1. Soil hydraulic parameters along the soil layers in the RZ-SHAW model at the experimental sites.

Depth
(cm)

BD
(mg m−3)

Pb
(cm)

θs
(cm3 cm−3)

θr
(cm3 cm−3)

Ksat
(cm/h) λ

Soil Root
Growth Factors

0–5 1.322 −8.96 0.37 0.10 3.15 0.17 1.00
5–15 1.322 −18.53 0.34 0.13 3.22 0.32 0.90
15–35 1.402 −8.16 0.43 0.15 3.46 0.37 0.70
35–55 1.402 −23.89 0.41 0.11 1.81 0.16 0.54
55–75 1.402 −5.53 0.31 0.10 2.83 0.15 0.30
75–100 1.550 −5.53 0.31 0.10 2.83 0.15 0.20
100–150 1.550 −16.68 0.40 0.07 3.02 0.30 0.05

Note: BD: bulk density, Pb: bubbling pressure, θs: saturated water content, θr: residual water content,
Ksat: saturated hydraulic conductivity, λ: pore size distribution index. Other required parameters for running the
model were the default constraints.



Agriculture 2022, 12, 1253 5 of 13

Table 2. Calibrated DSSAT parameters for tomato cultivar (Jin Guan No. 1).

Parameter Description Value

CSDL Critical Short-Day Length below which reproductive development progresses with no daylength effect (for short day
plants) (hour) 12.0

PPSEN Slope of the relative response of development to photoperiod with time (positive for short day plants) (1/h) 0.0
EM-FL Time between plant emergence and flower appearance (R1) (photothermal days) 20.0
FL-SH Time between first flower and first pod (R3) (photothermal days) 9.5
FL-SD Time between first flower and first seed (R5) (photothermal days) 19.8
SD-PM Time between first seed (R5) and physiological maturity (R7) (photothermal days) 49.0
FL-LF Time between first flower (R1) and end of leaf expansion (photothermal days) 50.3
LFMAX Maximum leaf photosynthesis rate at 30 C, 350 vpm CO2, and high light (mg CO2/m2-s) 1.1
SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g) 357.7
SIZLF Maximum size of full leaf (three leaflets) (cm2) 333.1
XFRT Maximum fraction of daily growth that is partitioned to seed and shell 0.69
WTPSD Maximum weight per seed (g) 0.004
SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 30.0
SDPDV Average seed per pod under standard growing conditions (#/pod) 300.0
PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 67.9

2.4. Statistical Analysis

The performance of simulations and observations in terms of LAI, plant height and
VWC, was evaluated using four statistical criteria, i.e., relative root mean square error
(RRMSE), the percent bias (PBIAS), index of agreement (IoA), and determination of co-
efficient (R2). Model performance was considered acceptable if −30% < RRMSE < 30%,
−15% < PBIAS < 15%, IoA > 0.75 and R2 > 0.5. Relative error (RE) was applied to assess the
simulated performance of biomass and yield. Meanwhile, analysis of variance (ANOVA)
of data from the five scenarios was performed to assess effects of DI management with a
significance level of 0.05. The calculation formulae of statistical criteria are shown below:

RRMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2

/
O (1)

PBIAS =
n

∑
i=1

(Oi − Pi)
/ n

∑
i=1

Oi (2)

IoA = 1−
n

∑
i=1

(Oi − Pi)
2
/ n

∑
i=1

(∣∣Pi − P
∣∣+ ∣∣Oi −O

∣∣)2 (3)

R
2
=

[
n

∑
i=1

(
Oi −O

)(
Pi − P

)]2/ n

∑
i=1

(
Oi −O

)2
n

∑
i=1

(
Pi − P

)2 (4)

RE = (Pi −Oi)/Oi (5)

where Oi and Pi represent the observed and simulated values, respectively. O and P
represent the mean observed and simulated values, respectively. The value n represents
the number of observations.

2.5. Quantifying the Effects of Deficit Irrigation Levels using Calibrated RZ-SHAW

By using the calibrated RZ-SHAW model, the water deficiency degrees of five experi-
mental scenarios were estimated by plant water stress factor (PWSF) [35]. The PWSF is the
indicator of water deficiency by calculating the ratio of DSSAT of root water absorption to
ET [36], which ranges from 1 for no stress to 0 for complete stress.

