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Abstract: Precise ventilation rate estimation of a naturally ventilated livestock building can benefit
the control of the indoor environment. Machine learning has become a useful technique in many
research fields and might be applied to ventilation rate prediction. This paper developed a machine-
learning model for ventilation rate prediction from batch computational fluid dynamics (CFD)
simulation results. By comparing deep neural networks (DNN), support vector regression (SVR), and
random forest (RF), the best machine learning algorithm was selected. By comparing the modeling
scheme of direct single-output (ventilation rate) and indirect multiple-output (predict averaged
air velocities normal to the openings, then calculate the ventilation rate), the performances of the
machine learning models widely applied in ventilation rate prediction were evaluated. In addition,
this paper further evaluated the impact of adding indoor air velocity measurement in ventilation
rate prediction. The results showed that the modeling performance of the DNN algorithm (Mean
Absolute Percentage Error (MAPE) = 20.1%) was better than those of the SVR (MAPE = 23.2%) and
RF algorithm (MAPE = 21.0%). The scheme of multiple-output performed better (MAPE < 8%) than
the single-output scheme (MAPE = 20.1%), where MAPE was the mean absolute percentage error.
Additionally, the comparison of modeling schemes with different inputs showed that the predictive
accuracy could be improved by adding indoor velocities to the inputs. The MAPE decreased from
7.7% in the scheme without indoor velocity to 4.4% in the scheme with one indoor velocity, and
3.1% in the scheme with two indoor velocities. The location of the additional air velocity affected
the accuracy of the predictive model, with the ones at the bottom layer performing better in the
prediction than those at the top layer. This study enables a real-time and accurate prediction of the
ventilation rate of a barn and provides a recommendation for optimal indoor sensor placement.

Keywords: dairy cattle barn; numerical simulation; machine learning; predictive model; ventilation rate

1. Introduction

Ventilation systems in dairy cattle housing play an important role in maintaining
comfortable environmental conditions [1]. Natural, mechanical, and hybrid (mixed-mode)
ventilation systems are the three widely used systems in dairy cattle barns, in which natural
ventilation is the most widely used one [2]. A naturally ventilated dairy barn (NVDB) is
normally characterized by large adjustable sidewalls and ridge openings, with the indoor
air movement driven by either wind force or the thermal buoyance of air under a windless
situation, or a combination of both forces. Ventilation rate is an important parameter for
indoor environmental control, which is typically maintained by adjusting the curtains on
the sidewall openings in NVDB [3]. A sufficient ventilation rate in an NVDB could keep the
indoor air dry and fresh. By properly utilizing the natural airflow outside the NVDB, it is
not only possible to accurately regulate the environment inside the NVDB but also achieve
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energy conservation and emission reduction. In order to achieve a decent ventilation rate
for an NVDB, the curtain adjustment strategy is required, which is highly dependent on
accurate ventilation rate prediction according to the opening situation, wind condition, and
both ambient and internal thermal conditions [4].

To date, a lot of attention has been paid to predicting the ventilation rate in naturally
ventilated dairy cattle barns. Computational fluid dynamics (CFD) simulation is a widely
used approach to predict the ventilation rate of livestock barns [2,5–7] and evaluate the
effects of various factors (e.g., the wind direction, wind speed, and opening size) on the
ventilation rate in dairy cattle barns [8,9]. However, CFD simulation can only simulate the
ventilation rate for a specific situation, and the simulated results are not real-time, because
the iteration for each scenario requires time to be convergent, which highly depends on
the computational capacity of the computer. The time lag of CFD simulation limits its
potential application in the fast prediction of ventilation rate in NVDBs because the wind
condition varies all the time. In addition, the accuracy of the CFD simulation highly relies
on the technician’s skill and experience in both CFD theory and software. Alternatively,
the statistical modeling method is also widely used to develop a predictive model for
the ventilation rate of an NVDB. For instance, the response surface methodology (RSM)
model and the neural network model are two commonly used approaches for the natural
ventilation rate prediction [3,10,11]. Generally, statistic-based models can be developed by
building the correlation between the environmental measures (e.g., wind conditions and
opening sizes) and the ventilation rates.

Recently, machine learning has become a useful technique for prediction in many
research fields because of its remarkable ability in modeling from tremendous amounts of
data without previous knowledge of the relationship between the inputs and outputs [12].
Many attempts at machine learning algorithms have been conducted to predict the rela-
tionship between indoor environmental conditions and animal behavior [13,14]. According
to a literature review, the deep neural networks (DNN) algorithm has been widely applied
in ventilation-related studies for both livestock buildings and residential buildings. For
instance, Chen et al. [15] proposed a transfer learning method with DNN to predict the
ventilation pattern in a residential building with limited environmental and operating data.
Gan et al. [16] developed a physics-based and data-driven DNN model for predicting the
hourly air changes (ACH) of different apartments in various configurations in residential
high-rise buildings. The accuracy was reported to be 96%. Support vector regression
(SVR) [17] has often been used to establish the HVAC model. Jing et al. [17] used the SVR
for the air balancing problem for ventilation systems to build a pressure prediction model,
and its relative error was less than or equal to 4.6%. In addition, the random forest (RF) [18]
algorithm has often been used in engineering. Li et al. [18] established a thermal comfort
model with RF and its accuracy reached 70.2%. In this study, machine learning was used
in combination with the CFD model to establish a prediction model of the NVDB ventila-
tion rate. Generally, the performance of machine learning algorithms has depended to a
large extent on data characteristics. Therefore, it was necessary to compare the predictive
performance of different machine learning algorithms.

