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Abstract: Cleaning is one of the most important steps in the harvesting process, and the prolonged
and high-load operation of the vibrating sieve can decrease its reliability. To uncover the structural
flaws of the cleaning sieve in the crawler combine harvester and establish a foundation for quality
inspection, this paper proposes a method for durability testing and analysis using vibration and
strain signals. Via the modal analysis of the cleaning sieve, the most susceptible areas for fault signals
are identified. Subsequently, a specialized test rig exclusively designed for the examination of the
durability of the cleaning sieve is constructed. After following 96 h of uninterrupted operation, the
vibration plate of the cleaning sieve sustains damage, resulting in atypical noise. A signal analysis
reveals that the primary vibration signal of the cleaning sieve primarily consists of a fundamental
frequency of 5 Hz, corresponding to the driving speed, as well as a frequency doubling signal of 50 Hz.
After the occurrence of damage, the peak amplitude of the received vibration signal increases by
over 86.3%. Furthermore, the strain gauge sensor situated on the support plate of the rear sieve detects
anomalous signals with frequencies exceeding 300 Hz, which are accompanied by a considerable rise
in the power spectral density. This research has significant importance for enhancing the service life
of the cleaning sieve and optimizing the overall machine efficiency.

Keywords: combine harvester; cleaning sieve; durability test; signal acquisition; signal analysis

1. Introduction

With the continual advancement of agricultural mechanization, there is an escalating
demand for the operational quality and dependability of agricultural harvesting equipment.
As the pivotal agricultural machinery essential for agricultural modernization, the combine
harvester can complete the harvest, threshing, cleaning, and collection of crops in a sin-
gular operation, thereby effectively reducing labor costs and enhancing agricultural labor
productivity. The cleaning sieve serves as a pivotal core component within the combine
harvester and carries out the vital task of material cleaning. Its durability profoundly
impacts the reliability of the entire machine [1]. The cleaning sieve has a considerable
weight and intricate structure and engages in reciprocating motion during operation. Each
individual part is exposed to prolonged and intricate alternate load effects, rendering it
susceptible to issues such as rubber bearing abrasion, the fracture of the bearing seat, and
weld failure in the column [2]. In current investigations of cleaning sieves, both domestic
and international scholars primarily concentrate on performance indicators such as the loss
rate and operational efficiency. However, the durability of the sieve remains inadequately
addressed. Existing cleaning sieves have not undergone comprehensive quality reliability
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testing during the developmental phase and have instead relied solely on field trials of pro-
totype machines for enhancement; thus, they remain reliant on empirical knowledge [3]. To
achieve the objectives of the high yield, high efficiency, and stability of combine harvesters,
it is imperative to carry out experimental research on the durability of cleaning sieves [4,5].

Via the analysis of various vibrating sieves in the industrial domain, numerous scholars
have identified deficiencies in the structural design and manufacturing processes and have
subsequently made optimizations. For instance, Jacques constructed a simulation model
for the vibrating sieve commonly employed in the mining industry, and a modal analysis
revealed the influence of the girder on its fatigue life [6]. Peng et al. observed that increased
oscillation amplifies the risk of structural damage during the operation of a large-scale
coal sieve subject to vibration. Accordingly, they proposed suggestions for enhancing the
structural design via mechanical analysis [7]. Wang et al. examined the vibrating sieve
typically deployed for coal particle size classification and investigated the impact force on
the sieve surface. They obtained the fundamental vibration characteristics via finite element
simulation and optimized the arrangement of the support beam [8]. Li et al. investigated
the vibrating dewatering sieve for building sand and gravel, and ultimately determined
the optimal combination of parameters by modifying factors like the amplitude and slope
angle of the sieve surface [9].

The cleaning sieve serves as a pivotal core component within the combine harvester
and carries out the vital task of grains cleaning. The cleaning capacity of a cleaning sieve
significantly impacts the machine’s overall performance. As the feeding capacity of the
combine harvester increases, the workload on the cleaning device also rises, necessitating
heightened performance standards for the cleaning mechanism, while emphasizing the
importance of system structure durability and service life. Within the realm of combine
harvesters, extensive research both domestically and internationally has been conducted
in relation to the optimization of the cleaning sieve. Wang et al. employed the response
surface method to analyze the impacts of various factors such as the frequency, amplitude,
and installation dip angle of the vibrating sieve on the content of impurities and the
loss rate, after which they optimized these influencing factors [10]. Li et al. utilized the
classical transfer path analysis method to analyze the vibration signal in both the time and
frequency domains. By verifying the clearance of the drive shaft key, they were able to
pinpoint the position of a manufacturing defect in the cleaning sieve based on the amplitude
of the abnormal excitation force [11]. Feng et al. developed a model that considers the
trajectory of particles passing through sieve pores after impact by leveraging the mass
center of the grain particle. By controlling the impact point position, they successfully
improved the rate of passage through sieve pores, consequently enhancing the cleaning
efficiency [12]. Pang J. et al. addressed the vibration issue caused by the imbalance of the
rotor system during the operation of the grain cleaning screen. They conducted feature
extraction and analysis of the signal using a comprehensive index based on variational
mode decomposition, fuzzy entropy, and kurtosis. The imbalance vibration of the system
was extracted, and an optimization function was constructed with the mass and installation
position of the balance block as optimization variables to optimize the drive mechanism [13].

