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Abstract: The EU Green Deal requires the reduction in pesticides and fertilisers in food crop produc-
tion, whilst the sustainable development goals require reductions in food loss and food waste. In a
complex and interacting system like the food system, these goals are difficult to coordinate. Here,
we show an approach using Bayesian network modelling for decision support. Bayesian networks
are important tools for modelling complex systems which may develop emergent behaviour and
for providing quantitative comparisons for different candidate policies, approaches or interven-
tions under the Integrating Decision Support System paradigm. Using lettuce as an exemplar crop,
we demonstrate that expected food loss changes under different agricultural input reduction and
integrated pest management combinations can be quantified to aid decision making for growers.

Keywords: Bayesian networks; integrated pest management; EU Green Deal; sustainable
development goals; Integrating Decision Support Systems

1. Introduction

As human populations continue to grow, so does the demand for food, increasing
pressure on finite land resources. Fertilisers, pesticides and other agricultural inputs have
been used successfully to reduce food lost to pests and diseases, and so maximise yield.
Such losses present a significant threat to food production [1,2] and are mitigated by crop
protection measures. These measures, in the form of conventional pesticides (increasingly
replaced by biopesticides in certain systems [3,4]), have been utilised as a key tool to
ensure good yield and productivity [5]. Integrated pest management (IPM) may be widely
interpreted in different agricultural contexts [6]; however, it tends to be regarded as a
decision support system for selecting and implementing pest control tactics [7] in a way
that minimises crop loss and negative externalities. In the European Union, IPM has been
adopted in response to the intensification of pesticide use and is regulated through the
Sustainable Use of Pesticides Directive 2009/128/EC [8,9].

The announcement of the Green Deal by the European Union (EU) in 2019, with a
focus on significantly reducing pesticide and fertiliser input by 2030, presents a serious
challenge to food production, particularly for fresh vegetable production, where high
value is placed on quality [10]. In these systems, insights into management strategies and
assessments of crop protection decisions are still lacking [11].

With road maps for input reductions under the EU Green Deal yet to be decided for
specific crops, food producers find themselves in a situation of decision making under
considerable uncertainty. Modern IPM is regarded as a continuously improving process
to innovate, integrate and adapt locally, and it is becoming increasingly integrated into
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sustainability efforts at the farm level [6]. The Voluntary Initiative [12] in the UK is an
industry-led programme to support IPM standards and implementation by farmers.

A review of available decision support tools in an IPM context [13] does not mention
models focused on crop loss due to pesticide reductions, suggesting that this may be a
research gap. Here, a proof-of-concept approach using Bayesian network modelling is
presented, using lettuce as the exemplar crop. This approach supports smarter decision
making using digital tools, in the context of more sustainable crop protection inputs in
vegetable production systems. Importantly, it displays how large data sets, pesticide use
information and domain expertise can be combined for decision making and applied in a
specific case study. Useful baseline Structured Expert Judgement data are generated as a
reference point for future IPM and sustainable crop protection programmes, and the impact
of IPM implementation on crop loss under different production scenarios is demonstrated.

1.1. Food Loss

Food loss is a decrease in the quantity or quality of food due to decisions and actions
in the supply chain prior to reaching retailers or service providers [14]. The sustainable
development goals (SDGs) call for halving per capita global food waste at retail and
consumer levels by 2030, as well as reducing food losses along the production and supply
chains. As the use of agricultural inputs has been critical to delivering the productivity
required of available agricultural land, including controlling food loss rates, achieving the
goals of food loss and waste reduction with simultaneous agricultural input reduction
will be a challenging task. A particular challenge lies in the fact that production systems
(including crop breeding, variety selection and current conventional agronomic practices)
have proceeded in partnership with agricultural input development. Evolving regulatory
pressures and weather uncertainty due to climate change add to the difficult context of
grower strategy. This makes food loss reduction, whilst also meeting the EU Green Deal
requirements for reduced agrochemical inputs, a critical problem in the context of the rising
need for human nutrition.

