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Abstract: A high-efficiency, nondestructive, rapid, and automatic crop disease classification method
is essential for the modernization of agriculture. To more accurately extract and fit citrus disease
image features, we designed a new 13-layer convolutional neural network (CNN13) consisting of
multiple convolutional layer stacks and dropout in this study. To address the problem created by
the uneven number of disease images in each category, we used the VGG16 network module for
transfer learning, which we combined with the proposed CNN13 to form a new joint network, which
we called OplusVNet. To verify the performance of the proposed OplusVNet network, we collected
1869 citrus pest and disease images and 202 normal citrus images from the field. The experimental
results showed that the proposed OplusVNet can more effectively solve the problem caused by
uneven data volume and has higher recognition accuracy, especially for image categories with a
relatively small data volume. Compared with the state of the art networks, the generalization ability
of the proposed OplusVNet network is stronger for classifying diseases. The classification accuracy
of the model prediction results was 0.99, indicating the model can be used as a reference for crop
image classification.

Keywords: citrus diseases; classification; convolutional neural network; transfer learning; smart-
phone image; field image

1. Introduction

Citrus fruit is cultivated all over southern China, being the primary cultivated fruit in
the country and a main industry in the vast rural areas in south China. However, the areas in
which citrus is grown are mostly warm and humid, and the fruit trees have a long growing
period, so they are often infected with many diseases. About 50% of citrus fruits are affected
by different diseases [1]. Intelligent identification of citrus diseases is an important step in
building modern and intelligent agriculture systems, which can provide more scientific
and effective guidance for citrus pest and disease control and field management [2,3]. The
occurrence of crop diseases is affected by seasonal and climatic factors, resulting in long
image data collection cycles and uneven distribution of various pest and disease data,
affecting the performance of classification algorithms. In addition, changes in lighting
and perspective during image acquisition also pose certain difficulties for classification.
Therefore, automatically classifying citrus diseases in fields using smartphone images
remains a challenge.

Various traditional computer vision methods have been applied to crop pest and
disease image classification [4,5]. Traditional disease image classification usually includes
feature extraction (e.g., SIFT, shape, and color features) and building a disease image
classifier with some machine-learning algorithms. K. Jagan Mohan et al. [6] used scale-
invariant features (SIFT), K-nearest neighbor classifier, and support vector machine (SVM)
to identify three rice diseases: brown spot, rice blast, and white leaf blight. The accuracy
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of disease identification using SVM was 0.91. In [7], the model learned an overcomplete
dictionary to sparsely represent the training images of each leaf species using a sparse
representation (SR) approach. This framework was able to effectively recognize leaves
on a public leaf dataset. Shanwen Zhang et al. [8] used K-means clustering to segment
diseased leaf images, extracted shape and color features to provide disease information,
and classified diseased cucumber leaf images using SR. A major advantage of this method
is that classification in SR space can effectively reduce computational effort and improve
recognition performance: in the study, the overall recognition rate was 0.86. Because
hand-crafted features may not be invariant to all diseases, finding an image classifier that
is robust to all diseases is difficult. Traditional classification methods may be more accurate
for one type of disease, but less so for another type.

To accurately identify crop pests and diseases, a variety of classification methods
based on deep learning have been developed [5,9–18]. Mohanty et al. [19] used a deep
convolutional neural network architecture to train a model on plant leaf images with the
aim of classifying the crop species as well as the presence and identity of the disease.
Sladojevic et al. [20] used the Caffe deep-learning framework to build a convolutional
neural network model for disease image recognition using plant leaves, and the exper-
imental results showed the model achieved an accuracy of more than 0.91 and 0.96 for
the individual classes tested. However, for deep learning, large-scale data are used as
the training basis, which is strongly dependent on the amount of image data [21]. Many
deep neural networks based on transfer learning have been proposed to solve the problem
caused by insufficient data. Thenmozhi and Reddy [22] designed a deep CNN model that
can classify insect species using the NBAIR, Xie1, and Xie2 datasets. Selvaraj et al. [23]
retrained ResNet50, InceptionV2, and MobileNetV1 to build disease- and pest-detection
methods. The experimental results showed that ResNet50 and InceptionV2 outperformed
MobileNetV1. They revealed that the DCNN is a robust and easy-to-deploy digital banana
disease and pest detection strategy. Coulibaly et al. [24] proposed a transfer-learning-based
deep neural network for identifying pearl millet disease, which had an average recognition
accuracy of 0.95 and an F1 score of 0.92. Barman et al. [25] compared MobileNet and self-
structured CNN for citrus leaf disease classification. They found that the self-structured
CNN was more accurate than MobileNet in citrus disease classification using smartphone
images. Khanramaki et al. [26] proposed an integrated classifier of deep convolutional
neural networks to identify citrus pests. These methods can usually produce accurate
results in farming laboratories; however, they may be less effective for the citrus diseases
and pests in the field due to the light changes and complex backgrounds.