In order to further explore optimal DI management, the quantification of splitting
irrigation rate impact on yield, WP and PWSF was determined by using calibrated RZ-
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SHAW. A total of 45 scenarios were investigated with different DI levels from 0% ET to
225% ET at 5% ET interval. The WP in these DI scenarios were calculated as:

WP = Yield/(IM+∆SW) (6)

where WP (kg/(ha·mm)) is the water productivity. IM (mm) is the total irrigation amount.
∆SW (mm) is the difference of water stored in the soil between planting and harvest.

3. Results
3.1. Simulations of Tomato Growth Parameters

Statistical analyses indicated that the simulated LAI was in good agreement with the
observed data, shown in Table 3. The RRMSE, PBIAS, IoA and R2 between the observed and
simulated LAI were 14.4% ± 3.4%, −3.5% ± 4.1%, 0.86 ± 0.08 and 0.85 ± 0.09, respectively.
As shown in Figure 2a, the LAI rose significantly with irrigation rates (p < 0.05). The LAI
values in each sampling event showed a strongly positive correlation with the percentage
of ET, and the Pearson correlation coefficients (r) were 0.94 ± 0.02 for simulation and
0.86 ± 0.08 for observation, respectively. This phenomenon was because adequate water
promoted chlorophyll synthesis and delayed the fading of crop leaves [37]. Meanwhile,
there was little difference between the ET125 and ET150 in both simulation and observation.
This was explained by the fact that the photosynthetic rate approached a saturation plateau
when soil water exceeded the threshold [38].

Table 3. Statistical criteria results obtained by comparing the observed and simulated LAI (cm2/cm2),
plant height, biomass and yield in each scenario.

Scenarios
LAI Plant Height Biomass Yield

ObLAI SimLAI RRMSE PBIAS IoA R2 ObPH SimPH RRMSE PBIAS IoA R2 RE RE

ET50 6.9 6.8 18.1% 1.0% 0.73 0.70 89.0 74.1 23.5% 16.7% 0.95 1.00 8.7% 12.1%
ET75 9.5 9.8 16.7% −3.4% 0.84 0.83 91.5 90.1 9.1% 1.6% 0.99 0.99 8.3% 14.0%

ET100 11.1 11.2 9.2% −0.8% 0.95 0.92 92.1 92.6 13.4% −0.5% 0.99 0.98 3.5% 11.3%
ET125 11.8 12.4 13.4% −4.8% 0.90 0.91 90.7 101.3 22.7% −11.7% 0.97 0.99 5.2% 10.8%
ET150 11.3 12.4 14.5% −9.6% 0.88 0.91 90.4 101.3 22.6% −12.1% 0.97 0.99 6.9% 7.0%

Note: LAI: leaf area index (m2/m2). ObLAI and ObPH: the mean observed value of LAI and plant height,
respectively; SimLAI and SimPH: the mean simulated value of LAI and plant height, respectively. The ET100
scenario was the calibration phase. The remaining four scenarios (i.e., ET50, ET75, ET125, and ET150) were the
validation phase. The statistical criteria were calculated by Equations (1)–(5).

In contrast to the LAI, simulated plant height was in better agreement with the
observation with the IoA > 0.95 and R2 > 0.98, respectively (Table 3). It was found that
higher irrigation rates tended to increase simulated plant height (Figure 2b). The mean
simulated values of plant height (SimPH) increased from 74.1 cm for ET50 to 101.3 cm for
ET150, respectively. However, the observed plant height among the five scenarios had
no significant difference (p > 0.05). A similar phenomenon was observed in a previous
study [29].

The biomass and yield were also well-simulated by RZ-SHAW. The RE values were in
the range of 3.5–8.7% for biomass and 7.0–14.0% for yield, respectively (Table 3). As shown
in Figure 3a,b, both biomass and yield increased by 1.1–1.3 times for every 25% increase in
irrigation rates, i.e., ET50 < ET75 < ET100 < ET125 < ET150. The simulated biomass and
yield were 8672 and 3429 kg/ha for ET50, respectively, and were 13,982 and 7069 kg/ha for
ET150, respectively. Some previous studies also showed that the tomato yield increased
1.1–1.3 times for every 25% increase in irrigation rates [39,40], which were similar to our
results. The higher biomass and yield in the scenarios with high DI levels were attributed
to the higher net photosynthetic rates and transpiration rates, which led to a rise in biomass
and yield [41].
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Figure 3. The simulated and observed biomass (a) and yield (b) under five scenarios. The error bars
of the observed biomass and yield were in the range of 3.5–8.7% and 7.0–14.0% respectively.