1.2. EU Green Deal

The EU Green Deal is a set of proposals adopted by the European Commission to make
the EU’s climate, energy, transport and taxation policies fit for reducing net greenhouse gas
emissions by at least 55% by 2030, relative to 1990 levels. The EU Green Deal is important
for sustainable food production; it is Europe’s strategic response to climate change and
environmental degradation and presents a vision for key policy measures to transform the
economy and society in a more sustainable way. It focuses on 11 key elements. One of them
is ‘Farm to Fork’: designing a just, healthy and environmentally sustainable food system.
Clear targets have been set for agrochemical input reduction by 2030: growers will need
to reduce pesticide use by 50% and fertiliser use by 20%. There is no clear path to achieve
these cuts without increasing food loss and waste, in direct opposition to the relevant
SDGs, and reducing food availability for the human population. IPM is understood to
be a holistic approach to addressing plant pests and diseases using all available methods,
whilst limiting the application of synthetic chemical pesticides [15,16]. However, the crop
protection equivalence of IPM techniques replacing chemical use is still unclear, as the
robustness of strategies which focus on IPM have achieved mixed results [17]. Growers
and policy makers will need help to make evidence-informed decisions to balance the
interacting pressures they face.

1.3. Lettuce Growers

By working with lettuce growers, we designed a decision support system for growers
to identify the food loss effects of actions to reduce fertiliser and pesticide input. Lettuce
production provides a good case study because it has a short growing season, so many
crops are grown and harvested in the same calendar year, under similar conditions. Lettuce
has no secondary market; it is too watery for bio-digesters and cannot be frozen, making it
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more prone to waste. Engagement with horticulture growers has highlighted that pressure
to reduce agrochemical inputs poses a serious risk of increasing food loss, which is likely to
impact the economic and environmental sustainability of their enterprises [18]. Operating a
successful enterprise in horticulture requires meeting the challenge of delivering sufficient
and consistent yields whilst ensuring the marketing of aesthetically appealing products [19].
These production parameters have implications for the continued supply of nutritious
food and for achieving food security [19]. Additionally, current systems of production and
agronomic decision making (crop varieties, drilling techniques, rotations, integrated pest
management approaches) are tailored towards intensive farming practices which operate
coherently with agrochemical inputs. Pivoting to a system that encompasses lower inputs
will require considerations and decision making across the growing system to evaluate
how variables interact and influence each other.

1.4. Lettuce Production and Decision Support Systems

Lettuce (Latuca sativa L.) grows well in fertile well-structured soils. The main types
are crisphead, butterhead, looseleaf (e.g., batavia, oak leaf lettuce) and romaine [20], with
seeds sown in glasshouses or polythene tunnels ahead of transplanting them into the
field. Consistent temperature, irrigation, relative humidity, pH and electrical conductivity
together with fertilisation (NPK) are necessary for growth [21]. Several pests and diseases
may affect lettuce during production, leading to higher levels of food loss [20]. These
include bacterial diseases (e.g., Pseudomona and Xanthomonas species cause leaf spotting),
fungal diseases (e.g., downy mildew, moulds and rot, many of which are soil-borne and
show seasonal variation) and pests (aphids, moths, leaf miners, slugs and whitefly may
cause feeding damage or transmit plant viruses). Decision support rules and models
facilitate the use of a combination of techniques (including pesticides) to control pests and
diseases [20]. Challenges relating to real-world use include accessing commercial data to
validate and improve models [22] and little continued adoption due to the complexity of
the models [23]. The limitations of these models include inaccuracy in capturing late-season
trends at higher latitudes or inaccuracy due to slower growth rates [22].

