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Abstract: The ‘Kyoho’ (Vitis labruscana) grape is one of the mainly fresh fruits; it is important to
accurately segment the grape bunch and to detect its maturity level for the construction of an
intelligent grape orchard. Grapes in the natural environment have different shapes, occlusion,
complex backgrounds, and varying illumination; this leads to poor accuracy in grape maturity
detection. In this paper, an improved Mask RCNN-based algorithm was proposed by adding attention
mechanism modules to establish a grape bunch segmentation and maturity level detection model. The
dataset had 656 grape bunches of different backgrounds, acquired from a grape growing environment
of natural conditions. This dataset was divided into four groups according to maturity level. In
this study, we first compared different grape bunch segmentation and maturity level detection
models established with YoloV3, Solov2, Yolact, and Mask RCNN to select the backbone network.
By comparing the performances of the different models established with these methods, Mask
RCNN was selected as the backbone network. Then, three different attention mechanism modules,
including squeeze-and-excitation attention (SE), the convolutional block attention module (CBAM),
and coordinate attention (CA), were introduced to the backbone network of the ResNet50/101 in
Mask RCNN, respectively. The results showed that the mean average precision (mAP) and mAP0.75

and the average accuracy of the model established with ResNet101 + CA reached 0.934, 0.891, and
0.944, which were 6.1%, 4.4%, and 9.4% higher than the ResNet101-based model, respectively. The
error rate of this model was 5.6%, which was less than the ResNet101-based model. In addition,
we compared the performances of the models established with MASK RCNN, adding different
attention mechanism modules. The results showed that the mAP and mAP0.75 and the accuracy for
the Mask RCNN50/101 + CA-based model were higher than those of the Mask RCNN50/101 + SE-
and Mask RCNN50/101 + CBAM-based models. Furthermore, the performances of the models
constructed with different network layers of ResNet50- and ResNet101-based attention mechanism
modules in a combination method were compared. The results showed that the performance of the
ResNet101-based combination with CA model was better than the ResNet50-based combination with
CA model. The results showed that the proposed model of Mask RCNN ResNet101 + CA was good
for capturing the features of a grape bunch. The proposed model has practical significance for the
segmentation of grape bunches and the evaluation of the grape maturity level, which contributes to
the construction of intelligent vineyards.

Keywords: Mask RCNN algorithm; instance segmentation; attention module; convolutional neural
network; grape maturity level detection
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1. Introduction

The ‘Kyoho’ (Vitis labruscana) grape is mainly a fresh fruit, and there is no post-ripening
period after picking; so, it is very important to obtain information about the fruit’s maturity
and ripening time to select the best picking period for the high quality of ‘Kyoho’ grapes
after picking [1]. The traditional method of judging the maturity of the ‘Kyoho’ grape
bunch mainly relies on manual destructive detection, such as tasting or checking for skin
color changes, by the fruit farmer. However, this method has disadvantages: it is highly
subjective and inefficient, and there is a limited professional ability to judge the maturity of
‘Kyoho’ grape bunch [2]. In order to maintain the quality of the grapes, vineyards need to
be carefully managed so that the quantity and quality of the grapes are well balanced and
maximum vineyard profitability is achieved. This vineyard management can be difficult
as workers should closely monitor the quantity and quality of bunches throughout the
growing season to avoid the overripening of large amounts of fruit [3]. At the same
time, the decrease in the agricultural labor force and the increase in costs have presented
significant challenges to wine grape growers and managers [4]. In addition, the overripe
‘Kyoho’ grape is prone to becoming rotten fruit; it is easily damaged by birds and does not
respond well to transportation and storage [5]. Therefore, it is necessary to explore a fast,
accurate, and non-destructive prediction method for ‘Kyoho’ grape bunch maturity to assist
farmers in the rational distribution of labor and to reduce the waste of human resources;
this would not only help to improve the commodity rate of ‘Kyoho’ grapes, it would also
provide a research basis for robot picking. As a result, to improve the commercial rate of
grape clusters it is important to know how to quickly and accurately judge the ripeness of
grape clusters.

In recent years, with the progress and rapid development of image processing, more
and more methods of deep learning have been applied to agricultural production. This
also plays an important role in object detection and instance segmentation. The deep
learning method was used to detect the maturity of the ‘Kyoho’ grape bunch in the natural
environment [6]. Compared with the traditional taste or chemical methods, it not only did
not damage the fruit growth condition, it also improved the detection rate. However, in the
natural growing environment of ‘Kyoho’ grapes, a series of problems need to be solved
with regard to bunch detection and recognition, such as different light levels, different
angles, and the difficult identification of leaf occlusion.

The traditional method of judging grape ripeness has been studied by scholars since
the early 1980s. As early as 1980, Lee and Boume used the puncture method to detect
the hardness and sugar content of grapes to judge their maturity [7], but the puncture
method is a destructive test and is not suitable for the detection of grape maturity. In 2003,
Herrera et al. used a portable near-infrared spectrometer combined with a contact probe to
detect the total soluble solid content of post-harvest Chardonnay and Cabernet Sauvignon
to judge the grape maturity [8]. In 2010, Ghozlen et al. used optical sensors to determine
the maturity of grape panicles in the field by detecting the anthocyanin content of grape
kernels [9]. In 2011, Bramley et al. installed a sensor on a harvester to detect the grape
bunch maturity in the vineyard [10]. However, this method can only detect one bunch of
grapes at a time, which is inefficient, and the price of optical sensors is very high; thus, they
cannot be popularized.