In model development, the determination of model inputs and outputs is very impor-
tant. For the ventilation rate prediction model of an NVDB, the ventilation rate could serve
as the output for the machine learning models. Considering that the ventilation rate can
be determined from the velocity normal to the openings (including the sidewall openings
and ridge opening) and the size of the corresponding opening, instead of ventilation rates,
these could also serve as the outputs of the predictive model. Regarding the determination
of model inputs, the wind speed, wind direction, and height of sidewall openings are the
three main factors that affect the ventilation of an NVDB and could serve as the inputs for
ventilation rate prediction. Moreover, the indoor air velocities are highly related to the ven-
tilation rate, and could also be set as the inputs together to improve the prediction accuracy.
Thus, two schemes, i.e., multi-input and single-output, and multi-input and multi-output,
could be applied to establish the predictive model for the NVDB ventilation rate.
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This study aimed to (1) develop predictive models for the ventilation rate of naturally
ventilated dairy barns under wind-forced conditions, and (2) evaluate the predictive ac-
curacy of different modeling schemes. The CFD simulation was applied to generate data
for model training and testing in this study. This study could provide technical support
for efficiently using natural airflow to regulate the air quality and thermal environment
in barns.

2. Materials and Methods

This study included two main parts: CFD simulation for data collection and model
development by means of machine learning for ventilation rate prediction. The flow chart
of this study is illustrated in Figure 1. The simulated data included velocities at indoor
monitoring points, the area-averaged velocities normal to the two side openings and the
ridge opening, and the ventilation rate in an NVDB. The simulated data were used for the
predictive model development, particularly for the model training and testing.
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Figure 1. The flow chart of this study. CFD represented computational fluid dynamics; DNN, SVR,
and RF represented deep neural networks, support vector regression and random forest algorithms,
respectively; S1, S2, S3, and S4 denote the modeling schemes 1, 2, 3, and 4, respectively; WC and OS
represented the wind condition and opening size, respectively; SO and MO represented the single
output and the multiple outputs, respectively; 1P and 2P represented the velocities at one indoor
point and two indoor points, respectively.

2.1. CFD Simulation
2.1.1. Computational Domain, Mesh Distribution, and Boundary Condition

A typical natural ventilated dairy barn was selected for the investigation. Figure 2a
shows the computational domain and the geometry of the dairy cattle barn. To avoid
the effect of the computational domain on the simulation results, the dimensions of the
computational domain were set to be 800 m × 800 m × 111.6 m in length × width × height,
which satisfied the guidelines described by [19,20]. The dimensions of the dairy cattle barn
were 34.2 m in width and 96.12 m in length. The ridge and eave heights were 11.16 m and
4.32 m. The ridge opening height was 0.48 m and the adjustable sidewall openings (O1 and
O2) varied under different scenarios with a range of 0.6 to 4 m, as indicated in Figure 2a.
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Figure 2. (a) The computational domain and the geometry of the dairy cattle building, and (b) mesh
distribution of the computational domain.

The structural meshes were applied in the simulation (as shown in Figure 2b). A grid
independence test with three different levels of mesh resolution (~6.3 million, ~3.1 million,
and ~1.5 million cells) was carried out to ensure that the simulation results were indepen-
dent of the mesh resolution. The three simulated cases were based on the geometry of the
dairy cattle building (as shown in Figure 2a). By comparing the simulated results under
the three mesh densities, the number of meshes with a relative difference of less than 1 %
was selected. Finally, the mesh with ~3.1 million cells was selected (as shown in Table 1).

Table 1. Results of the grid independence test.

Item
Total Number of Meshes in Each Case

~6.3 Million ~3.1 Million ~1.5 Million

v01, m s−1 2.313 2.310 2.291
Relative difference, % 0 0.1 1.0

v01 was the area-averaged velocity of windward opening in the barn.

The wind profile, including the wind magnitude (U), turbulent kinetic energy (k), and
turbulent kinetic energy dissipation rate (ε), expressed in Equations (1)–(4), respectively [21],
were set at the inlet boundary (as velocity inlet) of the computational domain. These three
equations were coded by means of the user define function and inputted into CFD software.

Uz = Uref

(
z

zref

)α

(1)

kz =
U∗2√

Cµ

(2)

εz =
U∗3

κ(z + z0)
(3)
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U∗ =
κUref

ln[(10 + z0)/z0]
(4)

where z is the local height from the ground, m; zref is the reference height from the ground,
m, and zref = 10 m in this study; Uz and Uref are the vertical mean velocity magnitude
in local height z and reference height zref, m s−1; α is the power-law exponent, =0.14 in
this study; kz is the turbulent kinetic energy at local height z, m2 s−2; U* is the friction
velocity, m s−1; κ is the von Karman Constant, 0.40–0.42; z0 is terrain roughness length,
m, =0.03 m in this study; Cµ is a model constant, =0.09 in this study; εz is the turbulence
energy dissipation rate, m2 s−3.