1.5. Bayesian networks for Agriculture

Bayesian networks (BNs) are particularly suited to agricultural research as they repre-
sent explicitly the relationships between factors in a system, incorporate new evidence as it
becomes available and demonstrate changes in outcomes when either new circumstances
arise or when new interventions are enacted [24]. This allows proposed new interventions
and scenarios to be tested to see what effects they are likely to have on outcomes ahead of
implementation or occurrence. Another key strength is the ability of BNs to use probability
distributions to incorporate, in a robust and defensible manner, the inevitable uncertainties
associated with the impact of variable factors on each other. The qualitative structure of
the BN, representing the relationships, can be learned from data, where suitable data exist,
or elicited from the problem owner with other experts. Elicitation is always an iterative
process [25], involving the identification of factors, relationships and probability distribu-
tions, and formalised processes have recently appeared [26]. The relationships between the
variables can be correlations, causal or beliefs, and the strength of these relationships can be
represented [27]. The outcomes can be expressed as multi-attribute utilities [28], reflecting
the priorities of decision makers. The mathematical constraint that BNs must be Directed
Acyclic Graphs (i.e. have no feedback loops) can be easily overcome where a relevant
separation of timescales can be defined, allowing a Dynamic Bayesian network (DBN) to
be constructed [29]. There have been a number of instances of BN implementation related
to automated monitoring in agriculture, including the monitoring of animal livestock [30],
crops [31], natural resources [32] and storage environment control [33]. The decisions sup-
ported were treatment regimes for mastitis in cattle, swine fever in pigs [34] and tropical
diseases in bovine herds. The ability of BNs to make inferences has been leveraged to
predict crop yields, disease evolution, disease transmission, weed infestations, pollution po-
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tential, the viability of farming businesses, breeding strategies, crop disease and agricultural
policies [24]. In causal BNs, it is possible to trace back the causes of emergent problems,
including disease transmission, pollution, antibiotic resistance, weed invasion, pests and
parasites, farmer engagement and plant growth [24]. There are implied decisions which
will be informed by these BN applications; BNs can be designed to be decision support
tools directly. Examples include medical interventions, herd management, energy demand,
land management, and pollution and crop management [24]. Section 2 introduces statistical
decision support, Bayesian networks and Structured Expert Judgement. We then describe
the data and sources, how the model was developed and the data incorporated. Section 3
gives the results of the SEJ exercise and the outputs of the model under a range of scenarios.
The conclusion discusses the results in context and elucidates the strengths and limitations
of the research. Appendix A contains images of the model outputs.

2. Materials and Methods

A novel paradigm for decision support for large, interconnected systems was intro-
duced by researchers [35,36], in which the authors showed that expert judgements from
disparate panels of experts (often themselves informed by huge data sets and large, com-
plex models) can be combined to provide a robust and coherent decision support system
capable of scoring candidate policies (typically, combinations of actions). The eventual
aim of this research is to provide such a decision support system for horticulture. In this
paper, we show how a constituent decision support system can be constructed for a single
crop. With such a model for each crop, an Integrating Decision Support System (IDSS) for
the sector can be designed as described in [35,36] to deliver an evidence-based decision
support system for horticulture or agriculture more widely.

2.1. Bayesian Networks

Bayesian networks (BNs) [37] are a statistical model comprising the set of factors of
influence in the system (random variables, represented as nodes) and the relationship
of influence between them (arrows or directed edges, see Figure 1). BNs and dynamic
BNs are particularly suited to the role of decision support as they represent the state of
the world as a set of variables and model the probabilistic dependencies between the
variables [38,39]. When built on the knowledge of domain experts, as in this case, they
also provide a narrative for, or represent an understanding of, the system and can be
transparently and coherently revised as the domain changes. BNs are one type of proba-
bilistic graphical model, where the nodes represent discrete or continuous variables and
the directed arcs represent direct connections between variables, which may be causal or
represent causal beliefs. The direction of the arrow indicates the direction of the effect [39].

A Bayesian network is formally defined as a directed acyclic graph (DAG) together
with a set of conditional independence statements having the form A is independent of
B given C, written as A ⊥ B|C. They are a simple and convenient way of representing
the factorisation of a joint probability density function of a vector of random variables
Y = (Y1, Y2, . . . , Yn). The joint density of Y may be written as

f (y) = ∏
i∈[n]

fi(yBi | yΠBi
),

where Πi represents the indices of parents of Yi.
Each node has a conditional probability distribution, which, in the case of discrete

variables, will be conditional probability tables (CPTs). see Figure 1) for an example of a CPT.
Root nodes have simple CPTs as they only contain the prior or marginal probabilities. The
downstream nodes have more complex distributions, with nodes having a large number of
parents (direct connections leading into them) with very large CPTs which may be difficult
to populate either from data or using Structured Expert Judgement (see Figure 1). If it is
desirable to reduce the number of parents (perhaps to speed up computation or reduce
expert burden in SEJ elicitation [40]), intermediate latent summary nodes can be used. For
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example, rainfall, hours of sunshine and temperature might be combined into categories of
weather conditions such as favourable or unfavourable.