3.2. Simulations for Soil Water

The statistical criteria between observed and simulated VWC are presented in Table 4.
The model satisfactorily predicted VWC at all soil layers with RRMSE <12.4%, PBIAS within
±3.2%, IoA > 0.72 and R2 > 0.56, respectively. The mean observed and simulated VWC
(0–55 cm) increased from 0.161 and 0.162 cm3/cm3 for ET50 to 0.210 and 0.207 cm3/cm3 for
ET150, respectively.

As shown in Figure 4a–e, both observed and simulated VWCs were obviously in-
creased with the DI levels (p < 0.01), and each sharper peak occurred 1 day after irrigation
events. A similar phenomenon was also observed in previous studies [7,29]. This was
because without recharge from rainfall and groundwater, the irrigation events were the
main source of soil moisture in the greenhouse [34]. Meanwhile, the peak VWC values of
the upper layers were sharper than the lower layers. Chen et al. [42] also reported that the
simulated VWC showed a declining trend along with the soil layers in a two-year field
experiment. This was due to the stronger water-holding capacity in the upper layers, which
was caused by smaller bulk density and larger soil porosity in surface soil than the deeper
soil [43,44].
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Table 4. Statistical criteria results obtained by comparing the observed and simulated VWC (cm3/cm3)
along the soil layers in each scenario.

Depth
(cm)

ET50 (Validation) ET75 (Validation)

ObVWC SimVWC RRMSE PBIAS IoA R2 ObVWC SimVWC RRMSE PBIAS IoA R2

0–5 0.166 0.171 12.4% −3.2% 0.79 0.70 0.185 0.187 11.0% −0.8% 0.76 0.64
5–15 0.161 0.156 11.9% 3.1% 0.74 0.65 0.176 0.179 8.5% 2.9% 0.76 0.64

15–35 0.160 0.159 11.7% 0.3% 0.77 0.61 0.174 0.175 8.9% −0.3% 0.82 0.68
35–55 0.157 0.162 9.5% −3.2% 0.81 0.75 0.177 0.175 10.0% 1.3% 0.76 0.64
Mean
(0–55) 0.161 0.162 8.7% −0.7% 0.86 0.75 0.178 0.177 7.7% 0.8% 0.85 0.72

Depth
(cm) ET100 (Calibration) ET125 (Validation)

0–5 0.195 0.198 8.5% −1.6% 0.74 0.56 0.215 0.221 9.4% −2.9% 0.79 0.72
5–15 0.177 0.179 5.9% −0.7% 0.81 0.69 0.191 0.191 5.7% −0.3% 0.86 0.74

15–35 0.187 0.184 7.1% 1.4% 0.80 0.67 0.193 0.198 7.1% −2.3% 0.77 0.69
35–55 0.181 0.183 7.1% −0.6% 0.82 0.70 0.200 0.194 5.7% 2.8% 0.82 0.76
Mean
(0–55) 0.185 0.186 5.5% −0.4% 0.86 0.76 0.200 0.201 5.6% −0.7% 0.86 0.83

Depth
(cm) ET150 (Validation)

0–5 0.230 0.230 5.9% 0.3% 0.86 0.73
5–15 0.200 0.196 5.6% 1.9% 0.74 0.59

15–35 0.207 0.203 4.1% 1.7% 0.85 0.79
35–55 0.202 0.199 5.7% 1.5% 0.72 0.57
Mean
(0–55) 0.210 0.207 4.3% 1.3% 0.86 0.76

Note: VWC: soil volumetric water content (cm3/cm3), ObVWC and SimVWC: the observed and simulated mean
value of VWC, respectively. The statistical criteria were calculated by Equations (1)–(4).

Agriculture 2022, 12, x FOR PEER REVIEW 9 of 14 

 

 

Mean (0–55) 0.210 0.207 4.3% 1.3% 0.86 0.76 
Note: VWC: soil volumetric water content (cm3/cm3), ObVWC and SimVWC: the observed and simulated 
mean value of VWC, respectively. The statistical criteria were calculated by Equations (1)–(4). 

 
Figure 4. Observed versus simulated volumetric water content (VWC, cm3/cm3) for each scenario 
along the soil layers of 0–5 cm (a), 5–15 cm (b), 15–35 cm (c), 35–55 cm (d) and the mean VWC of the 
four layers (e). 