Considering that the dairy cattle barn was located in a terrain with few trees and
buildings, z0 and α were set to be 0.03 m and 0.14, respectively [22]. The bottom boundary
(deemed as ground) was set as a no-slip wall boundary. The top boundary (deemed as
the sky) was set as a symmetry plane. The downstream boundaries were set as pressure
outlets with zero static pressure. The walls of the dairy building were set as smooth
wall boundaries.

2.1.2. Governing Equation, Turbulence Models, and Simulation Scheme

The steady Reynolds-averaged Navier–Stokes (RANS) approach was applied because
of its effectiveness and accuracy in air movement prediction [23]. The general governing
equation for a steady case can be expressed using Equation (5) [24]:

div(ρΦu) = div(ΓΦ gradΦ) + SΦ (5)

where ρ is density, kg m−3, which was set to be constant at 1.2 kg m−3, because the air
was treated as incompressible gas in this study; u is the velocity, ms−1; Φ represents
the common variables of interest, i.e., velocity, m s−1, temperature, K, species (such as
moisture), turbulent kinetic energy, m2 s−2, and its dissipation rate, m2 s−3; ΓΦ is the
transport coefficient dependent on Φ, and SΦ is the source term dependent on Φ.

To determine the best-fitted turbulence model for this study, three commonly used
turbulence models, i.e., the Standard k-ε (SKE) model, Realizable k-ε (RKE) model, and
Re-Normalization Group k-ε (RNG) model were evaluated with same mesh distribution
and setups of boundary conditions. The one with most of the results close to the measured
data would be selected for all of the simulations.

The governing equations were discretized by the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) scheme. Second-order upwind discretization was selected for
momentum, turbulent kinetic energy, and specific dissipation rate to improve the accuracy
of the final solution. The iteration was considered converged only when (1) the absolute
residuals of continuity, velocity, k, and ε were less than 1 × 10−4; and (2) the monitored
value (the air velocity at the ridge opening) was stable (relative difference of less than 0.5%
within 100 iterations). Enhanced wall treatment was enabled in the simulations using the
k-ε models, and the area-weighted average values of Y+ in all the simulation cases were
kept within the required range (Y+ > 30). Ansys Fluent (ANSYS, Inc., Pittsburgh, PA, USA)
was used to run all the simulations in this study.

2.1.3. Experimental Data for CFD Model Validation

The validation for the developed CFD model was carried out based on a wind tunnel
experiment with a one-third-length 1:40 scaled dairy building model (as shown in Figure 3).
Detailed information about the wind tunnel experiment and the geometry of the scaled-
down model can be found in the studies [25,26]. The validation procedure was consistent
with the validation in [8,27]. The basic geometry of the building model was length × width
× eave height = 0.801 m × 0.855 m × 0.108 m and equipped with a 0.012 m high ridge
opening. The experimental data for validation were generated under the case with the
sidewall opening height of 0.022 m for both sidewalls.
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Figure 3. Outside view (a) and inside view (b) of the wind tunnel and the experimental setup, and
the measuring locations (c).

Figure 3c shows the comparison between the measured and the simulated data. The
measured data are shown in Table 2. The simulated data were consistent with the measured
ones, indicating that the CFD model developed here could be deemed valid. Thus, the CFD
model can be extended to the subsequent simulations with the various scenarios.

Table 2. Measured air velocities under different locations in the wind tunnel.

