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Abstract: Intercropping is extensively used to increase land productivity and agricultural benefits.
In developing countries, intercropping has historically been one of the most widely used cropping
systems. Crop models have been used to assess risk productivity over time and space, particularly
in monocropping systems. Crop models, such as the Decision Support System for Agrotechnol-
ogy Transfer (DSSAT), have been widely used to improve crop growth, development, and yield
predictions; however, this model has some limitations when assessing interspecific competition in
intercropping systems (e.g., it does not have a subroutine capable of running two crops simulta-
neously). Therefore, in this study, we developed a new approach to allow DSSAT to run two crop
species in intercropping systems. A light interception algorithm and modified source code were
integrated into the DSSAT to simulate the relay-strip intercropping system. The intercrop model
developed in this study is the first intercrop model for DSSAT. This model is generic and can be
employed to build other cereal–legume intercrop models for DSSAT Version 4.8. Regarding risk
assessment of crop production, the model can evaluate long-term cereal–legume intercrop yields in
low-input cropping systems. Therefore, before officially launching the new model in DSSAT, more
field trials are recommended to rigorously evaluate and improve the model with data from different
environments. The intercrop model developed in this study is simple, so this modeling approach can
be employed to develop other cereal–noncereal intercrop models.

Keywords: cowpea; crop model; intercropping systems; light interception; maize

1. Introduction

Intercropping cereals and legumes is becoming increasingly popular in tropical re-
gions [1–4], allowing for two or more crops to be grown in the same field during the same
growing season [5–7]. In the traditional cropping system of the Yucatan Peninsula, C4 cereal
crops, such as maize (Zea mays L.), are the dominant crop species, while C3 legume crops,
such as lima bean (Phaseolus lunatus L.) and cowpea (Vigna unguiculata L. Walp) are the
most common associated species used by growers [6]. Squash (Cucurbita spp.) is also part
of the traditional cropping system of the region. Among its multiple benefits, this practice
captures more radiation, makes better use of available water and nutrients, reduces pest
and disease incidence, and suppresses weeds [8–10]. However, there is more competition
for water, nutrients, light, and space in intercropping systems than in monocropping sys-
tems. In most cereal–legume intercropping, the cereal often has a taller canopy and deeper
roots than the legume species, leading to a more efficient use of resources by cereals [11,12].
Many studies have found a link between the amount of radiant energy captured and the
number of crops grown [13,14].

As maize is the dominant crop in an intercropping system, the available water and nu-
trients are shared between the two species [15]. The performance of both crops is influenced
by environmental and socioeconomic factors, crop management, and germplasm [16,17].
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Although strategies such as optimal fertilizer application and delayed legume planting
can improve system performance, their design in an intercropping system can be time-
consuming and expensive. Therefore, models can facilitate collaboration between decision
makers and researchers, saving time and money [18,19].

Several intercrop models simulate light competition, but most intercrop models as-
sume that the canopy is the same all the way across [18,19]. However, in intercropping
systems, light competition depends on planting configuration (row spacing, sowing densi-
ties, and sowing dates). Border row effects are also crucial in such systems [20]. Developing
a model-based decision support system for intercrops could help address low crop produc-
tivity, competition, climate change, and soil fertility depletion.

Various models have attempted to deal with intercropping and interspecific com-
petition between two intercropped species [21–24], but few crop growth models have
been developed, calibrated, and validated to accommodate the interspecific plant–plant
interactions that are important in intercrop performance. Most models do not account for
understory species’ adaptability. For instance, the Agricultural Production Systems sIMula-
tor (APSIM) does not take into account how shorter intercrop plants respond to shade [24].
Crop modeling software, such as the Decision Support System for Agrotechnology Transfer
(DSSAT), APSIM, and the Cropping Systems Simulation Model (CropSyst), simulate crop
growth and environmental interactions in various weather and soil conditions [25,26].
Few crop models simulate polyculture well [27,28]. DSSAT is a decision support system
for evaluating agricultural management options [20,29]. This suite of models is accurate.
DSSAT is a decision support system that accurately simulates crop growth and yield in
various crops, including row crops and horticultural crops [29–33]. Nonetheless, DSSAT
does not have a specific module that can take into account the overall interspecific competi-
tion in mixed cropping systems [17], limiting its use to competition for solar radiation, like
most intercropping models [17,34]. Therefore, more generalized models that can account
for interspecific competition in an intercropping system are required (i.e., a more general
algorithm is needed to take into consideration the fact that crop roots can absorb more
water and nutrients). Due to the limited ability of current DSSAT models to deal with
uncertainties in intercropping systems, a new intercrop model could be an alternative to
deal with interspecific competition (i.e., light competition) in low-input cropping systems,
particularly in developing countries. Therefore, the overall goal of this research was to
develop and integrate the cereal–legume intercrop model into DSSAT for field applications.
This model will help us understand how much light each crop species takes in and how
their niches change over time. It is the first DSSAT intercrop module to run two crops
simultaneously to simulate development, crop growth, and yield. The intercrop model
developed in this study is simple, so this modeling approach can be employed to develop
other cereal–noncereal intercrop models. Additionally, detailed model input data and
experiment data for calibration and validation are recommended before launching the
official version for field applications.