BNs can capture linear and non-linear relationships and can pass uncertainty in one
variable to another to correctly quantify the uncertainty in the outcome.

Figure 1. An illustrative directed acyclic graph (DAG) depicting parent nodes A and B and a child
node C with example conditional probability tables (CPTs) for nodes A and C. Node D represents the
decision node.

2.2. Structured Expert Judgement

Structured Expert Judgement (SEJ) elicitation is a robust and defensible method for
producing evidence for policymakers. The use of expert advice and opinion to support
policy decision making is commonplace, but generally, the manner in which contributions
are synthesised to inform the eventual decision is not transparent. Where informal heuris-
tics and elicitation are employed, experts are subject to a number of well-documented
biases: social biases, deferring to the member with the most compelling personality or
credentials or who is perceived as the most senior; bias towards the most readily available
information; and misunderstandings due to semantic differences [41,42]. The results of
such unstructured approaches are often not reproducible and can be unreliable and heavily
biased. These difficulties can be significantly reduced by using structured approaches
designed to mitigate the most pervasive and debilitating psychological and contextual
frailties of expert judgement [43–46].

Structured elicitation of expert opinion in pursuit of decision support is an increasingly
important technique and is widely used by the European Food Standards Agency (EFSA)
in making risk assessments [47]. Other examples include assessments of health risks [48],
household food security [49] and to quantify uncertainty in the risks of herbicide-tolerant
crops [50]. Validated protocols for SEJ fall into three broad categories based on how they
aggregate the individual contributions of experts into a single estimate: behavioural ag-
gregation (seeking consensus); mathematical aggregation (combining individual estimates
using a formula); and mixed aggregation. There are several well-established methodolo-
gies for SEJ elicitation protocols, each with its own strengths and limitations [47]. The
recently-developed IDEA elicitation protocol [51] combines the strengths and ameliorates
some limitations of older methods. The acronym IDEA arises from the combination of
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the distinctive features of the protocol: it encourages experts to investigate and estimate
individual first-round responses, discuss the anonymised version of those responses, and
estimate second-round responses, following which judgements are combined using mathe-
matical aggregation. It is an extension of Cooke’s classical method, which does not have
the facilitated discussion or second round estimates [52]. In the development of the current
decision support system to identify and inform potential intervention decisions across the
range of food loss determinants, there were no data to quantify food loss percentages under
fertiliser and pesticide reduction as ameliorated by a range of integrated pest management
actions. Therefore, a SEJ elicitation using the IDEA protocol was employed to fill this
data gap.

2.3. The SEJ Workshop

Since SEJ involves a combination of expert judgement, diversity of experts is more
important than large numbers. Greater than fifteen experts does not significantly improve
the findings, but fewer than five may reduce the chance of providing adequate diversity
in opinions [47]. Eight experts initially agreed to participate in the elicitation process in
an online workshop and were sent the participant information as given in our successful
ethical approval application, outlining the IDEA protocol and the role played by them as
experts. On the day, four experts attended the workshop, where the IDEA protocol was
explained again. When we moved into the elicitation session itself, all but two left the
online meeting without explanation. We were able to find an additional two experts, who
had been presented with the protocol outline during the planning stages. This gave us
estimates for four experts altogether. However, they did not have the capacity to attend the
facilitated discussion element, so we reverted to Cooke’s protocol for SEJ, which does not
include this element. The final four participating experts were employed in horticulture
training (1), research (1) and advisory services (2) and included two females and two
males. Whilst a decision maker may wish to re-run the elicitation with a larger group
before using the full model for decision support, we are satisfied that the diversity in the
experts’ backgrounds, experience and perspectives is rich enough for this proof of concept.
The experts were asked for their estimates of the percentage change in expected crop yield
under scenarios of varying IPM, fertiliser use and pesticide use. They were asked to give
their lowest plausible estimate (interpreted as 5th percentile), highest plausible estimate
(95th percentile) and best estimate (50th percentile) of the change in crop yield.