Item
Line1 Line2 Line3 Line4 Line5 Line6 Line7

Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1

P1 0.008 2.93
± 0.87 0.016 0.35

± 0.19 0.016 −0.12
± 0.43 0.016 −0.11

± 0.59 0.016 −0.22
± 0.47 0.016 −0.36

± 0.41 0.008 −0.32
± 1.16

P2 0.016 3.41
± 0.90 0.032 −0.02

± 0.28 0.032 −0.17
± 0.46 0.032 −0.01

± 0.59 0.032 −0.10
± 0.46 0.032 −0.04

± 0.38 0.016 −0.36
± 1.18

P3 0.024 3.70
± 0.92 0.05 −0.17

± 0.24 0.048 −0.31
± 0.40 0.048 −0.07

± 0.53 0.048 0.07
± 0.47 0.05 0.22

± 0.38 0.024 −0.41
± 1.16

P4 0.032 3.84
± 0.90 0.064 −0.22

± 0.23 0.068 −0.46
± 0.42 0.068 −0.11

± 0.49 0.068 0.15
± 0.47 0.064 0.49

± 0.37 0.032 −0.27
± 1.19

P5 0.04 4.16
± 0.93 0.072 −0.27

± 0.22 0.08 −0.54
± 0.42 0.08 −0.22

± 0.49 0.08 0.21
± 0.45 0.072 0.55

± 0.43 0.04 −0.34
± 1.14

P6 0.048 4.25
± 0.92 0.08 −0.25

± 0.33 0.096 −0.47
± 0.52 0.096 −0.25

± 0.47 0.096 0.31
± 0.47 0.08 0.93

± 0.38 0.048 −0.20
± 1.19

P7 0.068 4.51
± 0.93 0.088 0.19

± 0.95 0.112 −0.30
± 0.72 0.112 −0.33

± 0.48 0.112 0.43
± 0.48 0.088 1.42

± 0.40 0.068 0.07
± 1.25

P8 0.08 4.64
± 0.87 0.092 1.48

± 1.60 0.135 0.51
± 0.99 0.135 −0.23

± 0.56 0.135 0.66
± 0.53 0.092 1.58

± 0.40 0.08 0.10
± 1.30

P9 0.096 4.80
± 0.88 0.096 3.80

± 1.72 0.14 0.70
± 0.99 0.14 −0.20

± 0.53 0.14 0.77
± 0.49 0.096 1.67

± 0.39 0.096 0.50
± 1.39

P10 0.112 4.96
± 0.93 0.099 5.05

± 1.37 0.16 1.68
± 1.16 0.16 0.01

± 0.59 0.16 0.99
± 0.57 0.099 1.75

± 0.39 0.112 1.01
± 1.43

P11 0.135 5.28
± 0.89 0.105 5.84

± 1.00 0.17 2.33
± 1.17 0.18 0.31

± 0.67 0.17 1.16
± 0.58 0.105 1.68

± 0.37 0.135 1.70
± 1.57

P12 0.16 5.43
± 0.88 0.112 3.69

± 1.63 0.18 2.95
± 1.08 0.2 0.69

± 0.77 0.18 1.29
± 0.63 0.112 1.41

± 0.39 0.16 2.84
± 1.6

P13 0.18 5.68
± 0.87 0.135 3.76

± 1.21 0.19 3.29
± 0.99 0.22 0.97

± 0.79 0.19 1.28
± 0.62 0.135 −0.49

± 1.23 0.18 3.67
± 1.52

P14 0.2 5.79
± 0.87 0.14 4.31

± 1.13 0.21 5.07
± 0.89 0.23 1.03

± 0.84 0.21 −0.19
± 0.66 0.14 −0.31

± 1.30 0.2 4.27
± 1.41

P15 0.23 5.95
± 0.84 0.16 4.87

± 0.87 0.23 5.46
± 0.87 0.24 1.10

± 0.86 0.23 −0.14
± 0.67 0.16 0.45

± 1.32 0.23 4.62
± 1.33

P16 0.26 6.19
± 0.86 0.18 5.14

± 0.82 0.26 5.93
± 0.82 0.26 0.65

± 0.84 0.26 0.26
± 1.02 0.18 0.90

± 1.38 0.26 4.85
± 1.38

P17 0.29 6.30
± 0.86 0.2 5.33

± 0.84 0.29 6.23
± 0.83 0.27 2.27

± 0.44 0.29 2.45
± 1.68 0.2 1.19

± 1.39 0.29 5.43
± 1.47

P18 0.32 6.59
± 0.82 0.23 5.78

± 0.83 0.32 6.47
± 0.82 0.29 7.18

± 0.84 0.32 7.15
± 1.24 0.23 1.65

± 1.50 0.32 6.18
± 1.4

P19 0.35 6.68
± 0.81 0.26 5.99

± 0.81 0.35 6.71
± 0.80 0.3 7.32

± 0.81 0.35 7.85
± 0.74 0.26 2.51

± 1.68 0.35 6.82
± 1.19
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Table 2. Cont.

Item
Line1 Line2 Line3 Line4 Line5 Line6 Line7

Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1 Y, m v, m s−1

P20 0.38 6.85
± 0.76 0.29 6.29

± 0.80 0.38 6.87
± 0.79 0.32 7.32

± 0.77 0.38 7.82
± 0.73 0.29 4.32

± 1.83 0.38 7.22
± 1.00

P21 0.42 7.03
± 0.77 0.32 6.32

± 0.81 0.42 7.11
± 0.77 0.35 7.46

± 0.78 0.42 7.92
± 0.72 0.32 6.26

± 1.57 0.42 7.43
± 0.84

P22 0.35 6.67
± 0.79 0.38 7.61

± 0.74 0.35 7.49
± 0.95

P23 0.38 6.84
± 0.77 0.42 7.66

± 0.74 0.38 7.71
± 0.79

P24 0.42 6.97
± 0.81 0.42 7.83

± 0.75

P1–P24 represent the sequence numbers of measurement data. Line1–line7 are indicated in Figure 3c.

2.1.4. Determination of Independent and Response Variables

The ventilation rate in the barn will be affected by the ambient environmental condi-
tions (air velocity and wind direction in particular) and the opening scenario of the barn
(opening of the windward and leeward openings of the barn). Four levels of wind speed,
seven levels of wind direction, and seven levels of the two sidewall opening heights were
set to test the ventilation rates under different wind conditions and opening scenarios (as
listed in Table 3). Note that the opening heights for both sidewall openings were kept
the same.

Table 3. Levels of the variables in the CFD simulations.

Variables (Unit) Value

WS 1 (m s−1) 3, 5, 7, 9
WD 2 (◦) 0, 30, 45, 60, 120, 135, 150
O1 3 (m) 0.6, 1.2, 1.8, 2.4, 3, 3.6, 4
O2 3 (m) 0.6, 1.2, 1.8, 2.4, 3, 3.6, 4

1 WS = wind speed. 2 WD = wind direction, normal to the sidewall opening was set to be 0◦. 3 O1 and O2 are the
sidewall openings indicated in Figure 2a.