2. Materials and Methods
2.1. MPI_Maize–Legume Intercrop Development
2.1.1. Description of the Intercrop Model

For the model approach, the DSSAT-Cropping System Model (CSM) Version 4.8
software was used, and therein, Crop Environment Resource Synthesis (CERES; i.e., a
simulation model of maize growth and development) and CROPGRO (i.e., a generic crop
model based on the SOYGRO, PNUTGRO, and BEANGRO models), which were developed
for sole cropping systems only, were applied [19,35,36]. DSSAT is a process-oriented crop
model that considers soil, plants, atmosphere, and management systems. It was designed to
help researchers adapt and test the cropping system model itself as well as for management
applications [19]. As the DSSAT model does not account for a module capable of running
two crops at the same time [19], a few changes were made to the DSSAT Cropping System
Model (CSM) source code so that simulations of two crops in intercropping systems could
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be run at the same time. The model looks at a cereal and a legume species planted in relay-
strip intercropping systems. The intercrop implementation in this study is very simple:
it only considers competition for light between both crop species. This implementation
is very generic: it can be used for any cereal and legume crop. However, in this study,
data from a maize–cowpea field experiment were used to develop the model. Different
equations were integrated into the CERES-Maize and CROPGRO models to account for the
light competition effect for each crop species. The goal of this integration was to simulate
the biomass production and yield of both species in a cereal–legume intercropping system.
In this intercrop model, the approach used in DSSAT is maintained to make it easy for
anyone to use by evaluating a minimum data set, easily collected in a field (leaf area index
[LAI], temperature, solar radiation, soil nitrate and ammonium per layer, bulk density and
soil water content per layer, crop phenology, plant population density, and row spacing).

2.1.2. MPI_Maize–Cowpea Intercrop Design Approach

To allow DSSAT to simulate maize–legume intercropping systems, we redesigned
the DSSAT module structure using a communication-based approach for a crop model.
Lazaretti et al. [36] used a similar method, in which a communication-based approach was
used to run a crop model and a plant disease model concurrently while exchanging data
through an intermediate relational database management system. In this study, Message
Passing Interface (MPI) was used to allow the different models to communicate with
each other.

MPI can be defined as a message-passing library or a standardized set of libraries
for parallel and high-performance computing (HPC), consisting of exchanging messages
between processes. MPI has a protocol with specifications and definitions for resource
optimization, defining an abstract application programming interface (API) that allows
independent and compatible implementations. Due to the portability and availability of
libraries for different languages, such as C/C++, FORTRAN, and Java, MPI was quickly
adopted as the standard for executing numerical software in HPC architectures [37]. It is
frequently used as a communication switch, where applications can be written in different
programming languages and easily communicate with each other, sharing information
through a communicator or interface. In this way, MPI shows up as an independent and
efficient application to exchange information [38]. A parallel MPI technique was developed
for an agroecosystem model, Environmental Policy Integrated Climate (EPIC), on global
food and bioenergy studies [39].

The execution using the multiple instruction multiple data (MIMD) implementation
criterion allows the same approach to be used for coupling simulation models in parallel.
The coupling of different simulation models requires time control, data communication,
and synchronization. In this case, the development of a coupling interface simplified its
use and implementation in the simulation model [40].

The coupling interface manages the data communication and synchronization of the
coupled simulation models. The purpose of the interface is to provide a set of reusable,
portable standard features between different programming languages and to simplify the
communication of the simulation models [40]. The implementation should include methods
that abstract the communication layer with MPI, so the coupling interface works as an
independent module. These functions are used at the coupling point of the simulation
model, enabling access to the initialization, communication, and finalization routines [38,41].