Despite the significant research conducted on the simulation of various vibrating
sieves in the industrial sector, in the realm of combine harvesters, attention has predom-
inantly been focused on optimizing cleaning performance to enhance the efficiency and
reduce the loss rate. To date, there have been limited investigations into the quality, relia-
bility, and durability of the cleaning sieve in combine harvesters, with most studies solely
employing vibration signals to assess the fatigue of individual components within the sieve.
A dedicated durability test bench and methodology are lacking, necessitating the further
exploration of both the durability testing of the cleaning sieve and the comprehensive
analysis of multisensory signals.

When delving into dynamic inquiries, it is customary to establish equations encom-
passing displacement, velocity, and acceleration over time. Given that acceleration exhibits
heightened sensitivity in the high-frequency realm [14], vibration signals commonly serve
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as the preferred choice for fault diagnosis during practical measurements. However, accord-
ing to the dynamic equation model, synchronous and reliable monitoring of displacement,
velocity, and acceleration enables more accurate assessment of structural failures. Never-
theless, within real systems, the simultaneous measurement of these parameters through
multiple sensors, particularly the acquisition of displacement signals, presents considerable
challenges. Displacement can be indirectly determined by examining strain signals, which
are more sensitive than vibration signals in the low-frequency range [15]. Therefore, joint
analysis is viable. Zhang et al. introduce a methodology for detecting tooth faults in
planetary gearboxes by analyzing the strain signals from the tooth root of the ring gear.
The time domain of the measured strain signals clearly exhibits the theoretical fault charac-
teristics [16]. Yoon, J et al. propose a novel approach that employs a solitary piezoelectric
strain sensor to diagnose faults in planetary gearboxes. By conducting an analysis of the
strain signals, the planetary gearbox faults can be accurately diagnosed [17].

This research centers on the cleaning sieve of a crawler combine harvester, which
boasts significant market representation. The overall stress imposed on the cleaning sieve
is first appraised by finite element analysis, and a specially designed and constructed
durability test bench facilitates the experimental phase. Based on the simulation results,
both acceleration and strain gauge sensors are arranged, thus facilitating durability testing.
With the aid of multi-sensor signal analysis, the fault characteristics of the cleaning sieve
are scrutinized. The combined utilization of vibration and strain signals enables the
comprehensive testing and analysis of the cleaning sieve, thereby offering guidance for
sensor arrangement and fault signal diagnosis in combine harvesters.

2. Materials and Methods
2.1. Structural Composition

This paper focuses on the cleaning sieve of a prominent crawler combine harvester in
China, which serves as the research subject. The structure of the cleaning sieve is depicted
in Figure 1, and encompasses the drive shaft, cleaning sieve frame, shaking plate, top sieve,
mesh sieve, and rear sieve [18,19]. The eccentric wheel is set in motion by the rotational
force of the drive shaft, causing the reciprocal movement of the front-end bearing within
the chute. This motion is governed by the revolute pair and the notch, while the bearing
seat, bearing, eccentric wheel, and drive shaft are interconnected through the revolute
pair [20,21]. The vibration source of the cleaning sieve is driven by the motor to generate the
amplitude of the crank slider mechanism (eccentric), and the vibration frequency typically
ranges from 4–5 Hz during practical field operations. In contrast to the studies on impurity
rate and loss rate, which primarily concentrate on configuring parameters like the sieve’s
inclination angle, the pivotal parameter in the durability testing of the sieve is its vibration
frequency [22]. Therefore, in accordance with the normal operating parameters of the
cleaning sieve, the vibration frequency is designated as 5 Hz, equating to a driving shaft
speed of 31.4 rad/s.
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Figure 1. Structure diagram of the cleaning sieve: 1—front bearing, 2—cleaning sieve frame, 3—mesh
sieve, 4—bearing seat, 5—bearing, 6—eccentric, 7—drive shaft, 8—shaking plate, 9—top sieve,
10—rear sieve.
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2.2. Modal Analysis

The modal analysis method is widely used in the calculation of the vibration charac-
teristics of structural systems, which are mainly used for the calculation of the dynamic
performance of structural systems [23]. The main purpose of this section is to use modal
analysis to calculate the natural frequency and vibration mode of the cleaning sieve, so as
to reflect the overall stress situation of the sieve and determine the points that are more sen-
sitive to strain signals. This provides a basis for the arrangement of sensors in subsequent
bench tests.