4. Discussion 
4.1. Simulated Plant Water Stress in Experimental Scenarios 

The plant water stress factor (PWSF) is an important water deficit indicator, and the 
occurrence of water stress is the main reason for biomass and yield reduction in the model 
[36,45]. Tomato growth would suffer from more severe water stress when PWSF 
approached zero. As shown in Figure 5a, there was a negative correlation between PWSF 
values and irrigation rates (p < 0.01). The mean PWSFs were 0.98 for ET150, 0.91 for ET125, 
0.84 for ET100, 0.75 for ET75 and 0.69 for ET50, respectively. This was the main reason for 
the biomass and yield reduction in the scenarios with low DI levels (Figure 3). Meanwhile, 
water stress would reappear soon when the irrigation rates were deficient, e.g., ET50 and 
ET75. It was found that the water stress of tomatoes mainly appeared in initial and full 
fruit stages from 10 May to 28 July. This might be due to the larger water consumption in 

Figure 4. Cont.



Agriculture 2022, 12, 1253 9 of 13

Agriculture 2022, 12, x FOR PEER REVIEW 9 of 14 

 

 

Mean (0–55) 0.210 0.207 4.3% 1.3% 0.86 0.76 
Note: VWC: soil volumetric water content (cm3/cm3), ObVWC and SimVWC: the observed and simulated 
mean value of VWC, respectively. The statistical criteria were calculated by Equations (1)–(4). 

 
Figure 4. Observed versus simulated volumetric water content (VWC, cm3/cm3) for each scenario 
along the soil layers of 0–5 cm (a), 5–15 cm (b), 15–35 cm (c), 35–55 cm (d) and the mean VWC of the 
four layers (e). 

4. Discussion 
4.1. Simulated Plant Water Stress in Experimental Scenarios 

The plant water stress factor (PWSF) is an important water deficit indicator, and the 
occurrence of water stress is the main reason for biomass and yield reduction in the model 
[36,45]. Tomato growth would suffer from more severe water stress when PWSF 
approached zero. As shown in Figure 5a, there was a negative correlation between PWSF 
values and irrigation rates (p < 0.01). The mean PWSFs were 0.98 for ET150, 0.91 for ET125, 
0.84 for ET100, 0.75 for ET75 and 0.69 for ET50, respectively. This was the main reason for 
the biomass and yield reduction in the scenarios with low DI levels (Figure 3). Meanwhile, 
water stress would reappear soon when the irrigation rates were deficient, e.g., ET50 and 
ET75. It was found that the water stress of tomatoes mainly appeared in initial and full 
fruit stages from 10 May to 28 July. This might be due to the larger water consumption in 
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along the soil layers of 0–5 cm (a), 5–15 cm (b), 15–35 cm (c), 35–55 cm (d) and the mean VWC of the
four layers (e).

4. Discussion
4.1. Simulated Plant Water Stress in Experimental Scenarios

The plant water stress factor (PWSF) is an important water deficit indicator, and
the occurrence of water stress is the main reason for biomass and yield reduction in the
model [36,45]. Tomato growth would suffer from more severe water stress when PWSF
approached zero. As shown in Figure 5a, there was a negative correlation between PWSF
values and irrigation rates (p < 0.01). The mean PWSFs were 0.98 for ET150, 0.91 for ET125,
0.84 for ET100, 0.75 for ET75 and 0.69 for ET50, respectively. This was the main reason for
the biomass and yield reduction in the scenarios with low DI levels (Figure 3). Meanwhile,
water stress would reappear soon when the irrigation rates were deficient, e.g., ET50 and
ET75. It was found that the water stress of tomatoes mainly appeared in initial and full
fruit stages from 10 May to 28 July. This might be due to the larger water consumption in
the late crop growth stages, wherein large amounts of auxin and cytokinin were secreted
to stimulate fruit enlargement [46,47]. The results indicated that the PWSF, as simulated
using RZ-SHAW, could potentially be used to trigger irrigation, thereby informing the
development of optimal DI management for improving yield and WP.