The simulated dairy cattle building was a full-curtain cattle house, in which there was
a concrete wall of 0.2 m height from the ground. The fully opened sidewall opening was
4.0 m high. We admit that many adjustment strategies are applied in practice in naturally
ventilated dairy cattle barns and different adjustment strategies would result in different
opening behaviors, though the opening size was the same. In this study, the opening
size was adjusted by rolling the curtain from the bottom to the top. Thus, the height of
sidewall openings was set to seven levels, i.e., 0.6, 1.2, 1.8, 2.4, 3, 3.6, and 4 m. In order
to conveniently switch between simulation scenarios, each sidewall opening was divided
into 7 parts (Figure 4), so that the proposed levels of opening height could be achieved by
changing the boundary condition of corresponding parts between the wall and interior in
Ansys Fluent.
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the first part of the sidewall openings1 divided into 7 parts, and other O1-x are named in this way.
O2-1 is the first part of the sidewall openings2 divided into 7 parts, and other O2-x are named in this
way. The OR is the ridge opening.
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2.1.5. Simulated Data Acquisition

The indoor air velocities were highly related to the ventilation rate. Therefore, the
air velocities in three components at 192 monitoring locations were obtained from the
numerical simulations. The monitoring points were divided into two layers: the bottom
layer and the top layer. The height of the monitoring points was determined according
to the velocity sensor placement, which was normally placed beyond a cow’s reach. The
distribution of all the monitoring locations is illustrated in Figure 5.
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Figure 5. Distribution of the air velocity measuring points in the dairy cattle barn. The measurement
points are divided into two layers, i.e., the top layer and bottom layer, with 96 measurement points in
each layer.

Regarding the ventilation rate determination, the area-averaged velocities at the three
openings (two sidewall openings and one ridge opening) in the naturally ventilated barn
were used to calculate the ventilation rate for each simulation scenario, as expressed
Equation (6):

VR = 0.5

(
7

∑
i=1

v1_iS1_i +
7

∑
i=1

v2_iS2_i + vRSR

)
(6)

where VR is the ventilation rate, m3 s−1; v1_i, v2_i, and vR represent the area-averaged
velocity normal to the opening i in sidewall opening 1, the opening i in sidewall opening 2,
and the ridge opening, respectively, all in m s−1; S1_i, S2_i, and SR represent the area of the
opening i in sidewall opening 1, the opening i in sidewall opening 2, and the ridge opening,
respectively, all in m2.

2.2. Development of Ventilation Predictive Models
2.2.1. Dataset Construction

The CFD simulation analysis included four wind speeds, seven wind directions, and
seven openings (the openings included openings on the windward and leeward sides in
the NVDB, similar on both sides), resulting in a total of 196 CFD simulations. Therefore, the
dataset included 196 sets of data generated by CFD simulation. Each set of data included
wind speed, wind direction, the heights of two sidewall openings (each sidewall was
divided into 7 sub-openings), the 15 air speeds normal to the 14 sub-openings, and the
ridge openings, as shown in Figure 4. Each set of data included the calculated ventilation
rate based on Equation (6). In addition, the indoor air velocities at 192 indoor locations
(Figure 5) were present in three components (x-, y-, and z-direction). For the model training
and testing, the dataset was randomly divided into two groups, the training set (80%) and
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the test set (20%), and the mean and standard deviation of the original data were used to
normalize the data. Five-fold cross-validation was used for model training in this study.

2.2.2. Determination of Modeling Scheme

The ventilation rate of the dairy barn was affected by many parameters, including
wind speed, wind direction, and the height of the two side wall openings, which could
be selected as the modeling inputs. Therefore, the first modeling scheme (Scheme 1) was
determined by choosing the four parameters as inputs and the ventilation rate as the single
output. Since the ventilation rate can be calculated from the area of the openings and the
corresponding air velocity normal to the openings, the second modeling scheme (Scheme 2)
was designed to replace the single ventilation rate output in Scheme 1 with 15 outputs of
air velocities normal to the openings (as shown in Figure 4). Then, the ventilation rate was
calculated by predicted air velocities normal to the openings and Equation (6).

The indoor air movement was highly related to the ventilation rate; therefore, the
indoor air velocities (each air velocity could be separated into three components, namely
x-, y-, and z-direction) measured by an anemometer could be used as additional inputs
for the predictive model. Theoretically, the more indoor air velocities serve as model
inputs, the better the predictive model performs. In practice, however, only a few farms
are equipped with a couple of anemometers to monitor indoor airflow. The placement of
the anemometer(s) becomes very important to indoor environmental monitoring as well
as to the accuracy of the predictive model. In this study, therefore, two more modeling
schemes with one and two indoor air velocities (assuming that one/two anemometers
were installed inside the barn) as the additional model inputs, referred to as Schemes 3
and 4, respectively, were tested and compared with Schemes 1 and 2. To assess the effect
of anemometer placement on predictive accuracy, the air velocities at 192 locations were
obtained in each of the simulation cases. Thus, for Scheme 3, the model inputs included
the wind speed, wind direction, heights of the leeward and windward sidewall openings,
and one indoor air velocity (in three directions). Thus, 192 combinations in total would be
tested in Scheme 3. Similarly, Scheme 4 had 36,672 (192 × 191) combinations to be tested.
Note that the better output form from the comparison between Schemes 1 and 2 would be
applied as the model outputs in Schemes 3 and 4.

For Schemes 1–4, the neurons in the input layer were set to be 4, 4, 7, and 10, respec-
tively, and the output layer of the model was 1 or 15 neurons. Table 4 lists the information
for the four modeling scenarios. Model development and data analysis were performed
using Jupyter Notebook in Anaconda 3.0.