2.2.1. Finite Element Model

SolidWorks2020 software was utilized to establish an accurate and comprehensive 1:1
three-dimensional model of the cleaning sieve based on the physical object. Subsequently,
the established model was imported into ANSYS2021 Workbench for further analysis.
Considering the occurrence of nonlinear deformation or local stress concentration, and
the requirement for contact on both sides of most components in the screen box model,
solid elements are used for mesh division. In order to improve computational accuracy
and accelerate convergence, hexahedral elements are primarily used for mesh division,
supplemented by tetrahedral elements. Due to the thin frame of the sieve, tetrahedral
units are predominantly utilized in this part. By referencing Table 1, the mesh size of the
cleaning sieve model was precisely set to 8 mm. To enhance the analytical capabilities and
optimize the mesh quality, corner encryption processing (with a mesh size of 1–2 mm) was
applied to both the top sieve and the rear sieve, thus effectively eliminating undesired
small features and yielding a superior mesh structure. The resulting mesh consisted of
a total of 704,846 units and 1,577,310 nodes, with a unit mass of 0.62. The overall mesh
quality was excellent, and the outcomes are showcased in Figure 2.

Table 1. Material property parameters.

Materials Density
/kg/m3

Elasticity
Modulus/GPa

Poisson’s
Ratio/µ

Yield Strength
/MPa

Tensile
Strength/MPa

Q235 7850 205 0.3 235 370~500
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Figure 2. Meshing of the cleaning sieve.

2.2.2. Modal Analysis Results and Discussion

Due to the complex structure and numerous components of the cleaning sieve, it is
difficult to calculate all its natural frequencies and vibration modes. With the increase of the
order of natural frequencies and vibration modes, their influences on the overall dynamic
characteristics decrease [24]. In the modal analysis in this section, the first 10 modes of the
cleaning sieve are mainly studied, and the calculation results are reported in Table 2.
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Table 2. First tenth order natural frequency.

Order 1 2 3 4 5 6 7 8 9 10

Frequency/Hz 14.54 14.56 18.14 21.11 28.70 32.97 37.73 37.98 39.61 41.80

During normal operation, the frequency of the cleaning sieve is 5–6 Hz. The modal
analysis results show that at the first 10 natural frequencies in the range of 14.542–41.797 Hz,
the driving speed of the fundamental frequency will not resonate with the cleaning sieve.
However, it is necessary to consider the effect of resonance when analyzing the signal
collected during the cleaning sieve bench test.

Figure 3 presents the first four modes of the cleaning sieve. It can be seen from these
vibration patterns that the front part of the sieve frame, the shaking plate, and the baffle
part of the rear sieve experience large deformation during vibration. In particular, in the
second-order mode, the deformation caused by the vibration of the sieve frame on the side
of the cleaning sieve exhibits an attenuation trend from the front of the sieve to the rear,
and the change amplitude is more obvious. Based on this characteristic, in the follow-up
durability test, strain gauge sensors were evenly arranged on the side frame of the cleaning
sieve to better monitor and analyze the vibration of the sieve.

Agriculture 2023, 13, x FOR PEER REVIEW 6 of 22 
 

 

(a) (b) 

(c) (d) 

Figure 3. Modes of each order: (a) 1-order vibration mode; (b) 2-order vibration mode; (c) 3-order 
vibration mode; (d) 4-order vibration mode. 

2.3. Transient Dynamic Analysis 
Transient dynamic analysis (also known as time-history analysis) can be used to de-

termine the time-varying displacement, strain, stress, and force of a structure under any 
combination of steady, transient, and harmonic loads. To simplify the simulation process, 
transient dynamic analysis was only carried out on the main bearing components such as 
the frame and the shaking plate of the cleaning sieve [25], and the more complicated parts 
such as the top sieve and the rear sieve were ignored. The simulation analysis results are 
shown in Figure 4. 

0 0.4 0.8 1.2 1.6 2
time/ s

40

50

60

70

80

90

100

110

st
re

ss
/ M

Pa

Transient dynamic equivalent stress

 
Figure 4. Equivalent forces of cleaning sieve. 

From Figure 4, it can be seen that the equivalent stress value of the cleaning sieve 
changed periodically in the first 2 s of the simulation. It reached the maximum peak of 
102.82 MPa at about 0.07 s, and the peak then gradually decreased with time. After 0.8 s, 
the peak tended to be less than 91.8 MPa. The simulation results show that the maximum 
stress value of the main bearing parts of the cleaning sieve was lower than the tensile 

Figure 3. Modes of each order: (a) 1-order vibration mode; (b) 2-order vibration mode; (c) 3-order
vibration mode; (d) 4-order vibration mode.

2.3. Transient Dynamic Analysis

Transient dynamic analysis (also known as time-history analysis) can be used to
determine the time-varying displacement, strain, stress, and force of a structure under any
combination of steady, transient, and harmonic loads. To simplify the simulation process,
transient dynamic analysis was only carried out on the main bearing components such as
the frame and the shaking plate of the cleaning sieve [25], and the more complicated parts
such as the top sieve and the rear sieve were ignored. The simulation analysis results are
shown in Figure 4.
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Figure 4. Equivalent forces of cleaning sieve.

From Figure 4, it can be seen that the equivalent stress value of the cleaning sieve
changed periodically in the first 2 s of the simulation. It reached the maximum peak of
102.82 MPa at about 0.07 s, and the peak then gradually decreased with time. After 0.8 s, the
peak tended to be less than 91.8 MPa. The simulation results show that the maximum stress
value of the main bearing parts of the cleaning sieve was lower than the tensile strength of
the material used in the cleaning sieve, namely 370 MPa, and was within the safe range.