With the continuous development of image processing, some scholars have combined
the maturity of fruits with images. In 2012, Rodriguez-Pulido et al. carried out histogram
threshold processing on CIELAB and HIS color space with an image analysis method
and realized the rapid judgment of the ripeness of multiple grapes at the same time [9].
However, this study was carried out in the positive laboratory and did not consider many
of the interference factors existing in the complex field environment. In 2014, Rahman and
Hellicar used image processing and computational intelligence methods to roughly divide
the field grape bunch into two types of ripe and unripe grapes according to the brown
characteristics of ripe grapes [11]. In 2016, Pothen and Nuske developed an image analysis
algorithm to classify grape panes into four levels and used a texture feature description
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combined with a random forest algorithm to realize the recognition of grape panes [12].
In 2018, Luo et al. used a K-means algorithm to realize the identification of ripe grape
bunches in the field [13]. In 2015, Liu et al. used a support vector machine (SVM) algorithm
to identify grape bunches in the natural environment, and the accuracy rate was 88.0% [14].
In 2018, Perez-Zavala et al. [15] used the same method and achieved an accuracy of 88.61%.
The above studies used shallow machine learning algorithms to identify grape bunches,
with low accuracy and relatively cumbersome feature extraction processes.

Since deep learning was proposed, there has been continuous experimentation and
research by scholars. In recent years, the convolutional neural network (CNN) has been
gradually applied to classification, object detection, and background segmentation. For
example, Aggarwal et al. presented a stacked ensemble-based deep learning classification
model based on Human Protein Atlas images [16]. Gulzar et al. constructed a fruit image
classification model based on MobileNetV2 with a deep transfer learning technique [17].
Hamid et al. established a seed classification model with a deep learning convolutional
neural network of MobileNetV2 [18]. Some scholars have used the Faster R-CNN network
to detect different fruits (melon, avocado, mango [19], orange, apple, etc.) by using RGB
and NIR images and their combinations. Grimm et al. used the full convolutional neural
network (FCN) with VGG-Net 16 as the backbone to segment and detect many organs,
including grape berries; the accuracy of the berry detection was 86.60%, and the F1 value
was 87.60% [20]. Fu et al. proposed that the background in an apple image should be
removed by depth feature first, and Faster R-CNN was used for apple detection, with an
average detection accuracy of 89.3% [21]. Parvathi et al. used ResNet50 as the backbone net-
work of Faster R-CNN to detect coconut maturity, and the accuracy rate reached 89.4% [22].
A supervised learning method was used to train FCN for plant leaf detection, and the
pixel accuracy reached 91%. In 2020, Wan et al. took into account the characteristics of
fruit images in natural light and the hanging state of fruit; they optimized the convolution
layer and pooling layer of the Faster R-CNN model [23] and achieved high accuracy in
the apple, mango, and citrus datasets. In 2020, Mai et al. [24] proposed a Faster R-CNN
model with classifier fusion. In the region candidate stage, three different levels of features
were used to train three classifiers for object classification; the stage was composed of
a simple convolutional layer, and a new loss function with a classifier correlation coeffi-
cient was introduced to train the region candidate network. It improved the reliability
of the Faster R-CNN network in small target fruit detection. In 2022, Lei et al. proposed
a new backbone network ResNet50-FPN-ED to improve the mask region convolutional
neural network (Mask RCNN) instance segmentation in order to improve detection and
segmentation performance in complex environments, such as the cluster shape changes,
leaf shadows, tree trunk occlusion, and grape overlap [25]. However, the average accuracy
of the proposed model in object detection and instance segmentation reached 60.1% and
59.5%, respectively. In 2022, Wei et al. proposed a two-stage instance segmentation method
based on an optimized Mask RCNN to solve the various difficulties of intelligent grape
picking in a complex orchard environment [26]. It not only accelerates the speed of the
model but also greatly improves the accuracy of the model and meets the storage resource
requirements of the mobile robot. The mean average precision (mAP) and mean average
recall (mAR) of the optimized Mask RCNN are 76.3% and 81.1%, respectively.

Due to the influence of the complex natural environment background, the research
work on the feature extraction and target detection of ‘Kyoho’ grape bunch maturity is
facing great challenges. Color is one of the most important characteristics for determining
fruit ripeness. The color of an item is determined by the light reflected from it; these
changes serve as a foundation for image processing and analysis [27]. In this paper, grape
panicle images are taken as the research object, and the ripeness of the ‘Kyoho’ grape
panicle is divided into four grades, from maturity level 1 to maturity level 4, according to
the color of the fruit skin, so as to judge the best picking time and the expected picking
time of this grape bunch. This paper deeply analyzes the Mask RCNN [28] network and its
development prospect based on the mmdetection framework; it optimizes and improves
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the existing algorithm by analyzing the current algorithm and proposes an optimization
method combined with the Mask RCNN algorithm. The optimized algorithm results are
obtained by a comparison with the existing Mask RCNN algorithm. The experimental
results show that the proposed method improves the accuracy of its maturity detection
and segmentation. Because the Mask RCNN algorithm has good instance segmentation
performance, it solves the problem of the difficultly that exists in detecting grape bunches
under occlusion or overlap. At the same time, the experiment can be applied to the
intelligent picking of agricultural products and other fields, which solves the problem of
the large use of manpower in the traditional picking process, saves human resources to a
large extent, and is a qualitative breakthrough in computer-aided agriculture.