4.2. Optimizing Deficit Irrigation Management for Maximizing Yield and Water Productivity

To obtain the optimum DI management for improving yield and WP, a series of
DI levels was simulated using the calibrated model. The simulated yield rapidly in-
creased with the DI levels when the levels were below ET150, shown in Figure 6a. The
yield increased from 24 kg/ha for ET0 to 7069 kg/ha for ET150, respectively. Then, the
yield increased slightly with the DI levels from ET150 to ET200 scenario, and the yield
merely increased by 3.2%. The irrigation approach suggested that applying 32.30 cm water
(Table S2 in the SM) to the tomato cultivar (Jin Guan No. 1) over the growing season
allowed the crop to achieve its highest yield potential (7304 kg/ha). When the DI levels
exceeded ET200, the potential yield remained unchanged, which was because no water
stress occurred in the ET200-225 scenarios through the whole phenological stages, shown in
Figure 5b. It also indicated the water stress-based method was an efficient way to schedule
high-yield. Moreover, among the mainstream tomato cultivars in the world, the mean
tomato yield was reported to be about 6000 kg/ha [16]. The maximum yield of tomato
cultivar (Jin Guan No. 1) in this study was higher than this mean value, which showed a
promising high-yield cultivar.
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24% yield sacrifice compared to ET200, due to insufficient irrigation. Moreover, when the 
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Table S2 in the SM. PWSF = 1 indicates no water stress, PWSF = 0 indicates complete stress.
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irrigation (DI) levels from ET0 to ET225.

There was a significantly increased tendency of WP from ET0 to ET95 (Figure 6b). This
was because the WP was the ratio of yield to water consumption (Equation (6)), and the
yield increased much faster than the increased irrigation rates before the ET95 scenario.
This result agreed with Fang et al. [48] and Liu et al. [49]. The maximum WP appeared in
the ET95 scenario, and the value was 28.3 kg/(ha·mm). The WPs in ET95 were 8.8%, 8.1%,
1.4%, 4.9% and 4.2% higher than ET50, ET75, ET100, ET125 and ET150 in the experiment,
respectively. As shown in Figure 5b, the mean PWSF in ET95 was 0.82, indicating that
slight water stress contributed to an increase in WP. The corresponding irrigation rate was
15.67 cm (Table S2 in the SM), which was only 48.5% of the highest yield scenario in ET200.
Meanwhile, the simulated yield value was 5535 kg/ha, which had 24% yield sacrifice
compared to ET200, due to insufficient irrigation. Moreover, when the irrigation rates were
higher than ET95, the WP showed a declining tendency from 28.3 kg/(ha·mm) for ET95
to 21.4 kg/(ha·mm) for ET225. This could be attributed to the stable tendency of yield
from ET95 to ET225 (Figure 6b), in which increased irrigation rates played the dominant
role in the change in WP. Compared to previous studies, the optimal DI levels for max
WP appeared in the range of 50–100% ET [10–14]. The optimal DI scenario in this study
(i.e., ET95) was also in this range. Meanwhile, it was reported that the optimal WP values for
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tomato production generally fluctuated within the range of 18.2 to 27.6 kg/(ha·mm) [50,51].
The optimal WP in this study (i.e., 28.3 kg/(ha·mm)) was slightly higher than previous
reports, which might have resulted from more appropriate temperature at the reproductive
phase in the greenhouse experiment. The early sown tomatoes in this study (13 March)
escaped the risk of terminal heat stress and, thus, produced better yield [52]. The results
showed that yield and WP using the water-stress method could be improved by optimizing
DI levels, which could be provided as a reference for local farmers and policymakers.

5. Conclusions

DI management is widely recommended around the world to improve tomato yield
and WP. In this study, the RZ-SHAW proved to be a promising tool in evaluating the effects
of DI strategies on tomato LAI, plant height, biomass, yield, and soil water along the layers
in a drip-irrigated, plastic film mulching, greenhouse field. Plant water stress proved to be
a key factor affecting the tomato LAI, biomass and yield, especially in initial and full fruit
stages. Based on the water stress-based method, the optimal DI levels for maximizing yield
and WP could be achieved by applying the calibrated model. The maximum yield appeared
in abundant irrigation input without the occurrence of plant water stress. The maximum
WP appeared under moderate DI levels with some sacrifice in yield. The results provided
a water stress-based irrigation scheduling method to derive optimum DI management
for improving tomato yield and WP by using RZ-SHAW. In addition, the potential for
adaptation of other influencing factors for simulation of tomato production in RZ-SHAW
across soil types and climate changes needs to be verified in further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12081253/s1, Table S1: The soil physicochemical
properties at the field experiment site; Table S2: Deficit irrigation (DI) rates and scheduling in each
scenario; Figure S1: Layout of installed drip system and experimental design in tomato greenhouse.
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