In this study, based on an analysis of the characteristics of citrus image data collected
by mobile devices in the field from 2019 to 2020, we designed a new deep-learning network
that combines transfer learning to classify citrus disease and pest images. The original
AlexNet architecture has eleven layers. Our proposed convolutional neural network has
thirteen layers with a 3 × 3 kernel size for both convolutional and pooling layers, obtaining
more nonlinear transformation features from the disease image and reducing the number
of parameters of the proposed network. Moreover, we combined the proposed 13-layer
convolutional neural network (CNN13) with the pretrained VGG16 to address the problem
caused by the uneven distribution of images among disease categories.

The main contributions of this study are twofold: First, we designed a new CNN13
to more accurately extract and fit citrus disease image features. Second, we designed a
new joint network called OplusVNet, which combines the proposed CNN13 with transfer
learning to alleviate the problem caused by uneven numbers of disease smartphone image
data in each category.

The remainder of this paper is organized as follows: In Section 2, we describe the dataset
construction. Section 3 presents the proposed OplusVNet. The citrus disease image classifica-
tion experimental results are described in Section 4. Finally, we provide our conclusions in
Section 5.
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2. Dataset Construction

Citrus is mainly affected by 8 families and 9 species of diseases and 20 families and
24 species of insect pests, among which the most serious diseases and insect pests include
canker, leaf miner, scab, and rusty wall. Citrus disease leaf and fruit image data were
obtained by researchers carrying mobile devices in 2019–2020 in citrus plantations in
Minqing County, Fujian Province, China. The disease and pest categories of the image
data were manually calibrated by two plant protection experts. The data contained a total
of 1869 images of four common citrus pests and diseases, including 1040 images of citrus
canker disease, 299 images of citrus scab disease, 320 images of leaf miner insect pest, and
210 images of citrus rusty wall insect pest. In addition, 202 images of normal citrus were
collected. Examples of citrus disease and pest leaf and fruit images are shown in Figure 1.

The data distributions of various types of citrus disease and pest images are shown
in Table 1. Before training the network, we divided the citrus images of various types of
pests and diseases into training, validation, and test sets in a 3:1:1 ratio. We normalized the
pixel values of all images so that the pixel values of the images were mapped within the
range of 0–1. We used the image data generation class in TensorFlow to augment the data
in the images in the training set, which included image horizontal flipping, random angle
rotation, panning, and random cropping.

(a) (b)

(c) (d) (e)

Figure 1. Examples of leaves/fruit of citrus pests and diseases. (a) Citrus canker disease. (b) Cit-
rus scab disease. (c) Citrus leaf miner insect-pests. (d) Rust wall insect-pests. (e) Citrus normal
leaf/fruit picture.

Table 1. Distribution of various data on citrus pests and diseases.

Canker Scab Leaf Miner Rust Wall Normal

Total 1040 293 320 210 202
Training set 624 176 192 126 122

Validation set 208 59 64 42 40
Test set 208 58 64 42 40

3. Methods

The proposed OplusVNet model contains the VGG16 transfer learning network and
the proposed CNN13.
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3.1. Network-Based Transfer Learning

In this study, we introduced transfer learning to solve the problem of insufficient
training in citrus images and the uneven number of images of various diseases. The
proposed network-based transfer learning method is shown in Figure 2, where a trained
deep network in the source domain is transformed into part of our proposed CNN13 that
we used to train the target domain. In this study, we used the VGG16 network [27] as the
source domain network for transfer learning, and the migrated part includes the network
structure and connection parameters of VGG16. The VGG16 model uses ImageNet data as
training data, and its final output has 1000 classes. However, in this study, we had only five
classes of pests and diseases, so the migration part does not include the fully connected
layer and output unit of the VGG16 network. We combined the VGG16 transfer learning
network with our proposed CNN13 to form a new network named OplusVNet. Some
layers of the VGG16 network are frozen. The parameters of these frozen layers are not
updated during the training phase of the OplusVNet network. At this point, the frozen
layer can be regarded as a whole as a feature extractor.