The goal of this research is to investigate a model that can not only accurately segment
the grape bunch but can also evaluate the maturity of the grape bunch. In this study, a Mask
RCNN-based algorithm is improved by the addition of an attention mechanism module
to establish a grape bunch segmentation and maturity level detection model. We first
collected a dataset of grape bunches in different stages of maturity from different angles
and backgrounds in natural environments. Then, an improved grape bunch segmentation
and maturity evaluation model was proposed by combining a Mask RCNN network and an
attention mechanism. The model has practical significance in that it helps in the maturity
judgment of the ‘Kyoho’ grape in order for artificial intelligence to pick grapes. In addition,
the model can judge the maturity level of the ‘Kyoho’ grape and provide a basis for a
further evaluation of the time required for grape ripening, avoiding the wasteful situation
of picking too early or too late.

The main contributions of this work include the following. First, we collected one
dataset, including grape bunches of four different maturity levels, collected from different
views and backgrounds in the real word of the vineyard. Second, we designed an improved
segmentation and classification model by combining Mask RCNN and an attention mecha-
nism of coordinated attention, which has higher precision for the segmentation of the grape
bunch and the evaluation of the grape maturity level. The mean average precision (mAP),
mAP0.75 and the average accuracy of the model reached 0.934, 0.891, and 0.944. In the pro-
cess of this model design, we compared the performances of different models established
with YoloV3 [29], Solov2 [30], Yolact [31], and Mask RCNN to select the backbone network.
Then, three different attention mechanism modules, including squeeze-and-excitation at-
tention (SE) [32], the convolutional block attention module (CBAM) [33], and coordinate
attention (CA) [34], were introduced to the backbone network of the Mask RCNN, respec-
tively. In addition, the performances of models constructed with a combination of different
network layers of ResNet50- and ResNet101-based [35] attention mechanism modules were
compared. The experimental results showed that the segmentation and classification ability
of this model was higher than those of the above models. Finally, feature visualization
was analyzed.

2. Materials and Methods
2.1. Experimental Dataset

In this study, all the ‘Kyoho’ grape images were collected from the ‘Kyoho’ grape
base, which has good light transmission, in Pujiang County, Zhejiang Province, China.
RGB images of the ‘Kyoho’ grapes were obtained using a mobile phone camera (HUAWEI
P40, Huawei Technologies Co., Ltd., Shen Zhen, China) which had 50 megapixels. The
distance of the mobile phone camera from the ‘Kyoho’ grape ears was 20–40 cm, and the
pixel resolution was 3072 × 096 (3:4). During image collection, the ‘Kyoho’ grapes were
photographed from different angles (elevation angle and flat angle), with different light
(backlight and downlight), and in a block or not. After the image collection of the ‘Kyoho’
grapes, the data were named according to the time of image collection. A total of 601 images
were applied, in which one or more grape bunches with different maturity levels were
present in each image. As a result, 656 ‘Kyoho’ grape bunches were used. Examples of the
grape bunches from the different shooting angles are shown in Figure 1 below.
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The COCO format dataset was used in this study and was divided into a training set 
and a validation set. The training set contained 588 bunches, and the validation set con-
tained 68 bunches. Finally, labelling software was used to calibrate all the images and to 
generate the corresponding JSON files for training and testing. The annotated data are 
shown in Figure 3 below. 
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Figure 3. Dataset calibration diagram: (a) original image; (b) label of maturity grade; (c) calibrated 
image. 

Figure 1. Examples of grape bunch images: (a) elevation image; (b) flat image; (c) backlight image;
(d) downlight image; (e) screened image; (f) open image.

The grape bunches were divided into four groups according to the maturity levels,
based on the skin color of the bunch, from maturity level 1 to maturity level 4, with 163,
214, 204, and 75 bunch samples, respectively. Maturity level 1 was the immature stage:
all the granules of the ‘Kyoho’ grape bunch were green. Maturity level 2 was the color
transition stage: the grape granules had just changed from cyan to red. Maturity level 3
was the about-to-mature stage: the grape granules were purple in a large area and cyan in
a small area. Maturity level 4 was the mature stage: the granules of the ‘Kyoho’ grapes had
completely transformed into purple, as shown in Figure 2.
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Figure 2. Maturity morphology of ‘Kyoho’ grapes at different stages: (a) maturity level 1; (b) maturity
level 2; (c) maturity level 3; (d) maturity level 4.

The COCO format dataset was used in this study and was divided into a training
set and a validation set. The training set contained 588 bunches, and the validation set
contained 68 bunches. Finally, labelling software was used to calibrate all the images and
to generate the corresponding JSON files for training and testing. The annotated data are
shown in Figure 3 below.
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2.2. Mask RCNN Network Combined with Attention Mechanism Module
2.2.1. Mask RCNN Network