To further analyze the stress distribution of the cleaning sieve, the stress cloud cor-
responding to the maximum equivalent stress value of the cleaning sieve at 0.07 s was
simulated. Figure 5 demonstrates that the maximum stress position occurred on the inside
of the front bearing of the cleaning sieve. In addition, the connection between the side wall
of the cleaning sieve and the shaking plate, the reinforcing rib, and the rare sieve support
plate also experienced large stress in the range of 20–40 MPa. According to the actual
operation process of the cleaning sieve, it can be seen that the front bearing and driving
shaft are the main bearing parts of the whole sieve, and the analysis results agree with the
actual situation.
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According to the conclusion of the transient dynamic simulation of the cleaning sieve
and the feasibility of sensor installation, the connection between the shaking plate and the
side wall of the sieve and the connection between the rear sieve support plate and the side
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wall of the sieve were selected as the reference points for sensor arrangement. To facilitate
comparisons with other points, the part with less stress in the middle of the side wall of the
cleaning sieve was selected as the reference object.

2.4. Construction of the Durability Test Bench for the Cleaning Sieve

A special test bench was designed and constructed to study the durability of the
cleaning sieve during the working process. After studying the installation mode of the
cleaning sieve on the harvester, and with reference to the fatigue test equipment for car
bodies and frames in the automobile field, a durability test bench was designed specifically
for the sieve. The test bench is composed of a cleaning sieve, frequency converter, motor,
front (back) base pillar, test platform, connection module, and signal acquisition system, as
shown in Figure 6. Four pillars were selected to support the front bearing and the drive
shaft of the cleaning sieve, respectively. Moreover, the contact area between the bottom
of the pillar and the test platform was increased to improve the stability of the platform.
During operation, the rotating motion of the three-phase motor is transmitted to the drive
shaft through the belt drive, which drives the overall motion of the cleaning sieve [26]. The
speed of the motor is regulated by the frequency converter.
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The installation position of the cleaning sieve and the layout area of the sensor acquisi-
tion system were planned based on the test platform. The specific layout of the test area is
shown in Figure 7. The test bench has the following advantages.
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Figure 7. Floor plan of the test area.

1. The open design can more intuitively detect the operating status of the cleaning sieve
and facilitate the installation of the sensor.

2. The bench base comprises four independent pillars, which are fixed on the test
platform through T-nuts, and the distance between the pillars can be adjusted to adapt
to cleaning sieves of different sizes.

3. A modular design is adopted for the connecting parts, and the replacement of the
connecting module can be carried out to adjust the installation method of the cleaning
sieve. This can meet different test needs, such as changing the tilt angle and simulating
the installation error.

2.5. Sensor Layout and Signal Acquisition

To monitor the vibration and strain signals of the cleaning sieve with more accuracy
and sensitivity, the corresponding sensors are arranged in the appropriate positions based
on the modal analysis and transient dynamic analysis results, and according to the actual
movement of the cleaning sieve. The sensor layout is described as follows.

The movement of the cleaning sieve mainly includes the sliding of the front bearing
along the chute and the eccentric rotating movement of the back end. Therefore, two
Chengke CT1005LS three-way acceleration sensors, marked No. 1 and No. 2, are, respec-
tively, arranged near the front bearing and chute plate and near the drive shaft to measure
the vibration signals of these two parts. Chengke CT1005LS is a piezoelectric accelerometer
with a frequency range of 1–5000 KHz and a resonant frequency of 20 kHz. The collected
data is transferred to the host computer via Chengke MCC USB-231 data acquisition card.

The strain signal acquisition system comprises Chengke 120-1AA strain sensors and
Chengke CT9300 dynamic/static strain gauges. The sensor exhibits a resistance value of
120 ± 0.1 (Ω), a strain limit of 2%, and a sensitivity coefficient of 2.0 ± 1%. Each channel
attains a maximum sampling rate of 51.2 ks/s, with an ADC resolution of 24 bits. According
to the modal analysis and transient dynamic analysis results, it is evident that the strains of
the side wall plate, the shaking plate, the top sieve, and the rear sieve are large. To detect
the strain distribution of the cleaning sieve in the x-axis direction, strain gauge sensor No. 1
is arranged at the connection between the side plate and the shaking plate, sensor No. 2
is arranged at the middle position of the connection between the side plate and the top
sieve (i.e., at half of the length of the whole cleaning sieve), sensor No. 3 is arranged near
the end of the connection between the side plate and the top sieve, and sensor No. 4 is
arranged near the bend of the side plate and the drive shaft. Due to the special structure
of the shaking plate, the top sieve, and the rear sieve, it is not convenient to install and fix
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a strain gauge sensor. To detect the strain distribution of the cleaning sieve in the y-axis
direction, strain gauge sensors No. 5 and No. 6 are arranged at the 1/2 and 1/4 width of
the rear sieve support plate, respectively. The strain gauge sensors in the signal acquisition
system are all Chengke 120-1AA sensors, and the specific position of each sensor on the
cleaning sieve is shown in Figure 8.
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Install the acceleration sensor on the designated position of the cleaning sieve using
magnetic suction. When installing the strain gauge sensor, polish the installation area with
sandpaper at a 45◦ angle to the direction of strain gauge application. Cleanse the polished
area with alcohol and paper towels to remove surface paint and stains. Attach the strain
gauge to the cleaning screen box using adhesive. Secure the strain gauge and wires with
multiple layers of transparent tape.