To facilitate the construction of the OplusVNet network, we retained the nonfrozen
layers of the VGG16 network. We use OplusVNet_10, which is a frozen 10-layer network,
as an example to illustrate the construction form of the proposed transformed learning
network. Table 2 shows the structure of the VGG16 transformed learning network in
OplusVNet_10 and its parameters. We set the input image size to 512 × 512 × 3 to accom-
modate the number of layers of the OplusVNet network. As shown in Table 2, the frozen
layer of the VGG16 transfer learning network contains seven convolutional layers and
three maximum pooling layers, and the parameters of the frozen layer are not updated
during the training phase of the network. The nonfrozen layer of the VGG16 transfer
learning network contains six convolutional layers and two maximum pooling layers, and
the parameters of the nonfrozen layer are updated during the training phase of the network.
The output data size of the VGG16 transfer learning network is 16 × 16 × 512, which we
used as the input of our proposed CNN13. The output shapes of each layer of our network
in OplusVNet are shown in column 5 of Table 3. First, the six convolutional layers and four
maximum pooling layers have an output of 1 × 1 × 256. Then, a flatten layer has an output
size of 256, followed by two fully connected layers with 512 neurons. The final layer is a
fully connected SoftMax layer with five types of probability distributions.

Figure 2. Transfer learning network based on our proposed network.
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Table 2. The structure and parameters of the VGG16 transfer learning network of OplusVNet_10
with the input data size of 512 × 512 × 3.

Number of Layers VGG16 Output Shape Number of Parameters

Frozen layer

1 Conv_1 512 × 512 × 64 1792
2 Conv_2 512 × 512 × 64 36,928
3 MaxPooling_1 256 × 256 × 64 0
4 Conv_3 256 × 256 × 128 73,856
5 Conv_4 256 × 256 × 128 147,584
6 MaxPooling_2 128 × 128 × 128 0
7 Conv_5 128 × 128 × 256 295,168
8 Conv_6 128 × 128 × 256 590,080
9 Conv_7 128 × 128 × 256 590,080

10 MaxPooling_3 64 × 64 × 256 0

Non-freezing layer

11 Conv_8 64 × 64 × 512 1,180,160
12 Conv_9 64 × 64 × 512 2,359,808
13 Conv_10 64 × 64 × 512 2,359,808
14 MaxPooling_4 32 × 32 × 512 0
15 Conv_11 32 × 32 × 512 2,359,808
16 Conv_12 32 × 32 × 512 2,359,808
17 Conv_13 32 × 32 × 512 2,359,808
18 MaxPooling_5 16 × 16 × 512 0

Table 3. The parameters and structure of our proposed network with the input data size of
16 × 16 × 512.

Layers Layer Type Core Size/Number Convolution Step Output Shape Parameters

1 Conv_1 3 × 3/64 1 × 1

16 × 16 × 64

294,976
PReLU_1 64

2 Conv_2 3 × 3/64 1 × 1 36,928
PReLU_2 64

3 MaxPooling_1 3 × 3 2 × 2 8 × 8 × 64 0

4 Conv_3 3 × 3/128 1 × 1

8 × 8 × 128

73,856
PReLU_3 128

5 Conv_4 3 × 3/128 1 × 1 147,584
PReLU_5 128

6 MaxPooling_2 3 × 3 2 × 2 4 × 4 × 128 0

7 Conv_5 3 × 3/256 1 × 1 4 × 4 × 256 259,168
PReLU_5 256

8 MaxPooling_3 3 × 3 2 × 2
2 × 2 × 256

0

9 Conv_6 3 × 3/256 1 × 1 590,080
PReLU_6 256

10 MaxPooling_4 3 × 3 2 × 2 1 × 1 × 256 0
11 Flattern 256 0

12 Fullyconnected_1 /512 512 131,584
PReLU_7 256

13 Fullyconnected_2 /5 5 2565
Total number of parameters 1,538,149

3.2. Proposed 13-Layer Convolutional Neural Network (CNN13)

One of the popular image classification networks is AlexNet, which was proposed by
Krizhevsky et al. [28,29]. It contains five convolutional, three maximum pooling, and three
fully connected layers. In this study, to more accurately extract and fit the features of the
disease and pest image data, we designed a new CNN13 that includes six convolutional,
four maximum pooling, one flatten, and two fully connected layers. Table 2 shows the
proposed CNN13 structure with an input data size of 16 × 16 × 512.