The Mask RCNN network is an algorithm for multiple tasks such as target detection
and segmentation. On the basis of Faster RCNN, a branch for target mask prediction was
added; that is, a full convolutional neural network was used to segment each region of
interest suggested by the RCNN so as to realize classification, positioning, and segmentation
at the same time. The main structure of Mask RCNN includes a backbone network, a
region selection network, alignment operation, classifier and border regress, and mask
segmentation [28]. The Mask RCNN network adopts a two-stage structure. In the first stage,
the backbone network, namely the deep residual network, is used to extract feature maps
of different stages from the input image. Secondly, it uses the top-down and horizontal
connection structure of the feature pyramid network to fuse features of different scales so
that it has strong semantic information and strong spatial information at the same time.
Thirdly, a fixed number of anchor boxes are set for each pixel on these feature maps, and
multiple candidate regions with different sizes are obtained by calculating the intersection
between each anchor box and the real box labeled on the image. Finally, the region proposal
network is used to perform binary classification (i.e., foreground/background) and border
regression on the candidate ROIs; to filter out the ROI with low classification scores; and to
set the ratio of positive and negative samples to 1:3 to alleviate the class imbalance problem
and reduce the calculation of unnecessary information in the second stage. In the second
stage, two alignment operations are performed: (1) the ROI selected in the first stage is
aligned, and the ROI in the original image is made to correspond with the pixels in the
feature map; (2) the ROIs with different sizes are converted to a uniform size. Secondly, in
order to reduce the error caused by the pooling process, the bilinear interpolation method
is used to calculate each pixel value from the adjacent grid points on the feature map,
and the important feature information contained in the ROI is obtained to complete the
classification, regression, and segmentation tasks. Finally, by adding segmentation branches
to the fully connected layer, each pixel on each ROI is classified and predicted by regression,
and the final binary mask is output. The network structure framework is shown in Figure 4.
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2.2.2. Squeeze-and-Excitation Attention (SE)

The attention module is a technology that enables the model to focus on important
information and fully absorb learning [36]. It can help the network to quickly lock the part
to be processed and to reduce unnecessary calculation loss and is a very useful method to
reduce the amount of network calculation.

The input feature map was processed by channel-wise maximum pooling and average
pooling at the same time so as to obtain a feature map with 1 channel number, which had
the same size and contained the spatial information of the image. The pooling was carried
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out in the channel dimension to compress the channel size and facilitate the later learning
of the spatial features. Then, the two feature maps were concatenated between the channels,
and a spatial feature map was obtained by convolution and activation function. Finally, the
corresponding multiplication was performed with the original input feature map to obtain
the final feature map output. The network structure diagram is shown in Figure 5.

Agriculture 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

The input feature map was processed by channel-wise maximum pooling and aver-
age pooling at the same time so as to obtain a feature map with 1 channel number, which 
had the same size and contained the spatial information of the image. The pooling was 
carried out in the channel dimension to compress the channel size and facilitate the later 
learning of the spatial features. Then, the two feature maps were concatenated between 
the channels, and a spatial feature map was obtained by convolution and activation func-
tion. Finally, the corresponding multiplication was performed with the original input fea-
ture map to obtain the final feature map output. The network structure diagram is shown 
in Figure 5. 

Figure 5. SE structure diagram. 

2.2.3. Convolutional Block Attention Module (CBAM) 
The CBAM is composed of a channel attention module and a spatial attention mod-

ule. The CBAM is a lightweight attention module, consisting of two independent sub-
modules, including a channel attention mechanism and a spatial attention mechanism. It 
integrates an attention map with an input feature graph to optimize the adaptive features. 
In the process of image feature extraction, the relevance of the channel and space should 
be used to enhance the expression ability of the target features so as to inhibit the expres-
sion of the invalid features. In this paper, the CBAM module was introduced into ResNet 
to improve the accuracy of the detection model and segmentation effect. The detection 
accuracy of the grape spike detection model in the natural environment is often deter-
mined by the feature extraction quality of ResNet; so, the category of targets in the exper-
iment has a strong correlation with its effect on each channel and the location of targets in 
the picture. The network structure diagram is shown in Figure 6. 

 
(a) 

Figure 5. SE structure diagram.

2.2.3. Convolutional Block Attention Module (CBAM)

The CBAM is composed of a channel attention module and a spatial attention module.
The CBAM is a lightweight attention module, consisting of two independent sub-modules,
including a channel attention mechanism and a spatial attention mechanism. It integrates
an attention map with an input feature graph to optimize the adaptive features. In the
process of image feature extraction, the relevance of the channel and space should be used
to enhance the expression ability of the target features so as to inhibit the expression of the
invalid features. In this paper, the CBAM module was introduced into ResNet to improve
the accuracy of the detection model and segmentation effect. The detection accuracy of
the grape spike detection model in the natural environment is often determined by the
feature extraction quality of ResNet; so, the category of targets in the experiment has a
strong correlation with its effect on each channel and the location of targets in the picture.
The network structure diagram is shown in Figure 6.
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2.2.4. Coordinate Attention (CA)

CA is a new efficient attention mechanism. In order to alleviate the loss of position
information caused by 2D global pooling, channel attention is decomposed into two parallel
(x and y direction) 1D feature coding processes to effectively integrate spatial coordinate
information into the generated attention graph. More specifically, two one-dimensional
global pooling operations are used to aggregate the input features in the vertical and
horizontal directions into two independent direction-aware feature graphs, respectively.
Then, the two feature graphs embedded with specific directional information are encoded
into two attention graphs, each of which captures the long-range dependence of the input
feature graphs along a spatial direction. Therefore, the location information is stored in the
generated attention map, and the two attention maps are then multiplied onto the input
feature map to enhance the representation of the feature map. Since this kind of attention
operation can distinguish spatial directions and generate a coordinate-aware feature map,
the proposed method is called coordinate attention. The network structure diagram is
shown in Figure 7.
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2.2.5. Improved Mask RCNN Network Model

Three different attention mechanism modules, including the SE, CBAM, and CA, were
introduced to the backbone network of ResNet to establish a grape maturity level detection
model, respectively. The structures of the improved network modules are shown in Figure 8.
In this study, the attention mechanism module was embedded into the residual modules to
make the attention moment of the model feature extraction focus on the information target,
improving the quality of the image feature extraction and thus increasing the accuracy of
the grape bunch maturity detection model.
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2.3. Evaluation Indexes for Model

In this experiment, average precision (AP), mean average precision (mAP), and mAP0.75
were used as the evaluation indicators.