To transmit the collected signals of the three-way acceleration sensors and the strain
gauge sensors to the host computer for storage and display, a data acquisition card and a
dynamic and static strain gauge are, respectively, used to transmit the collected vibration
signals and strain signals to the host computer, and the constant current adapter is used to
provide stable power for the normal operation of the acquisition card.

2.6. Test Scheme

According to the actual operation of the cleaning sieve, the vibration frequency of the
sieve was set to 5 Hz, the sampling frequency was set to 1000 Hz, and the sampling duration
was manually controlled. The transmission ratio between the motor pulley and the sieve
driving wheel in this test bench was 3.125, and the motor speed was set to 937.5 r/min.

At present, there is no universal standard for the durability test of the cleaning system
of the combine harvester. Combine harvesters generally work continuously for 30 days in
one working season. According to the working conditions of 10 h a day, of which half of
the time is used for unloading/transferring/turning, etc., the continuous working time of
the cleaning sieve of the combine harvester in one working season is about 150 h [27]. At
present, the trouble-free working time of the Chinese crawler combine harvester is about
50 h [28], that of the parts is generally 2–3 times that of the whole machine, and that of the
cleaning sieve is about 150 h. In consideration of these aspects, the continuous durability
test time of the cleaning sieve was set to 150 h in the bench test.
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3. Results

When the durability bench test of the cleaning sieve was carried out to 96 h, the
cleaning sieve began to produce a periodic abnormal sound, and with the increase of the
vibration frequency of the sieve, this sound became louder. The reason for this was the
large gap between the left and right sides of the shaking plate at the front of the cleaning
sieve and the lower inclined plate, as shown in Figure 9.
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After the occurrence of the abnormal sound, the amplitude of the vibration signal was
also observed to increase significantly, as shown in Figure 10. The vibration and strain
signals are subsequently analyzed in detail.
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Figure 10. Sensor 1 x-axis vibration signal.

3.1. Vibration Signal Analysis
3.1.1. Sample Screening and Signal Preprocessing of Vibration Signals

To compare the vibration signals before and after the failure of the sieve, the bench test
was carried out to 96 h, for which the abnormal noise fault of the sieve was the dividing
point. The smoothness algorithm smooths discrete data by using the least squares method.
It has a better effect on data with a burr noise or weak noise and has a faster processing
speed. The selected vibration signal was preprocessed by the cubical smoothing algorithm
with five-point approximation to clearly reveal the vibration characteristics of the cleaning
sieve. The comparison of the signals before and after the pretreatment is presented in
Figure 11.
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3.1.2. Time-Domain Analysis of the Vibration Signal

In the bench test, the real-time vibration waveform of the change of acceleration
with time can be directly observed through the acquisition software of the host computer.
However, for fault diagnosis, specific signal analysis tools are also required. The relative
parameters of the vibration signal for time-domain analysis are easy to obtain and simple to
calculate. By analyzing the waveform and amplitude of the time-domain signal, the motion
state of the cleaning sieve can be preliminarily judged. Ten commonly used time-domain
characteristic indexes, such as the mean value, peak value, and root amplitude, were
selected for analysis [29,30], and their specific calculation formulas are listed in Table 3.

Due to the presence of both positive and negative acceleration signals, the absolute
average value can be used for signal analysis. The peak value indicates the maximum value
of the signal. The root-mean-square (RMS) value represents the energy and strength of
the dynamic signal, and while it has good stability, it is not sensitive enough to reflect the
early failure of the equipment. The margin coefficient, kurtosis factor, and pulse factor can
sensitively reflect the transient impact characteristics of the signal. With the deepening of
the equipment fault, the stability of these indicators will decrease, which can effectively
reflect the dynamic characteristics of the vibration signal. The waveform index is contrary
to the margin coefficient in that it has good stability but poor sensitivity [31,32].

When the cleaning sieve is working, the vibration in the y-axis direction is small and
can be ignored; thus, only the signals collected by the x- and z-axis channels of three-way
acceleration sensors No. 1 and No. 2 were analyzed, and were then recorded as x1, z1, x2,
and z2, respectively. In addition, the vibration signals in the early and late stages of the test
were compared, and a total of eight sets of data were obtained. The specific characteristic
parameters are reported in Table 4.
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Table 3. Characteristic parameters in the time domain.

Time-Domain Feature Formula

mean value T1 = ∑N
n=1 X(n)

N

root amplitude T2 = (
∑N

n=1

√
|x(n)|

N )2

mean square amplitude (effective value) T3 =

√
∑N

n=1(x(n))
2

N

peak value T4 = max|x(n)|

degree of skewness T5 = ∑N
n=1(x(n)−T1)

3

(n−1)T2
3

kurtosis factor T6 = ∑N
n=1(x(n)−T1)

4

(N−1)T2
4

crest factor T7 = T5
T4

margin coefficient T8 = T5
T3

waveform index T9 = T4
1
N ∑N

n=1 |x(n)|

pulse factor T10 = T5
1
N ∑N

n=1 |x(n)|

Table 4. Comparison of characteristic parameters in the time domain.