To obtain more nonlinear transformation features of disease and pest image data and
reduce the number of parameters of the network, the kernel size of both convolutional
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and pooling layers in the whole network is 3 × 3. In the pooling layer operation, the
overlapping maximum pooling is used to increase the richness of the texture features of the
crop pest images. The activation function we used in this study was the PReLU function
with parameters, whose equation is defined by:

PReLU(x) =

{
x, x ≥ 0
αx, x < 0

. (1)

where α is updated according to the data change. When α is updated in the back propaga-
tion (BP), a momentum update is used. When the input value is negative, the output value
of the function does not simply go to zero, so it retains more useful information and causes
less “death” of neurons. We also use the PReLU function as the activation function for each
convolutional layer and after the first fully connected layer to add nonlinear elements to
improve the representation of the network model. Table 3 shows that the PReLU function
only adds a small number of parameters, which has little impact on the computational
effort and overfitting of the network.

The last fully connected layer returns the class labels with the SoftMax function to
generate the probability distribution, and the class with the highest probability is used as
the classification result. The SoftMax function is given by

SoftMax(xi) =
exi

∑C
c=1 exC

(2)

where xi is the output value of the ith class, and C is the number of classes.
When the number of images is small, a network that has more layers and is deeper and

more complex is prone to overfitting problems. Therefore, we introduced dropout [30] in
the fully connected layer to reduce overfitting. The neurons in the fully connected layer are
“inactivated” with a certain probability P. The inactivated neurons are no longer involved
in the forward and backward propagation of the layer. Compared with traditional methods,
dropout reduces the size of the network: it is equivalent to allowing multiple dropout
networks to learn data characteristics, and each subnet only learns the local characteristics
of the data. These subnets eventually share weights, increasing the power of the overall
generalization of the network model. When the input network image size is 16 × 16 for
512 channels of data, the overall number of parameters in our network is reduced to
1,538,149.

4. Experimental Results and Analysis

To evaluate the performance of the proposed OplusVNet network for citrus diseases=
image classification, we compared its results with those of AlexNet network [28,29] and the
VGG16 network (TL-VGG16) [27]. The data, data pre-processing, and data enhancement
operations used by all networks were the same. In this study, we set the learning rate,
epoch, and optimizer of the OplusVNet network to 1 × 10−5, 50, and Nadam, respectively.
We conducted the experiments using Python programming language and TensorFlow deep
learning, with Windows 10 as the operating system with a CPU Intel Core i7-8700 with
6 CPU cores, 32 G RAM, and a GeForce GTX 1080 Ti GPU.

4.1. Evaluation Metrics

In this study, we used the F1 score and accuracy rate as metrics to evaluate the
effectiveness of the different network models for citrus disease and pest image classification.
The F1 score is defined as

F1 = 2 × Precision × Recall
(Precision + Recall)
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where Precision is the ratio between the number of correctly identified disease images and
the number of correctly predicted disease images; Recall is the ratio between the number
of correctly identified disease images and the number of all correct disease images in
that category.

Accuracy is defined as:

Accuracy =
Identify the correct total number of disease and pest images

Total number of disease and pest images

4.2. Experiments with OplusVNet with Different Frozen Mechanisms

Network-based transfer learning is part of the OplusVNet network, and the extracted
feature images are used as the input of the subsequent layers. The parameters of the
subsequent layer are trained with the target domain data, which plays an important role in
the subsequent layer, enabling the network to more accurately fit the target domain data
and thus further improve the model prediction results.