AP is defined as the mean of the precision under different recall rates, which is the
integral of precision over recall and can be expressed as follows.

AP =
∫ 1

0
P(R)dR (1)

In Formula (1), P is the precision rate, which is defined as the detection accuracy rate
of all the detected objects, and R is the recall rate, which is defined as the detection accuracy
rate of all the positive samples, and they are expressed, respectively, as:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

In Formulas (2) and (3), TP represents the number of correctly identified detections of
targets, FP is the number of missed detections and false detections, and FN is the number
of objects detected as other kinds of objects.

The index of mAP is the average of AP; n represents the number of target types, and APi
is the average accuracy of the ith target. The calculation formula is shown in Formula (4):

mAP =
∑n

i=1 APi

n
(4)

The index of mAP0.75 is the average AP value when the intersection over union (IoU)
threshold is 0.75; n represents the number of target types; AP0.75i is the average precision
of the ith target when the IoU threshold is 0.75, and its calculation formula is shown in
Formula (5):

mAP0.75 =
∑n

i=1 AP0.75i

n
(5)

Accuracy measures the probability that an algorithm correctly identifies an instance of
each class. Accuracy is defined as the division of the number of positive class instances by
the total number of instances correctly predicted by the classifier. The expression is shown
in Formula (6). The threshold value in this study was set to 0.5 when computing the TP
and TN values.

Accuracy =
TP + TN

n
(6)
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3. Results
3.1. Experimental Environment and Parameter Settings

The proposed algorithm is based on the mmdetection framework released in Septem-
ber 2022 with version 2.25.2 and Mask RCNN. The system uses Windows 11, the processor
is 12th Gen Intel(R) Core (TM) i7-12700H, and the graphics card is NVIDIA GeForce RTX
3060. The software of PyCharm with the 2022.2 version was used for image processing and
data analysis.

Before training, the image size was normalized to 800 pixels × 500 pixels. In this
paper, the Mask RCNN model with a 50-layer residual network (ResNet50) and a 101-layer
residual network (ResNet101) as a backbone network and the improved Mask RCNN model
were studied in the segmentation of the grape ear image. In this paper, in order to address
the small dataset situation, we pre-trained the Mask RCNN weight model on the coco
dataset to speed up the running speed and feature learning process. A stochastic gradient
descent algorithm with a learning rate of 0.0025 and a momentum of 0.9 was used as the
optimization algorithm in the training of this model. To improve the segmentation accuracy,
two images were used on a single GPU as a mini-batch training set. The parameters are
shown in Table 1.

Table 1. Experimental model parameters.

Training Parameter Parameter Value

Input picture size 800 × 500
Batch size 2

Epochs 30
Optimizer SGD

Learning rate 0.0025
Weight Decay 0.0001
Momentum 0.9

3.2. Performance Comparison between Models Established with Different CNN Networks

In order to select the base network with a good performance, we first verified the
validity of the model established by Mask RCNN; this study performed training and test
experiments on Solov2, YoLov3, and Yolact, as well as Mask RCNN, which included Mask
RCNN_ResNet50 and Mask RCNN_ResNet101 in the maturity level detection dataset. The
mAPs for each maturity level and for all the maturity levels are shown in Table 2.

Table 2. Experimental comparison between Mask RCNN and common networks.

Model mAP AP for Level 1 AP for Level 2 AP for Level 3 AP for Level 4

Solov2 0.739 0.809 0.659 0.709 0.777
Yolov3 0.739 0.850 0.507 0.749 0.898
Yolact 0.799 0.895 0.689 0.716 0.897

Mask RCNN_ResNet50 0.846 0.967 0.764 0.766 0.887
Mask RCNN_ResNet101 0.869 0.947 0.754 0.818 0.956

AP is the mean average precision; AP is the average precision.

It can be seen from Table 2 that the performance of the model established with Mask
RCNN was better than the models constructed with the Solov2, Yolov3, and Yolact networks.
The mean average precision of ResNet50 as the backbone network was 10.7%, 9.5%, and
4.7% higher than that of Solov2, Yolov3, and Yolact, respectively. The mean average
precision of ResNet101 as the backbone network was 13%, 11.8%, and 7% higher than that
of Solov2, Yolov3, and Yolact, respectively. This proves that the base network of ResNet
chosen in this study had a better performance. As a result, the Mask RCNN ResNet was
used as the base network to establish a maturity detection model for the grape bunch.

Compared with the models established with Mask RCNN ResNet50 and Mask RCNN
ResNet101, the mAP was increased from 0.846 to 0.869, with increases of 2.3%. This result
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demonstrates that the deeper backbone network structure made the training of the network
more adequate and that the evaluation metrics were effectively improved.