Table 4. Information on the modeling schemes with different combinations of model inputs
and outputs.

Modeling Scheme Number of Inputs Number of Outputs Number of Cases

Scheme 1 4 1 196 1 × 1
Scheme 2 4 15 196 × 1
Scheme 3 7 1 or 15 2 196 × 192
Scheme 4 10 1 or 15 196 × 36,672

1 196 represents the number of simulation cases in CFD simulation. 2 The number of outputs of Schemes 3 and 4
needed to be further determined based on the results from the evaluation of Schemes 1 and 2.

2.2.3. Algorithm for Machine Learning

(1) Deep Neural Networks (DNN)

The deep neural network (DNN) is a class of machine learning algorithms improved
from the conventional artificial neural network with multiple layers, which has been
intensively used due to its outstanding performance in learning nonlinear input–output
mapping. The model structure of a DNN can be divided into the input layer, hidden layers,
and output layer, and different hidden layers contain multiple neurons [16]. Generally, a
DNN has more than one hidden layer, and each hidden layer has multiple neurons [28,29].
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All the outputs of the previous layer serve as the inputs in the following layer. In each layer,
the inputs would be multiplied by the weight vector and the results would be summed and
then passed to the next layer by the activation function. The process of the DNN algorithm
was expressed as:

a(1)i = xi (7)

z(l)i =
sl−1

∑
j=1

θ
(l−1)
ij a(l−1)

j + bl−1
i (8)

a(l)i = g
(

z(l)i

)
(9)

ŷi = a(nl)
i (10)

where i = 1, 2, 3, . . . , sl and sl is the number of neurons in the l-th layer; l = 2, 3, . . . , nl,
and nl is the number of layers; xi is the value of the i-th input; a(1)i is the output of the i-th

neuron in the l-th layer; θ(l−1)
ij is the connecting weight from the j-th neuron in the (l − 1)-th

layer to the i-th neuron in the l-th layer; bl−1
i is the bias of the i-th neuron in the (l − 1)-th

layer; g(.) is the activation function; ŷi is the value of the i-th neuron in the output layer; nl
is the total number of layers except the input layer.

Two hidden layers were set up, each with 64 neurons. The dropout strategy was used
at the second hidden layer because a reasonable dropout rate could significantly reduce
overfitting [30]. The batch size of the model was set as 100, and the Epoch was set as 1000.

(2) Support Vector Regression (SVR)

SVR is an important application branch of support vector machine (SVM) [31]. SVR is a
regression model, which is mainly used for fitted values. It is generally used in scenes with
thinner and fewer features. In this study, the hyperparameters were determined based on
Scheme 1 and would be fixed in the other Schemes. The optimal hyperparameters of SVR
for Scheme 1 in this study were kernel = rbf, C = 10,000, epsilon = 0.01, and gamma = 0.01.

(3) Random forest (RF)

The RF algorithm is an ensemble learning method based on decision trees, which
operates by constructing a multitude of decision trees at the training time [32,33]. The hyper-
parameter optimization in the RF algorithm was conducted with the data in Scheme 1. The hy-
perparameters set in the RF were n_estimators = 150, max_depth = 22, min_samples_split = 5,
min_samples_leaf = 1, and max_features = “auto”.

Technically, in order to ensure that the algorithm gave the best performance, the
hyperparameters in these three algorithms needed to be adjusted from Scheme 1. Due to
the large datasets in Schemes 3 and 4 in this study, it would be extremely time-consuming to
get the optimal hyperparameters for Schemes 3 and 4. To check the feasibility of the optimal
hyperparameters determined based on Scheme 1, the hyperparameters for Schemes 2–4
would be fixed in this study.

2.2.4. Evaluation Metrics

The coefficient of determination (R2, Equation (11)) and mean absolute percentage
error (MAPE, Equation (12)) were used as the two indicators for the model comparison. The
closer R2 is to 1, the higher the correlation of the predictive model with the CFD simulation
results. The lower the value of MAPE, the better the model’s prediction. The predictive
model could be deemed valid as long as the MAPE < 5% in this study.

R2 = 1 − ∑N
i=1
(
Q̂i − Qi

)2

∑N
i=1
(
Qi − Qi

)2 (11)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣ Q̂i − Qi
Qi

∣∣∣∣·100% (12)

where Q̂i and Qi are the predicted and simulated value of the ventilation rate, respectively,
both in m3 h−3; N is the number of compared cases; Qi is the average value of all CFD-
simulated ventilation rates in the N cases in m3 h−3.

3. Results and Discussion
3.1. CFD Model Validation

Figure 6 shows the airflow distribution pattern under three turbulence models. The
airflow entered from the windward opening in the barn, and the airflow was attached
to the ceiling. The Coanda effect was also reported by Morsing et al. [34]. Part of the
airflow entering the barn left the building from the leeward openings of the barn, and the
other part was rotated in the barn. The results of the simulation were similar to those in
Nosek et al. [35] and Yi et al. [27]. This showed that the simulation could accurately express
the motion of the airflow. However, in the simulation using Realizable K-ε (RKE), RE-
Normalization Group K-ε (RNG), and Standard K-ε (SKE) models, there were differences
in the vortex position of the barn. Therefore, the simulation results needed to be compared
with the measured data to analyze the best turbulence model.
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Figure 6. Airflow distribution pattern under (a) Realizable k-ε (RKE), (b) RE-Normalization Group
k-ε (RNG), and (c) Standard k-ε (SKE) models.