We designed different frozen mechanisms for OplusVNet, where OplusVNet_L indi-
cates that the first L layers are frozen. The experimental results for each network model are
shown in Figure 3. Figure 3a shows the F1 score of the OplusVNet network with different
frozen mechanisms for different disease and pest categories. Figure 3a shows that the
OplusVNet_10 network achieved more accurate results on different citrus pest categories.
The accuracy rates of OplusVNet networks with different frozen mechanisms are shown
in Figure 3b. Figure 3b shows that OplusVNet_10 was the most accurate. From the above
results and analysis, we found that (1) the fewer the number of frozen layers, the more
layers can be trained, which creates the risk of network overfitting. Conversely, the larger
the number of frozen layers, the smaller the role played by the target domain data in the
network, so the network may not be able to accurately fit the target domain data. (2) When
the number of frozen layers of the transformed learning network was 10, our proposed
OplusVNet network achieved an F1 score of more than 95% for individual pest category
identification, and the overall classification accuracy was 95%, showing that the risk of
network overfitting was effectively reduced and the target data were better learned in the
network. The training time per batch size of the proposed OplusVNet network was 132 ms.

Canker Scab Leaf miner Rust wall Normal
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Figure 3. Performance analysis of different transfer learning network models. (a) F1 score of different
OplusVNet models on various citrus pests and diseases. (b) The accuracy of different OplusVNet
models on the validation set.

4.3. Comparison with State-of-the-Art Networks

To further validate the performance of the OplusVNet network, we compared it with
AlexNet [28,29], TL-VGG16 [27], and RepVGG [31]. All the convolutional layers of the
VGG16 network are frozen. These frozen layers retain the parameter weights obtained by
the VGG16 network training in ImageNet, and only the fully connected layer and output
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unit of the network are trained. The classification results of the different networks on
the test set are shown in Table 4. The TL-VGG16 network shown in Table 4 is a transfer-
learning-based VGG16 network. For canker disease, the highest F1 score was obtained
by the proposed OplusVNet_10 (1.00), followed by RepVGG (0.99). For scab disease,
the highest F1 score was obtained by the proposed OplusVNet_10 and RepVGG (0.97),
followed by TL-VGG16 (0.91). For leaf miner, the highest F1 score was obtained by the
proposed OplusVNet_10 (0.99), followed by RepVGG (0.96). For rust wall, the highest F1
score was obtained by the proposed OplusVNet_10 (0.99), followed by RepVGG (0.94). For
normal leaves, the highest F1 score was obtained by the proposed OplusVNet_10 (0.95),
followed by RepVGG (0.93). For most experiments, the proposed OplusVNet_10 obtained
the highest F1 score, followed by RepVGG. For leaf miner and normal leaves, TL-VGG16
performed substantially worse than the other methods. The overall classification accuracy
of the TL-VGG16 network model was lower than that of the AlexNet network because
the features obtained by the TL-VGG16 network feature extractor by learning the source
domain data were not sufficiently learned. For the proposed OplusVNet_10, RepVGG,
and AlexNet, the larger the number of images for a specific type, the more accurate the
performance. The accuracy rate of the proposed OplusVNet_10 was 0.99, which was greater
than the values 0.93, 0.88, and 0.97 of AlexNet, TL-VGG16, and RepVGG, respectively.

In summary, OplusVNet_10 outperformed the other networks in terms of both the
F1 score for individual classes of disease and pest and overall classification accuracy,
especially when the number of image classes was relatively low. The proposed network,
combined with a network-based transfer learning network, can effectively fit data features
and overcome the problems caused by a small and uneven data volume.

Table 4. F1 score and accuracy rate values of different methods.

Methods
F1 Score

Accuracy
Canker Scab Leaf Miner Rust Wall Normal

AlexNet 0.98 0.88 0.93 0.87 0.83 0.93
TL-VGG16 0.94 0.91 0.74 0.85 0.68 0.88
RepVGG 0.99 0.97 0.96 0.94 0.93 0.97

OplusVNet_10 1.00 0.97 0.99 0.99 0.95 0.99
The bold values mean the best results.

4.4. OplusVNet Network Performance Analysis

From the above analyses, we found that for most classification methods, the results
largely depended on the number of images used for training. However, for some diseases,
obtaining enough images for the classification task may be challenging. To analyze the
performance of our proposed OplusVNet network on sets with different numbers of images,
we set the number of images in the training set to 170, 120, and 70, separately. The number
of images in the test set was 30 for each category. First, we randomly selected 200 images
from the original dataset of each class, and then randomly selected 30 images from these
200 images as the test set; we used the remaining 170 images as the first training set. Then,
we randomly selected 120 images from the 170 images in the first training set for the second
training set. We randomly selected 70 images from the 170 images in the first training set
for the third training set. Due to the small number of images in the training set, we set the
batch size of the OplusVNet network to 32 in this part of the study.