For the identification of each maturity level of the grape bunch, we found that the
accuracy of maturity level 1 and level 4 was better than the accuracy of maturity level 2
and level 3. This may be because the granules of the grape bunch for level 1 and level 4 go
to one color, green for level 1 and amethyst for level 4. For level 2 and level 3, the colors
of granules in the same bunch changed from green to amethyst, which made them harder
to identify.

3.3. Performance Comparison of Models Established by Combining Mask RCNN with Different
Attention Mechanisms

The network training loss and accuracy convergence curve of the ‘Kyoho’ grape string
maturity detection model is shown in Figure 9. As can be seen from the curve in the figure,
regardless of the attention mechanism mentioned in this article, the loss value decreases as
the epoch increases and eventually becomes stable. The convergence speed of ResNet101 is
slightly faster, and the final stable loss value is slightly lower than that of ResNet50. After
the introduction of the attention mechanism in the Mask RCNN, the model obtained better
performance, and the subsequent work proved that it could accurately locate grape cluster
information and identify maturity.
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Mask RCNN_ResNet101 + CA.
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In order to verify and demonstrate the performance of the model established by the
improved algorithm, the comparative experiments were performed by adding different
attention mechanisms to Mask RCNN, including SE, CBAM, and CA, respectively. Tables 3
and 4 show the performances of the models established by combining different attention
mechanisms with Mask RCNN ResNet50 and Mask RCNN ResNet101, respectively.

Table 3. Comparison of performances of models established by combining Mask RCNN ResNet50
and the different attention mechanisms SE, CBAM, and CA, respectively.

Model mAP mAP0.75 Accuracy

Mask RCNN ResNet50 0.846 0.803 0.736
Mask RCNN ResNet50 + SE 0.864 0.835 0.866

Mask RCNN ResNet50 + CBAM 0.898 0.854 0.803
Mask RCNN ResNet50 + CA 0.907 0.889 0.883

mAP is the mean average precision; mAP0.75 is the mean average precision value when the intersection over union
threshold was set at 0.75.

Table 4. Comparison of performance for models established by combining Mask RCNN ResNet101
and the different attention mechanisms SE, CBAM, and CA, respectively.

Model mAP mAP0.75 Accuracy

Mask RCNN ResNet101 0.869 0.847 0.850
Mask RCNN ResNet101 + SE 0.905 0.868 0.917

Mask RCNN ResNet101 + CBAM 0.920 0.877 0.933
Mask RCNN ResNet101 + CA 0.934 0.891 0.944

mAP is the mean average precision; mAP0.75 is the mean average precision value when the intersection over union
threshold was set at 0.75.

Table 3 shows that after the introduction of the attention mechanisms to Mask RCNN
ResNet50, the performances of mAP and mAP0.75 and the accuracy were all improved.
Among them, after the addition of the attention mechanism of CA to Mask RCNN ResNet50,
mAP and mAP0.75 and the accuracy were 0.907, 0.889, and 0.883, respectively.

Table 4 shows the performances of the models established by combining the different
attention mechanisms with Mask RCNN ResNet50 and Mask RCNN ResNet101, respectively.

Table 4 shows that after the introduction of the attention mechanisms to Mask RCNN
ResNet101, the performances of mAP and mAP0.75 and the accuracy were all improved.
Among them, after the addition of the attention mechanism CA to Mask RCNN ResNet101,
mAP and mAP0.75 and the accuracy were 0.934, 0.891, and 0.944, respectively.

Figure 10 shows a qualitive comparison of the performances between the proposed
model established by combining Mask RCNN ResNet101 with coordinate attention and
the models constructed by the original Mask RCNN ResNet50/101, as well as Mask RCNN
ResNet50/101 combined with the attention mechanisms of squeeze-and-excitation attention
and the convolutional block attention module, respectively.

From Figure 10, we can see that when the three different kinds of attention were
introduced, mAP and mAP0.75 and the accuracy were all higher than the original Mask
RCNN-based models. In addition, the performances of the series of models established
with the deeper network of ResNet101 were better than the corresponding series of models
constructed with the ResNet50-based models.

Tables 5 and 6 show the quantitative comparison of the performances between the
different models established with Mask RCNN ResNet50/101 when combined with the
attention mechanisms SE, CBAM, and CA, respectively.



Agriculture 2023, 13, 914 13 of 18

Agriculture 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 

Table 4 shows that after the introduction of the attention mechanisms to Mask RCNN 
ResNet101, the performances of mAP and mAP0.75 and the accuracy were all improved. 
Among them, after the addition of the attention mechanism CA to Mask RCNN Res-
Net101, mAP and mAP0.75 and the accuracy were 0.934, 0.891, and 0.944, respectively. 

Figure 10 shows a qualitive comparison of the performances between the proposed 
model established by combining Mask RCNN ResNet101 with coordinate attention and 
the models constructed by the original Mask RCNN ResNet50/101, as well as Mask RCNN 
ResNet50/101 combined with the attention mechanisms of squeeze-and-excitation atten-
tion and the convolutional block attention module, respectively. 

 
Figure 10. Qualitive comparison of performance between different models established with Mask 
RCNN Res-Net50/101+SE/CBAM/CA, respectively. 

From Figure 10, we can see that when the three different kinds of attention were in-
troduced, mAP and mAP0.75 and the accuracy were all higher than the original Mask 
RCNN-based models. In addition, the performances of the series of models established 
with the deeper network of ResNet101 were better than the corresponding series of mod-
els constructed with the ResNet50-based models. 