2.2. Changes Implemented in the DSSAT to Simulate Maize–Cowpea Intercrop
Fraction of Radiation Intercepted

A light interception model modified from a strip-planted crop model [42,43] was
applied to calculate the daily fraction of light interception of each species in the strip
intercrop. Five different phases were distinguished according to the plant height difference
between maize and cowpea, and the fraction of light interception was calculated separately
for each phase. Using this strip canopy model, Gou et al. [43] captured the effects of
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row configurations on light competition. In phases I and IV, only one crop is present,
and Equation (1) is used to calculate the fraction of light interception. The radiation
interception in a relay strip intercropping system is estimated as a weighted average of
a fully compressed canopy (w) and the radiation interception by a homogeneous canopy
(1 − w) [42,44]. Thus, in this study, the fraction of radiation intercepted in a strip canopy
was calculated using the following equation:

fstrip= fhomog(1−w)+ fcomprw (1)

where fstrip is the fraction of radiation intercepted in a strip canopy; fhomog is the fraction of
light interception by a homogeneous canopy; fcompr is the fraction of light interception by
this compressed canopy; and w is the weighting factor.

The light interception by a canopy of a homogeneous crop is described using Beer’s
Law [45]. The fraction of light interception by a homogeneous canopy ( fhomog) is calculated as

fhomog = 1− exp(−KLAI) (2)

The fraction of light interception by this compressed canopy
(

fcompr
)
, considering the

total land area, is

fcompr = (1− exp
(
−kLAIcompr

) R
R + P

(3)

The leaf area index (LAI) of a compressed canopy (LAIcompr) is defined by

LAIcompr = LAI
R + P

R
(4)

where R is the strip width and P is the width of the path between strips.
The weighting factor w in Equation (1), which represents the relative contribution of

the homogeneous and compressed parts, is defined by

w =
SP− SR

1− exp
(
−kLAIcompr

) (5)

where SP is the fraction of radiation transmitted to the soil surface in the path and SR is the
fraction of radiation transmitted to the soil surface under the strip.

SP and SR are calculated by separating radiation that reaches the soil surface directly
from radiation that passes through the leaf canopy. Therefore, the fraction of radiation
reaching the path between strips of soil is calculated as follows:

SP = IP + (1− IP) exp(−kLAI) (6)

The fraction of radiation reaching the soil under the strips:

SR = IR× exp
(
−kLAIcompr

)
+ (1− IR) exp(−kLAI) (7)

IP is the fraction that represents the spatial integration of radiation reaching the
path between strips, and IR is the fraction that represents the spatial integration of the
radiation reaching the strip [44]. IP is the spatial integral of incoming radiation over the
path, assuming a spherical distribution of the angle of the incoming light beam [44]. IP is
calculated as follows:

IP =

√
H2 + P2− H

P
(8)

IR is the light interception measured in the strip, resulting from an opaque (“black”)
crop strip with height H and width W, at a path width P:

IR =

√
H2 + R2− H

R
(9)



Agriculture 2023, 13, 845 5 of 13

The leaf area of the taller crop (maize or cowpea) is subdivided into two parts:

LAItp−upper =

(
1− Hsh

Htp

)
× LAItp (10)

LAItp−lower =

(
Hsh
Htp

)
× LAItp (11)

In phases II and IV, one crop is taller than the other. In these cases, the canopy is
divided into two layers (an upper and lower layer). The upper layer is from the top of the
canopy of the taller crop species to the top of the canopy of the shorter species, while the
lower layer consists of alternate strips of the two species. Therefore, the fraction of light
intercepted by taller crops is subdivided into two parts:

ftaller = ftallerup + ftallerlow (12)

The fraction of light intercepted by the upper part of the taller crop:

ftp−upper = fhomog−tp−upper ×
(
1−Wtp−upper

)
+ ( fcompr−tp−upper×Wtp−upper) (13)

Calculations for the upper layer were performed using the model for a strip-planted
canopy (Equations (1)–(9)), using the plant height difference of two crops (Htp − Hsh) and
the leaf area index of the upper layer of the taller crop (LAItp−upper) as inputs.

Fhomog−tg−upper = 1− exp
(
−ktp−upperLAItp−upper

)
(14)

where LAItp−upper is the leaf area index of the upper layer of the taller crop.

LAIcpr−tpr−upper = LAItp−upper ×
R + P

R
(15)

where LAIcpr−tp−upper is the compressed leaf area index for the upper layer of the taller crop.