Time-Domain
Feature/Signal Channel

x1 Earlier
Stage

x1 Later
Period

z1 Earlier
Stage

z1 Later
Period

x2 Earlier
Stage

x2 Later
Period

z2 Earlier
Stage

z2 Later
Period

mean square amplitude 0.23 0.34 0.39 0.74 0.53 0.81 0.46 0.72
peak index 0.98 2.40 2.07 3.28 3.23 6.03 2.25 3.58
peak factor 4.35 6.99 5.27 4.42 6.04 7.44 4.89 4.95

kurtosis factor 3.06 5.68 3.63 3.76 4.30 5.74 3.42 3.49
crest factor 0.11 0.63 0.11 0.05 −0.49 −0.42 0.27 0.45

root amplitude 0.15 0.21 0.25 0.47 0.33 0.48 0.29 0.46
margin coefficient 6.76 11.51 8.22 6.91 9.80 12.64 7.65 7.72

mean absolute value 0.18 0.26 0.30 0.57 0.40 0.59 0.36 0.56
pulse factor 5.58 9.42 6.82 5.73 8.00 10.18 6.32 6.42

waveform index 1.28 1.35 1.29 1.30 1.32 1.37 1.29 1.30

The analysis of the ten time-domain feature parameters shows that they generally
exhibited increasing trends, and only some feature parameters on the z1 channel presented
a slightly decreasing trend. Sensor No. 1 was installed near the shaking plate, which may
have been affected by the output gap of the shaking plate. The margin coefficient, kurtosis
factor, and pulse factor of sensor No. 1 increased more than those of sensor No. 2 on the
x-axis. It can be inferred that after the long endurance test, the overall vibration of the
cleaning sieve was more intense, and the judgment of abnormal signal signals in the x-axis
direction was more sensitive.

However, the analysis of only the time-domain characteristic parameters of the vibra-
tion signal cannot fully reflect the vibration state of the cleaning sieve; the frequency-domain
characteristics of the signal must also be comprehensively analyzed.

3.1.3. Frequency-Domain Analysis of the Vibration Signal

To improve the signal processing speed and more directly display the differences,
the fast Fourier transform (FFT) and power spectral density output (PSD) were selected
to process the eight groups of vibration signals of the cleaning sieve in the frequency
domain [33]. The maximum value, mean value, and variance of the spectrum and power
spectrum after signal processing were taken as the frequency-domain characteristics of the
vibration signals of the cleaning sieve [34].
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Spectral analysis is the examination of the amplitude and phase spectra obtained
after the Fourier transformation of the signal. Figure 12 presents the spectrum diagrams
of the two acceleration sensors in the early and late stages of the durability test of the
cleaning sieve.
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The comparison of the signals of the cleaning sieve under normal and abnormal condi-
tions in the early stage of the test yields the following findings. On the whole, the vibration
signals were mainly concentrated in the frequency band of 0–280 Hz, the amplitude exhib-
ited a downward trend, and the basic frequency signal of 5 Hz and the frequency-doubling
signal of 50 Hz presented large peaks in each channel. After fault occurrence, the amplitude
generally increased to twice that of the previous period. Moreover, the peak amplitude
of signal sensor No. 1 in the z-axis direction at 50 Hz increased by 86.3%, and sensor No.
2 could judge the fault by the huge change of the amplitude in the frequency band from
0–50 Hz. The analysis reveals that the vibration signals of the two three-way acceleration
sensors were more sensitive to the abnormal state and can be used to detect the health state
of the cleaning sieve.

Because the signals of different spectra may have the same power spectra, the distri-
bution of the signal power in the frequency domain can be understood via power spectrum
analysis. The result of the power spectrum is a real number, which is the square of the
modulus of the amplitude spectrum [35,36]. The power spectrum loses phase information
as compared to the spectrum obtained using the fast Fourier transform. Figure 13 exhibits
the power spectra of the two acceleration sensors before and after the durability test of the
cleaning sieve.
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Figure 13. Acceleration sensor power spectrum: (a) x-axis power spectrum of sensor No. 1; (b) z-axis
power spectrum of sensor No. 1; (c) x-axis power spectrum of sensor No. 2; (d) z-axis power spectrum
of sensor No. 2.

The comparison of the signals reveals that, on the whole, the power spectrum in
the late stage of the test was generally larger than that in the early stage. Except for that
of sensor No. 1 in the z-axis direction, the power spectrum throughout the whole test
exhibited a trend of attenuation in the 0−400 Hz frequency band, and gradually increased
in the 400–500 Hz band. In the 100−300 Hz band, the curve of the power spectrum in the
late stage was steeper than that in the early stage. The power spectrum presented high
peak values at the frequencies of 5 and 50 Hz. The power spectrum in the z-axis direction
of sensor No. 1 changed little in the 0−275 Hz frequency band, showing a relatively
gentle trend, and a large peak value only occurred at 50 Hz. According to the installation
position of sensor No. 1 and the abnormal state record analysis of the cleaning sieve, this
phenomenon is related to the gap at the shaking plate, which is consistent with the previous
FFT spectral analysis results.