Figure 7 shows the comparison of simulated air velocities with the measured ones.
Regarding the turbulence model comparison, the Standard k-ε (SKE) model (marked as a
red rhombus in Figure 7) performed better than the others, i.e., the Realizable k-ε (RKE)
model and Re−Normalization Group k-ε (RNG) model. For the CFD model validation,
good agreement could be observed between the simulated and experimental air velocities
on Lines 1 to 5, while the simulated air velocities on Lines 6 and 7 were smaller than those
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in the experiment. This phenomenon was also reported in some previous studies [27,36,37],
which can be attributed to the weakness of the RANS models in predicting the air separation
behind the leeward roof. Despite some discrepancies in air velocities, the predicted airflow
patterns and variation trends of air velocities as the height increased were all in reasonable
agreement with the measured results. Therefore, the CFD model could be deemed valid
and the SKE model was selected for the subsequent numerical simulations.
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Figure 7. Comparison of simulated velocities under three turbulence models with the measured
velocities in the wind tunnel experiment.

3.2. Evaluation of Different Machine Learning Algorithms

Table 5 lists the R2 and MAPE for the three machine learning algorithms. In Scheme 1,
the R2 and MAPE of the test sets using the DNN algorithm were 0.979 and 20.1, respectively.
R2 using the DNN algorithm was higher than with the SVR and RF algorithms. The
MAPE of the DNN algorithm was lower than those of the SVR and RF algorithms. The
MAPEs of the test sets for the DNN and SVR algorithms were similar to the MAPE of the
training set. However, the RF algorithm had overfitting. Compared with the effects of
different algorithms on Scheme 2, the results were similar in Scheme 1. A similar rank for
the prediction performance of these algorithms was reported in other studies [13,38,39].
Therefore, the DNN algorithm was selected for the other Schemes.
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Table 5. R2 and MAPE for the three machine learning algorithms.

Scheme No. Item
Training Set (80%) Test Set (20%)

DNN SVR RF DNN SVR RF

Scheme 1
R2 0.980 0.908 0.986 0.979 0.885 0.975

MAPE (%) 19.3 23.8 13.5 20.1 23.2 21.0

Scheme 2
R2 0.998 0.993 0.978 0.996 0.992 0.965

MAPE (%) 6.8 9.6 16.5 7.7 10.5l 21.6

3.3. Comparison of Single and Multiple Outputs

Figure 8 shows the comparison of the regression plots of the training and test sets
of Schemes 1 and 2. The differences in R2 and MAPE values between the training and
the test sets were less than 0.002 and 0.9%, respectively, indicating that no overfitting
occurred in the modeling. The R2 value in Scheme 1 (R2 = 0.979) was lower than that of
Scheme 2 (R2 = 0.996), and the MAPE value of Scheme 1 (MAPE = 20.1%) was higher than
that of Scheme 1 (MAPE = 7.7%), indicating that multiple outputs could be better than
a single output in ventilation rate prediction. Usually, the effects of a single output and
multiple outputs on predictive accuracy would be similar if the outputs were independent
of each other [40]. Considering that the outputs (the 15 area-averaged air velocities)
in Scheme 2 were related to each other, the multiple outputs were more suitable for
establishing a ventilation rate predictive model in dairy barns. Thus, the multiple outputs
were subsequently adopted in Schemes 3 and 4.
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Figure 8. Comparison of the regression plots of the training and test sets of Schemes 1 and 2: (a) is
the regression analysis of the training set of Scheme 1, (b) is the regression analysis of the test set
of Scheme 1, (c) is the regression analysis of the training set of Scheme 2, and (d) is the regression
analysis of the test set of Scheme 2.



Agriculture 2023, 13, 837 14 of 18

3.4. The Impact of Real-Time In-Barn Air Velocity Measurement

In this section, the predictive accuracies of Schemes 2–4 were compared. Table 6 lists
the R2 and MAPE values of the three modeling schemes (Schemes 2–4). The maximum
coefficients of determination, R2, for the three modeling schemes were all greater than
0.99, indicating that more than 99% of the numerically simulated ventilation rates could be
predicted based on the model inputs in this study. In other words, the model inputs and
the ventilation rates predicted had a high correlation with the numerically simulated result.

Table 6. The best R2 and MAPE for the three modeling schemes (Schemes 2–4).

Item Scheme 2 Scheme 3 Scheme 4

R2 0.996 0.998 0.999
MAPE (%) 7.7 4.4 3.1

The mean absolute percentage error, MAPE, between the DNN algorithm predictions
and CFD-simulated ones for modeling Scheme 2 was 7.7%. The value of MAPE was
reduced to 4.4% by adding the velocities at one indoor monitoring point and was reduced
to 3.1% by adding the velocities at two indoor monitoring points. The decrease in MAPE
with the number of indoor velocities increasing indicated that the indoor velocities could
improve the accuracy of the predictive model. This was because the indoor air velocities
changed along with the ventilation rate. Therefore, adding indoor air velocities as the
model inputs could somehow improve the model prediction. However, the decrease in
MAPE from Scheme 2 to Scheme 3 was 2.5 times greater than that from Scheme 3 to Scheme
4, indicating that installing a lot of air velocity sensors in the naturally ventilated barn might
be unnecessary for the prediction of ventilation rate using a machine learning approach.
Scheme 3 could be suitable for most cases.