Fcpr−tp−upper = 1− exp
(
−ktpr−upperLAIcpr−tp−upper

)
× R

R + P
(16)

where Fcpr−tp−upper is the fraction of light interception of the compressed canopy for the
upper layer of the taller crop.

The weighting factor w in the following equation, which represents the relative contri-
bution of the homogeneous and compressed parts in the upper part of the taller crop, is
defined by

w =
SPtp−UP − SRTtp−up

1− exp
(
−ktp−upLAIcompr−tp−up

) (17)

SPtp−up = IPtp−up +
(
1− IPtp−up

)
exp

(
−ktp−upLAItp−up

)
(18)

SRtp−up = IPtp−up × exp
(
−ktp−upLAIcompr−tp−up

)
+
(
1− IRtp−up

)
exp

(
−ktp−upLAItp−up

)
(19)

IPtp−up and IRtp−up are calculated as follows:

IPtp−up =

√
Hdi f f

2 + P2− Hdi f f

P
(20)

IRtp−up =

√
Hdi f f

2 + R2− Hdi f f

R
(21)
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Hdi f f = Htp − Hsh (22)

The fraction of light interception by the lower layer of the taller crop was thus calcu-
lated as

ftp−lower = SRtp−lower × (1− exp
(
−ktpLAItp−lower−cpr

)
×

Rtp

Rtp + Ptp
(23)

The fraction of light interception of the shorter crop was calculated, similar to Equation (4), as

fsh = SPtp−upper(1− exp
(
−kshLAIsh−cpr

)
× Rsh

Rsh + Psh
(24)

In phase III, in the case of intercropping species with equal heights, the fraction of
radiation intercepted by each plant strip is calculated according to Equations (12)–(22) as
used for phases II and IV, but with IP = IR = 1 for both species, and SP = 1.

2.3. MPI_DSSAT Application to Maize–Legume Intercrop Modeling
Modeling Workflow

In order to test the MPI_DSSAT intercrop implementation, we used data collected from
a previous study conducted during the summer and autumn of 2021 in Becal, Campeche,
Mexico. The experiment consisted of three replications of a randomized complete block
design. For the intercropping of maize and legumes, one row of legumes was planted
between each row of maize. Sowing was performed using a punch stroke, with a distance of
100 cm between rows and 40 cm between plants (25,000 plants ha−1). For the monocropping
system, maize plants were sown with a distance of 50 cm between rows and 40 cm between
plants (50,000 plants ha−1). The total planted area was 3456 m2 (Figure 1). Plant densities
were 2.1 plants m−2 for maize and legumes and 4.2 plants m−2 for the maize monocropping
system. The three cropping systems were as follows: (1) maize/crotalaria intercropping,
(2) maize/cowpea intercropping, and (3) maize monocropping. In this model, however,
only data from the maize/cowpea intercropping treatment were used. The crop row
arrangement of maize and cowpea intercropping systems was 1 m of maize rows alternated
with 1 m of cowpea rows (row unit: maize–cowpea–maize). All crops were planted by
hand, but maize was planted first on 17 July 2021, followed by cowpea on 30 July 2021.
The fertilizer application was divided into two applications: half of the nitrogen and
all of the phosphorus were applied one week after the emergence of the seedlings, and
the remainder of the fertilizer was applied four weeks after the first application (growth
stage). No insecticides were used, and the weeding process was manual. Throughout the
growing season, measurements were taken of aboveground dry matter, leaf area, and plant
height. Due to a lack of data from the regional climate station, weather information was
downloaded from the NASA Solar Power System [46]. Before and throughout the growing
season, soil data were collected.

The code for simulating dry matter growth and development in CERES and CROP-
GRO was modified in the DSSAT-CSM. Equations originally developed by Pronk [48] and
Gou [15] were slightly modified and integrated into the MZ_GROSUB.FOR to simulate
cereal growth and PHOTO.FOR to simulate legume growth. For maize growth, daily net as-
similation is estimated from the daily radiation use efficiency (RUE) and photosynthetically
active radiation (PAR) intercepted by each crop in an intercropping system. The following
equation calculates maize’s daily biomass production (PCARBINT):

PCARBINT =

(
PAR

PLTPOP

)
× fmz−upper × RUE× PCO2 +

(
PAR

PLTPOP

)
× fmz−lower × RUE× PCO2 (25)

where RUE is radiation use efficiency (g MJ−1 PAR), PAR is the photosynthetically active
radiation for both crop species, and daily solar radiation input is converted to PAR [49].
PAR/SR = 0.5 [13] was used to estimate the PAR. fmz−upper is the fraction of light intercepted
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in the upper layer of maize and fmz−lower is the fraction of light intercepted in the lower part
of maize. RUE for a vegetative stage is defined as the ratio of total dry matter to intercepted
PAR (g MJ−1 PAR).
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Figure 1. Schematic diagram indicating the different planting patterns. Created in biorender.com, [47]
accessed on 20 February 2023.