To delve deeper into the nuances of the frequency domain, an average was computed
for the frequency-domain characteristic parameters of both sensors prior to and following
the experiment. The specific parameters can be found in Table 5.
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Table 5. Comparison of frequency-domain characteristic parameters.

Frequency Domain x1 Early
Stage

x1 Later
Period

z1 Early
Stage

z1 Later
Period

x2 Early
Stage

x2 Later
Period

z2 Early
Stage

z2 Later
Period

FFT
variance 46.00 89.11 97.73 352.37 216.84 527.10 170.46 372.83

mean value 2.81 6.81 8.08 17.50 7.19 15.11 6.71 13.03
maximum value 102.53 100.80 123.77 230.53 232.64 240.41 184.91 201.80

PSD
variance 101.61 127.35 99.95 99.45 103.41 119.45 87.52 95.25

mean value −51.37 −45.96 −42.24 −36.08 −43.18 −38.60 −43.51 −38.75
maximum value −25.96 −25.23 −24.15 −20.12 −19.77 −17.44 −21.52 −19.06

3.2. Characteristic Analysis of the Strain Signal

In the low-frequency range, the strain signal is more sensitive than the acceleration
signal and has more obvious local characteristics. Because the vibration of the cleaning sieve
will produce displacement, its working state can be judged by analyzing the strain signal.

3.2.1. Sample Screening and Signal Preprocessing of the Strain Signal

Due to the large time span of the bench test, the signals collected by the six strain
sensors before and after the fault were selected for comparative analysis. After smoothing
the strain signal, the mean value of each signal was calculated, and was then subtracted to
adjust the initial value of the strain signal to 0. However, there remained some jump points
in the smooth-processed signal that would have affected the subsequent analysis. Thus, the
“filloutliers” function in MATLAB2018 was used to remove the jump points, and the early
signal of sensor No. 1 is provided as an example to demonstrate the comparison before
and after signal processing, as shown in Figure 14.
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3.2.2. Time-Domain Analysis of the Strain Signal

The standard deviation, maximum value, and minimum value were selected to analyze
the strain signals from the six sensors in the two sets of test data, as these characteristics
can directly reveal the change of the strain signal. The detailed analysis parameters are
listed in Table 6.
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Table 6. Time-domain characteristics of strain signals.

Sensor Signal/
Characteristic

Parameters
Standard Deviation Minimum Value Maximum Value

sensor 1 pre-phase 2.83× 10−5 −8.44× 10−5 8.44× 10−5

sensor 2 pre-phase 2.10× 10−5 −6.30× 10−5 6.33× 10−5

sensor 3 pre-phase 2.61× 10−5 −7.84× 10−5 6.33× 10−5

sensor 4 pre-phase 3.25× 10−5 −9.74× 10−5 9.28× 10−5

sensor 5 pre-phase 5.25× 10−5 −1.55× 10−4 1.58× 10−4

sensor 6 pre-phase 2.71× 10−5 −8.05× 10−5 8.04× 10−5

late phase of sensor 1 2.61× 10−5 −7.78× 10−5 7.96× 10−5

late phase of sensor 2 1.99× 10−5 −6.00× 10−5 6.04× 10−5

late phase of sensor 3 4.83× 10−5 −1.38× 10−4 1.37× 10−4

late phase of sensor 4 2.47× 10−5 −7.15× 10−5 7.30× 10−5

late phase of sensor 5 5.83× 10−5 −1.73× 10−4 1.73× 10−4

late phase of sensor 6 4.94× 10−5 −1.49× 10−4 1.48× 10−4

It can be seen from the data in the table that the strain of sensor No. 2 was the smallest,
that of sensor No. 5 was the largest, and the strain amplitude of sensor No. 6 increased
significantly in the later test period. Taking sensors Nos. 1–4 as the research object, the
stress distribution on the side sieve frame of the cleaning sieve was analyzed. The strain
of sensor No. 4 was the largest at the early stage of the test, that of sensor No. 3 was the
largest at the later stage of the test, and that of sensor No. 2 was always the smallest.

The stress distribution under the actual working conditions and the stress change after
the fault can be obtained by time-domain analysis. However, it is also necessary to analyze
the sensitivity of each point to the fault signal in the frequency domain.

3.2.3. Frequency-Domain Analysis of the Strain Signal

FFT and PSD were used to process the strain signal in the frequency domain, and the
spectrum and power spectrum were obtained to study the change state of the strain signal
at different frequencies. Figure 15 displaces the spectrum diagrams of the strain signal.

It can be seen from the figure that sensors Nos. 1, 2, and 4 experienced significant
changes. Sensor No. 3 changed greatly in the later period, and its amplitude increased
significantly near 10 Hz. The signals of strain gauge sensors Nos. 5 and 6 located on the
rear sieve support plate also underwent large changes; they detected abnormal signals with
frequencies exceeding 300 Hz and large peaks at 20 and 350 Hz. In summary, sensors Nos.
3, 5, and 6 were found to have good sensitivity to the abnormal state of the cleaning sieve.