3.5. Effect of Anemometer Placement

Figure 9 shows the MAPE distribution of the predictive model at each monitoring
point at both layers in Scheme 3. The MAPE value varied with the monitoring point
changing, indicating that the added monitoring point was sensitive to the accuracy of the
prediction. The average MAPE value of the monitoring points on the bottom layer was
7.7%, while the average MAPE value of the monitoring points on the top layer was 8.3%.
In terms of the effect of the height of the monitoring point on the prediction, adding points
at the bottom layer gave better performance than adding points at the top layer, indicating
that most of the points at the bottom layer were more sensitive to the accuracy of prediction.
The height and the operating strategy of sidewall openings accounted for the difference
in the accuracy of the prediction. The bottom layer and the sidewall openings were at a
similar height, and the changes in the ventilation rate could be more directly affected by
the air velocities at the bottom layer than those at the top layer.

The average MAPE value of the monitoring points in the left half of the bottom layer
was 7.5%, while the average MAPE value of the monitoring points in the right half of
the bottom layer was 7.9%. The corresponding average MAPE values for the left and
right halves of the top layer were 8.0% and 8.4%, respectively. It can be observed that the
monitoring points in the left half for both layers were better than those in the right half.
This asymmetry in the MAPE value could be attributed to the setup of the wind direction.
In the part of the CFD simulation, the wind direction ranged from 0–180◦. The air velocity
at the monitoring points in the left half part could be more sensitive to the wind, resulting
in a better prediction when they were added to the model inputs. Therefore, the installation
of an anemometer for indoor air velocity monitoring should consider the sensitivity of the
location to the prevailing wind.
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Figure 9. Distribution of MAPE of the predictive model in Scheme 3 at each monitoring point in
the bottom layer (a) and the top layer (b). The average MAPE from X1Y1Z1 to X8Y6Z1 was 7.5%.
The mean MAPE of X9Y1Z1 to X16Y6Z1 was 7.9%. The mean MAPE of X1Y1Z2 to X8Y6Z2 was 8.0%.
The average MAPE from X9Y1Z2 to X16Y6Z2 was 7.9%. The lowest MAPE point was X4Y6Z1, which
was 4.39%.

In addition, compared with the MAPE value in Scheme 2, choosing the air velocity at
the monitoring point (X4Y6Z1) as an additional model input in Scheme 3 could improve the
MAPE value by 3.3%. This is because the monitoring point X4Y6Z1 is located in the central
area of the left part of the windward side opening where the monitored air velocity could
be highly related to the external wind conditions.

3.6. Limitations and Perspectives

Real-time monitoring of the ventilation rate of a naturally ventilated dairy barn is the
key technique to achieving precision indoor environment control [6]. However, due to the
complex environmental conditions and various housing configurations, the prediction of a
naturally ventilated barn is still challenging and much needed. This study set out to explore
the potential of implementing a machine learning algorithm to achieve real-time monitoring
of ventilation rates. Due to the limits of dairy cattle barn variations, this study only included
a single type of barn and a small set of data. However, the results of this study do achieve
the objective of testing the different modeling schemes in ventilation rate prediction. At the
same time, the modeling performances of DNN, SVR, and RF algorithms were compared in
this study. The adopted DNN model algorithm showed the best performance in ventilation
rate prediction. Although this algorithm has the drawback of long training time, it may be
improved by accelerating data parallel DNN training. Moreover, given that an increasing
number of algorithms have been proposed, more algorithms could be tested for ventilation
rate prediction in the future.

4. Conclusions

The ventilation rate of a naturally ventilated dairy cattle barn is considered one of the
most important parameters in regulating indoor environmental conditions. However, the
ventilation rate for an NVDB is difficult to estimate accurately. In order to quickly and
accurately predict the ventilation rate of an NVDB, we developed a machine-learning-based
ventilation predictive model using CFD-simulated data. The main conclusions of this study
can be drawn as follows:

(1) The R2 value of the DNN algorithm was greater than those of the SVR and RF
algorithms. The MAPE value of the DNN algorithm was greater than those of the
SVR and RF algorithms. The DNN algorithm was more suitable for the ventilation
rate prediction of a dairy barn.

(2) The R2 value of Scheme 2 was greater than that of Scheme 1 and the MAPE value of
Scheme 2 was smaller than that of Scheme 1. Using the air velocities at the openings
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as the modeling outputs was more suitable for the ventilation rate prediction of the
dairy barn than using the ventilation rate directly as the model output.

(3) Among the three modeling schemes, the MAPE of the prediction decreased from 7.7%
for Scheme 2 to 4.4% for Scheme 3 and 3.1% for Scheme 4. Adding indoor monitoring
points as the model inputs could improve the predictive accuracy. The predictive
accuracy increased as the number of indoor monitoring points increased. However,
adding two indoor air velocities improved the accuracy of the scheme with one indoor
air velocity by 1.3%.

(4) Due to the height and the operating strategies of the sidewall openings, selecting the
velocities of the monitoring points at the lower layer as the model inputs performed
generally better than selecting those at the top layer.

(5) Scheme 3 with the velocities at one point added in the model inputs was recommended.
The velocities at the monitoring point X4Y6Z1 were recommended for the model inputs
when the wind direction is 0–180◦.
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