4.4.1. Experimental Results of Proposed OplusVNet on Small Datasets

Table 5 shows the results of OplusVNet with different frozen layers for different
numbers of images in the training set: 170, 120, and 70. Table 5 shows that when the
number of images in the training set was 170, the highest recognition accuracy was achieved
with four, six, eight, and ten frozen layers. When the number of images in the training
set was 120, the highest recognition accuracy was achieved with six and twelve frozen
layers. When the number of images in the training set was 70, the highest recognition
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accuracy was achieved with six and eight frozen layers. When the number of images in the
training set was less than 170, the network with six frozen layers had higher generalization
performance. Therefore, the OplusVNet network with six frozen layers should be used
when the number of images in the training set is small.

Table 5. The accuracy of the proposed OplusVNet with different frozen layer networks on different
number of image training sets.

Number
Number of Frozen Layers

4 6 8 10 12 14 16

170 0.97 0.97 0.97 0.97 0.96 0.94 0.91
120 0.95 0.96 0.94 0.95 0.96 0.91 0.89
70 0.93 0.94 0.94 0.92 0.93 0.89 0.89

The bold values mean the best results.

4.4.2. Experimental Results of Different Network Models on Small Datasets

Table 6 shows the experimental results of the OplusVNet_6, AlexNet [28,29], and
TL-VGG16 [27] networks on different small training sets. Table 6 shows that OplusVNet_6
outperformed the other networks in terms of both the F1 score for individual classes of
disease and pest and overall classification accuracy. Our proposed OplusVNet network
effectively avoids the risk of overfitting in small datasets and can more effectively learn
and fit disease and pest image data with texture features.

Table 6. Experimental results of different network models in different small training sets.

Number Network
F1 Score

Accuracy
Canker Scab Leaf Miner Rust Wall Normal

170

AlexNet 0.87 0.75 0.85 0.91 0.74 0.83
TL-VGG16 0.92 0.90 0.87 0.85 0.83 0.87

OplusVNet_10 0.98 0.97 0.97 0.97 0.98 0.97
OplusVNet_6 0.98 0.97 0.97 0.97 0.98 0.97

120

AlexNet 0.81 0.75 0.85 0.87 0.70 0.80
TL-VGG16 0.90 0.90 0.84 0.88 0.75 0.85

OplusVNet_10 0.93 0.94 0.97 0.96 0.96 0.95
OplusVNet_6 0.94 0.95 0.98 0.97 0.97 0.96

70

AlexNet 0.81 0.63 0.84 0.84 0.62 0.75
TL-VGG16 0.86 0.82 0.79 0.79 0.64 0.80

OplusVNet_10 0.93 0.90 0.94 0.90 0.93 0.92
OplusVNet_6 0.95 0.92 0.97 0.91 0.95 0.94

The bold values mean the best results.

In summary, the performance of all methods generally decreased with the decrease in
the number of images. For scab disease images, AlexNet performed substantially worse
than the others. For normal citrus images, AlexNet and TL-VGG16 received low scores. For
all the experiments, the proposed OplusVNet obtained the best F1 and accuracy scores. This
demonstrated that the proposed OplusVNet is robust and effective for the identification of
different disease and pest types and small datasets.

5. Conclusions

To improve the training efficiency and prevent overfitting, we designed a new CNN13
to more accurately extract and fit the image features of the data. To address the problem
caused by small amounts of image data and uneven image data of various diseases, we
constructed OplusVNet by combining the proposed CNN13 with network-based transfer
learning. Compared with the general image classification networks (e.g., AlexNet and
TL-VGG16), the proposed OplusVNet obtained considerably higher F1 and accuracy scores
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on small and unbalanced datasets. In contrast to RepVGG, the accuracy of the proposed
OplusVNet was higher. The experimental results showed that the proposed OplusVNet
performs better than the state of the art feature image classification networks. The F1 score
of the proposed OplusVNet network for individual disease categories was above 0.95, and
the overall accuracy on the test set was 0.99. When the amount of image data in the training
set was small, the frozen six-layer OplusVNet showed high generalization performance
and effectively reduced the risk of overfitting. However, the proposed OplusVNet net-
work cannot be directly used on a mobile application. In future work, we will develop a
lightweight OplusVNet network and design a smartphone APP assistant for fruit farmers to
identify citrus diseases and insect pests to promote agricultural automation and intelligent
agricultural systems.
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