As can be seen from the Figure 16, in the early stage of the test, the power spectra of
sensors Nos. 1–6 were similar, showing a trend of first decreasing and then increasing with
the increase of the frequency. By comparing the power spectra of the strain signals before
and after the appearance of the abnormal sound in the cleaning sieve, it was found that the
sensitivity of sensors Nos. 1–4 to the abnormal signal was poor. However, the abnormal
signal detected by sensors Nos. 5 and 6 still maintained a high power spectral density after
exceeding 200 Hz, and three large peaks appeared at 20, 60, and 350 Hz. Therefore, it can
be concluded that the sensitivity of sensors Nos. 5 and 6 to the abnormal signal was better,
which is consistent with the analysis results of the spectrum diagram. Thus, the strain
gauge sensors installed on the rear sieve support plate of the cleaning sieve can effectively
detect the state change of the sieve.
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4. Discussion

The structural characteristics of the cleaning sieve are preliminarily analyzed through
finite element simulation. The modal analysis results indicate that the lowest natural
frequency among the first 10 modes is 14.542 Hz. Examination of the first 10 vibration
patterns reveals significant vibration effects on the front part of the sieve frame, the shaking
plate, and the rear sieve. Transient dynamic analysis demonstrates conspicuous stress
variations within the cleaning sieve model, with the highest stress of 102.82 MPa occurring
near the front bearing, and additional substantial stress of 20–40 MPa present in the
sieve frame.

On the whole, the strain distribution position of the cleaning sieve during operation
was similar to the transient dynamic analysis results, but there were some errors that are
attributable to two factors. First, the simplified model cannot completely simulate the
structural characteristics of the cleaning sieve, and the installation error between parts
will lead to changes in the strain distribution. Second, the single-axis foil strain gauge has
certain limitations; it can only measure the strain along the grid axis, and it is not accurate
enough to measure the plane strain.

After analyzing the vibration signal, it was found that at the main frequency of the
vibration signal of the cleaning sieve, in addition to the base frequency of the driving
speed of 5 Hz, a frequency-doubling signal at 50 Hz was also present. After failure, the
amplitude of the signal increased significantly; in particular, the peak amplitude of the
frequency-doubling signal at 50 Hz increased by more than 86.3%. This can lead to further
damage and reduce the life expectancy of the device. Therefore, it is necessary to reduce
the influence of resonance and further improve the level of component manufacturing and
the assembly of the cleaning sieve.

The frequency-domain analysis of the strain signal revealed that after the occurrence
of the abnormal state, the amplitude of the stress at the connection position between the
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side plate and the top sieve increased significantly near 10 Hz, which may lead to the risk of
damage. The signals of sensors No. 5 and No. 6 located on the rear sieve support plate were
found to be more sensitive to abnormal signals. Thus, the strain signals at these two places
can be used to test and analyze the cleaning sieve, and the damage can be determined by
monitoring the presence of signals with a frequency above 300 Hz.

5. Conclusions

This article presented a durability test and analysis method for the cleaning sieve
of combine harvesters based on vibration and strain signals. Via modal analysis, the
positions of the cleaning sieve that are more sensitive to fault signals were determined, and
a durability test bench specially used for the cleaning sieve was designed. The health state
of the cleaning sieve is monitored via the analysis of the vibration and strain signals. The
main conclusions of this work are as follows.

Via a finite element simulation analysis and bench test, it was found that, among the
components of the cleaning sieve, the front part of the sieve frame, the shaking plate, and
the baffle part of the rear sieve are greatly affected by vibration. In addition, there is also
a large stress near the front bearing and the side wall of the sieve. In terms of abnormal
vibration signal monitoring, the sensor near the front bearing is more sensitive in the z-axis
direction, and it is also easier for the sensor near the chute plate to monitor the abnormal
vibration signal in the 0–50 Hz frequency band in the x- and z-axis directions. In addition,
the position of the rear sieve support plate is sensitive to abnormal strain signals. Therefore,
sensors can be installed in these locations to promptly detect abnormal conditions and
predict the life of the equipment, which is of great value.

The analysis of vibration signals in the time and frequency domains revealed that the
vibration signal of the cleaning sieve mainly includes the base frequency of the driving
speed of 5 Hz and the frequency doubling of 50 Hz. After fault occurrence, the amplitude
of the vibration signal increases significantly; in particular, the peak amplitude of the 50 Hz
frequency-doubling signal increases by more than 86.3%, which can be used to detect the
health of the cleaning sieve. However, the large increase in the amplitude also indicates
that the motion of the sieve is more intense, which can lead to the further expansion of
subsequent injury.

The analysis of the strain signal in the time and frequency domains demonstrated
that the power spectrum of each sensor first decreases and then increases with the increase
of the frequency. After the occurrence of the abnormal state, the amplitude of the stress
received at the connection position between the side plate and the top sieve increases
significantly near 10 Hz, which represents the risk of damage. The position of the rear sieve
support plate has the greatest strain. Thus, this location can be monitored for signals with
a frequency above 300 Hz to determine whether there is any damage.
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