Tables 5 and 6 show the quantitative comparison of the performances between the 
different models established with Mask RCNN ResNet50/101 when combined with the 
attention mechanisms SE, CBAM, and CA, respectively. 

Table 5. Incremental comparison between Mask RCNN ResNet50-based model and the combina-
tion of Mask RCNN ResNet50 with three attention mechanism-based models. 

Model mAP Variation mAP0.75 Variation Accuracy Variation 
Mask RCNN ResNet50 / / / 

Mask RCNN ResNet50+SE 1.8% 3.2% 13% 
Mask RCNN ResNet50+CBAM 5.2% 5.1% 6.7% 

Mask RCNN ResNet50+CA 6.1% 8.6% 14.7% 
mAP is the mean average precision; mAP0.75 is the mean average precision value when the intersec-
tion over union threshold was set at 0.75. 

Table 6. Incremental comparison between Mask RCNN ResNet101-based model and the combina-
tion of Mask RCNN ResNet101 with three attention mechanism-based models. 

Model mAP Variation mAP0.75 Variation Accuracy Variation 
Mask RCNN ResNet101 / / / 

0

0.2

0.4

0.6

0.8

1

mAP mAP0.75 Accuracy

Mask RCNN_ResNet50 Mask RCNN_ResNet50+SE
Mask RCNN_ResNet50+CBAM Mask RCNN_ResNet50+CA
Mask RCNN_ResNet101 Mask RCNN_ResNet101+SE
Mask RCNN_ResNet101+ CBAM Mask RCNN_ResNet101+CA

Figure 10. Qualitive comparison of performance between different models established with Mask
RCNN Res-Net50/101 + SE/CBAM/CA, respectively.
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Mask RCNN ResNet50 + CBAM 5.2% 5.1% 6.7%
Mask RCNN ResNet50 + CA 6.1% 8.6% 14.7%

mAP is the mean average precision; mAP0.75 is the mean average precision value when the intersection over union
threshold was set at 0.75.

Table 6. Incremental comparison between Mask RCNN ResNet101-based model and the combination
of Mask RCNN ResNet101 with three attention mechanism-based models.

Model mAP Variation mAP0.75 Variation Accuracy Variation

Mask RCNN ResNet101 / / /
Mask RCNN ResNet101 + SE 3.6% 2.1% 6.7%

Mask RCNN ResNet101 + CBAM 5.1% 3.0% 8.3%
Mask RCNN ResNet101 + CA 6.5% 4.4% 9.4%

mAP is the mean average precision; mAP0.75 is the mean average precision value when the intersection over union
threshold was set at 0.75.

Table 5 shows that when three different kinds of attention were introduced in
ResNet50 + SE, ResNet50 + CBAM, and ResNet50 + CA, mAP was 1.8%, 5.2%, and 6.1%
higher than ResNet50, respectively. mAP0.75 was 3.2%, 5.1%, and 8.6% higher than ResNet50,
respectively. The accuracy was 13%, 6.7%, and 14.7% higher than ResNet50, respectively.

Table 6 shows that when three different kinds of attention were introduced in
ResNet50 + SE, ResNet50 + CBAM, and ResNet50 + CA, mAP was 3.6%, 5.1%, and 6.5%
higher than ResNet50, respectively. mAP0.75 was 2.1%, 3.0%, and 4.4% higher than ResNet50,
respectively. The accuracy was 6.7%, 8.3%, and 9.4% higher than ResNet50, respectively.

The results show that the model established by combining Mask RCNN ResNet and
the attention mechanisms can extract more effective features and improve the accuracy
of the identification of the maturity level of the grape bunch. A comparison was made of
the performances of the models established with Mask RCNN ResNet50 and Mask RCNN
ResNet101 combined with the attention mechanisms, respectively; from Tables 3 and 5, we
can see that the performances of the models established by the combining of Mask RCNN
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ResNet101 and the attention mechanisms are better than the combining of Mask RCNN
ResNet50 and the attention mechanisms. Among them, mAP and mAP0.75 and the accuracy
of Mask RCNN ResNet101 + CA are 2.7%, 0.2%, and 6.1% higher than those of Mask RCNN
ResNet50 + CA. The results proved that the deeper network level can fully extract effective
information and can have a better detection and segmentation effect.

3.4. Feature Visualization

In the feature extraction stage, the feature maps mostly display the image detail feature
information and focus on the local features, shape, and detailed texture information of
the target. In this study, the images of the grape bunch were randomly selected from
the datasets, and the features extracted from the established models were visualized, as
shown in Figure 11a–h, respectively. The brighter the color, the higher contribution of the
model. It can be seen from Figure 11 that the feature map of the ‘Kyoho’ grape bunch
obtained by the improved model is more obvious and that more detailed features are
obtained for the image in the input network. In addition, the feature information is more
significant, which enhances the feature extraction ability of the network. Comparing the
improved feature maps with the original network of Mask RCNN ResNet50/101, it is clear
that by introducing the SE, CBAM, and CA modules, the effect is significantly improved
in the ResNet50/101 backbone network. The target information can well suppress the
other irrelevant target information and reduce the interference of the target background
information. It can improve the ability of the network model to extract features and improve
the recognition rate.
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backbone network; (b) the feature map with ResNet50 + SE as the backbone network; (c) the feature
map with ResNet50 + CBAM as the backbone network; (d) the feature map with ResNet50 + CA as
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the backbone network; (h) the feature map with ResNet101 + CA as the backbone network.