To estimate legume growth, the same approach as in the CROPGRO model was
used. The second option calculates light interception and photosynthesis on an hourly
basis [50]. After calculating gross photosynthesis and daily maintenance respiration, the
model estimates potential carbon partitioning to both vegetative and reproductive struc-
tures. However, the daily gross photosynthesis (PG), where PGFAC is the multiplier to
compute daily canopy PG as a function of LAI, was substituted by a lower and an upper
layer of the shorter crop (Equation (24)). When the legume is grown as a strip in phases I
or V, Equation (1) is used to calculate the fraction of light intercepted. In phases II and IV,
Equations (12) and (24) are used to calculate the fraction of light intercepted by the legume
species. In phase III, in the case of intercropping species with equal heights, the fraction of
radiation intercepted by each plant strip is calculated according to Equations (12)–(22) as
used for phases II and IV, but with IP = IR = 1 for both species, and SP = 1.

2.4. MPI_DSSAT Model Scenario Setting Assessment

This integrated model was primarily designed to simulate the interspecific competition
between cereal–legume intercropping systems. To capture the ability of the DSSAT intercrop
model, we used a few hypothetical scenarios to test the model’s effects on LAI, biomass
production, and grain yield. The following scenarios were performed: (1) maize monocrop
with a double plant population compared to maize intercropped with maize, with the
same planting dates; (2) cowpea monocrop with double the plant population compared to
cowpea intercropped with itself, with the same planting dates; and (3) maize intercropped
with cowpea, with the same planting dates and different planting dates.

2.5. Capturing the Light Competition Performance in the Model

Three hypothetical tests were used to evaluate the performance of the model in a light
competition. We assumed that neither water nor nitrogen was limited for all tests. Taking
row spacing and plant population density into account, a maize monocrop experiment
was designed with double the plant population of one intercropped with maize. In the
first scenario, the yield potential of the maize monocrop versus the maize intercrop was
evaluated (Figure 2). The maize monocrop with a plant population density of 4.2 plants m−2

and a row spacing of 80 cm was compared to maize intercropped with maize with a plant
population density of 2.1 plants m−2 and a row spacing of 40 cm. All plants in both
cropping systems were planted on the same day.
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Figure 2. Potential run of maize monocrop versus maize intercropped with maize: (A) LAI is leaf
area index; (B) GWAD is total grain weight); (C) CWAD is total top weight.

3. Results and Discussion

The results indicated that the intercrop model was able to simulate similar LAI
(Figure 2A), grain yield (Figure 2B), and dry matter production (Figure 2C) when com-
pared to a maize monocrop with double the plant population (Table A1, Appendix A).
This shows that our method for simulating light competition in the intercrop model is
effective. In the second scenario, the yield potential of a cowpea monocrop versus cowpea
intercrop was evaluated (Figure 3). Similar results (Figure 3A–C) were observed when the
cowpea monocrop was compared with the cowpea intercrop with the same planting dates,
row spacing, and plant population density used in the previous hypothetical experiment
(Figure 1). In either the first or second scenario, the slight difference in result variation
was caused by a small alteration made to the cultivar coefficient so that both lines of the
graph could be observed. Overall, this demonstrates that our method for simulating light
competition in the model is effective. A similar light interception algorithm has been
implemented in numerous intercrop models [50,51].

In the third scenario, the yield potential of a maize monocrop was compared to a
maize–cowpea intercrop (Figure 4). The yield potential of the maize monocrop was eval-
uated using data from sole maize and maize–cowpea intercropping systems, with total
dry matter of maize data taken between 65 and 85 days after the maize sowing date and
35 days after physiological maturity for maize grain yield. Data for the cowpea monocrop
were not collected. Because of that, it was not important to run any statistics such as the
correlation-based statistics, i.e., the coefficient of determination (R2), the root mean square
error (RMSE), and the index of agreement (D-index), to validate this model. So, it was
not possible to compare the measured and simulated values of cowpea in this model. In
the maize monocrop, a plant population density of 4.2 plants m−2 with a row spacing
of 50 cm was used. In the maize–cowpea intercropping system, both crop species were
planted at a plant population density of 2.1 plants m−2, with a row spacing of 100 cm.
In this experiment, we simulated maize crops in both systems (i.e., monocropping and
intercropping systems), as well as sole cowpea crops planted on the same day and cow-
pea crops in the intercropping system planted 15 days after maize. Our results indicate
that the intercrop model reasonably simulated the grain yield (Figure 4B) and dry mat-
ter production (Figure 4C) of maize. Our results are similar to the study conducted by
Chimonyo et al. [52], in which they evaluated a sorghum–cowpea intercrop system using
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the APSIM model and found it capable of simulating growth and yield, but with a slight
overestimation of biomass (6.25%) and yield (14.93%). However, no data on LAI were taken
for this experiment, so the results presented here are hypothetical (Figure 4A). This shows
that our method for simulating light competition in the maize–cowpea intercrop model is
promising. The intercrop model reasonably simulated the dry matter production of cowpea;
however, no data were taken regarding LAI or grain yield. The capability of the model to
distribute radiation across the canopy of a maize–cowpea intercrop was demonstrated to be
a useful strategy in accurately simulating the accumulation of biomass within the intercrop,
highlighting the importance of this approach in intercropping research. Therefore, due
to its capability of efficiently allocating resources within diverse crop stands, the newly
developed MPI_DSSAT Model is a valuable approach for analyzing resource utilization
in intercropping systems. While Alderman [53] tested the MPI approach for parallelizing
simulations using DSSAT-CSM, and Fernandes et al. [54] tested it for integrating a crop
model and pest/disease models using DSSAT-CSM, our study can be considered the first
to use the MPI approach for simulating light interception in intercropping systems. Addi-
tionally, Kang et al. [55] previously created an MPI parallel method for the EPIC model,
an agroecosystem model used in global food and bioenergy studies. The MPI_coupling
interface presented in this study is a versatile solution that can be applied to any model
written in a language with MPI bindings, such as C, C++, and FORTRAN (i.e., Formula
Translation, computer programming language (Fernandes et al. [54]). Furthermore, this
technique is compatible with programming languages that can interface with MPI libraries,
including popular languages such as R and Python, which are widely used by data sci-
entists (Fernandes et al. [54]). Therefore, the MPI_coupling interface has the potential to
significantly enhance the performance of a broad range of models and simulations. Finally,
in the hypothetical results, we observed a big reduction in the performance of the intercrop
model. This might be due to the strip width (R) and path width (P) values used in the
model. Therefore, we suggest that these values be evaluated and changed in the light
competition equations to improve the model’s performance.
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4. Conclusions

To advance the capabilities of DSSAT for allowing intercropping systems, we used
the MPI parallelization technique and applied it to the MPI_DSSAT intercropping model.
The first part of the model was developed as a deterministic model. A case study was
conducted to test the capacity of the MPI_DSSAT intercrop model to perform maize–legume
simulations using data from a field experiment conducted in Becal, Campeche, Mexico.
However, these data are not sufficient to validate the model. Several field experiments
from different environments are currently being conducted to validate this model before
releasing it for fieldwork by the scientific community. As the data for this model came from
a single site with three replications, no statistical analysis, i.e., coefficient of determination
(R2), root mean square error (RMSE), or the index of agreement (D-index), was used to
validate it. The results show that the MPI_DSSAT intercrop model is capable of serving
a valuable role in exploring production and management scenarios in maize–legume
intercropping systems. For example, in this study, the MPI_DSSAT intercrop modeling
platform seems promising in its ability to predict maize yield and dry matter production
(Table A1, Appendix A). Nevertheless, it was not possible to compare the observed and
simulated values of cowpea crops in this model due to the absence of data. While this
study targets maize–cowpea intercropping systems, this model is a generic one that can
easily be used as a template for any cereal and non-cereal intercropping model within
DSSAT. Some code in the MPI_DSSAT intercrop model associated with different module
versions and light interception algorithm platforms may need to be adjusted and improved.
Additionally, detailed model input data and experiment data for calibration and validation
are other challenges that limit reliable regional and global application.
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Appendix A

Table A1. Mean observed and simulated values for grain and dry matter yield of maize under
different cropping systems.

Treatment Mean (Obs.) Mean (Sim.) Mean (Obs.) Mean (Sim.)

Grain yield (kg ha−1) Dry matter yield (kg ha−1)
Maize–Cowpea 3991 2905 10,476 7451

Sole Maize 5285 5608 11,145 14,555
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