Figure 12 shows one example of the detection results for the models established by
the different methods used in this study. From Figure 12, we can see that there was a
deviation in the prediction of the maturity level category for the different models. The
model established with ResNet + SE and ResNet + CBAM had a mediocre test effect, and
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the results of the maturity level judgment were fuzzy, while the model of ResNet + CA was
more accurate in the prediction of the maturity level. For the performance of segmentation,
the improved algorithm performed better, and the segmentation of the bottom and the
edge of the grape bunch was more detailed.
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Figure 12. Examples of detection results for models established by different models: (a) detec-
tion result with model established by ResNet50; (b) detection result with model established by
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established by ResNet101 + CBAM; (h) detection result with model established by ResNet101 + CA.

4. Discussion

In this paper, the attention module was introduced into the backbone network of Mask
RCNN to segment and identify the maturity of the “Kyoho” grape bunch. The performance
of the model established by the combining of Mask RCNN_ResNet101 and coordinate
attention was significantly higher than that of the other models.

First, the comparison of the established models with the other common networks
of Solov2, Yolov3, and Yolact showed that the Mask RCNN can not only better detect
the grape bunch but can also better segment the grape bunch by adding mask branches.
At the same time, to solve the problem related to the fact that the feature map could not
be accurately aligned with the original pixels, Mask RCNN used ROI to align the pixels,
meeting the accuracy requirements of the image segmentation.

Second, ResNet101 and ResNet50 were used as the backbone networks to combine the
different attention mechanism modules, respectively. Compared with the deep network,
with the depth of the network layer the sensitivity field was larger; the features covered
by the pixel blocks of the same size were richer; the image features extracted were more
advanced; and the detection performance was significantly improved. On the same algo-
rithm basis, the results of this paper further proved that the models established with the
ResNet101-based methods were more accurate than the ResNet50-based methods.

Third, after the introduction of the attention mechanism module to the Mask RCNN,
the module enhanced the attention of the ‘Kyoho’ grape bunch extraction; selected the
focus position; generated more distinguishable feature representation; and made the model
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focus on the specific part of the input data, thus improving the ability and accuracy of the
model in grape bunch extraction.

Fourth, the comparison of the three attention mechanisms shows that SE only fo-
cused on constructing the interdependence between channels, ignoring the spatial features.
CBAM introduced the large-scale convolution kernel to extract the spatial features and
took the maximum value and the average value of the multiple channels at each position
as the weighting coefficients. Therefore, this weighting only considered the local range of
information. CA carried out maximum pooling in the horizontal and vertical directions,
and then transformed it to encode the spatial information. The spatial information was
fused by means of weighted channels. The experiment shows that combining Mask RCNN
and the attention mechanism module of CA can improve the performance of the grape
maturity level detection model.

Fifth, the results of the image of the grape bunch acquired in different views, including
the elevation image, flat image, backlight image, and downlight image, as well as the
block image, showed that the model established by combining mask RCNN ResNet and
the attention mechanisms could adapt to different complex backgrounds, improving the
detection accuracy of the maturity level of the grape bunch.

The research of this paper is helpful in detecting the maturity level of the ‘Kyoho’
grape. At the same time, image processing was introduced into agriculture to provide help
for the intelligent picking of ‘Kyoho’ grape. The estimated picking time of ‘Kyoho’ grapes
can be deduced according to the maturity level of the grape bunch combined with the grape
growth cycle, effectively avoiding the phenomenon of overripening or inaccurate picking
time in the growth process of ‘Kyoho’ grapes. However, in the process of testing, it was
found that there were still some errors in the segmentation of the edge of the grape bunch
case. At the same time, the dataset used in this paper was small, and the data with regard
to a complicated background should be collected later for an experimental supplement,
which needs to be improved through subsequent experimental research.

5. Conclusions

In this paper, we proposed a modified and fully automatic grape bunch segmentation
and maturity level identification algorithm based on Mask RCNN and attention mecha-
nisms. To improve the accuracy of grape bunch segmentation, an attention mechanism
module was added to the ResNet residual module of the Mask RCNN network. It helped
the network to focus on important feature information while suppressing noise during
training. The different deep layer networks of ResNet50 and ResNet101 were used as
backbone networks to establish a maturity detection module of the grape bunch; the results
showed that using deeper network layers can improve the segmentation accuracy of the
grape bunches. In addition, the different attention mechanisms of SE, CBAM, and CA were
introduced into the backbone network, respectively, to establish a maturity level detection
model; the results showed that the performance of the model established by adding CA
was significantly improved. In general, the proposed scheme was of great significance
for automatic grape bunch segmentation and maturity level detection for picking in a
natural environment. The improvement of the algorithm improved the detection accuracy
of the grape maturity level to a certain extent. This model can provide rapid and accurate
segmentation of grape bunches and detection of the maturity level, which contributes to
the construction of intelligent vineyards and helps artificial intelligence to pick grapes
and evaluate when to pick grapes. This not only helps to improve the commodity rate of
‘Kyoho’ grape but also provides a research basis for robot picking. This model we proposed
needs to be validated and improved by a larger dataset with a more complicated back-
ground. In addition, a more accurate and faster model needs to be studied and developed
in future studies.
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