2.4. Data

The data for each of the nodes were obtained and transformed as necessary. Details of
sources can be found in the Table 1.

Table 1. A table showing the sources of the data used for building the Bayesian network. FERA
pesticide usage survey data: https://pusstats.fera.co.uk/home, accessed on 16 March 2021.

Data Source

Fungicide Application Rate (kg/ha) Food and Environment Research Agency (FERA)
Insecticide Application Rate (kg/ha) Food and Environment Research Agency (FERA)
Herbicide Application Rate (kg/ha) Food and Environment Research Agency (FERA)
Molluscicide Application Rate (kg/ha) Food and Environment Research Agency (FERA)
Reduction in Pesticide Use (%) Structured Expert Judgement
Reduction in Fertiliser Use (%) Structured Expert Judgement
Integrated Pest Management (IPM) Structured Expert Judgement
Food Loss (%) Structured Expert Judgement

The pesticide application rate data for the fungicide, insecticide, herbicide and mollus-
cicide were each discretised into three levels, as shown in Table 2. The application rates in
each category were then matched with each of the pesticide use reduction scenarios from
the SEJ and their corresponding reduction in fertiliser use and percentage change in yield.

https://pusstats.fera.co.uk/home
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The scenarios of the reduction in pesticide and fertiliser use were set to 10%, 25% and 50%
and 5%, 10% and 20% respectively.

Table 2. A table showing the pesticide application intervals and categories used for the Bayesian
network.

Pesticide Application Rate Intervals Categories

Fungicide 0.019–0.349 kg/ha Q1
0.350–0.645 kg/ha Q2
0.646–5.000 kg/ha Q3

Herbicide 0.151–0.550 kg/ha Q1
0.551–0.709 kg/ha Q2
0.710–1.800 kg/ha Q3

Insecticide 0.0042–0.0538 kg/ha Q1
0.0539–0.0793 kg/ha Q2
0.0794–0.2000 kg/ha Q3

Molluscicide 0.135–0.146 kg/ha Q1
0.147–0.171 kg/ha Q2
0.172–0.232 kg/ha Q3

There were no data available for changes in food loss given changes in integrated pest
management, fertiliser and pesticide use and application rates; thus, a binary node was
used for the IPM node in the BN where ‘Unchanged IPM’ was set to ‘No’ and ‘Increased
IPM’ set to ‘Yes’.

The change in crop yield from the SEJ (see Table 3) is referred to as yield loss in the
BN. The percentage changes in crop yield were also discretised into five categories and
labelled as ‘Very Low’ (0.0 to −8.5%), ‘Low’ (−8.6 to −13.5%), ‘Medium’ (−13.6 to −17.5%),
‘High’ (−17.6 to −22.5%) or ‘Very High’ (greater than −22.6%). Note that these losses are
in addition to the average 10% loss.

2.5. Model Development

The Bayesian network was constructed with the assistance of domain experts and the
published literature. Using our contacts in the lettuce growing community, we were able to
harness expertise in the domain to describe the lettuce system, its important constituents
and the relationships between them, as described in [25]. This was an iterative process of
sharing understanding, where BN analysts represented their understanding of the experts’
explanations in the qualitative structure of a BN, and then, the domain experts discussed
the veracity of the representation. This was validated through repetition until the experts
were satisfied that the qualitative BN structure accurately represented the dynamics of the
system at appropriate granularity, a process called Soft Elicitation [53]. We also ascertained
what growers’ goals are and what decision support needs are required in relation to the EU
Green Deal.

Having ascertained what the parameters should be from the experts and literature,
we sought to quantify the model with relevant probability distributions. As described in
detail above, these were derived from data wherever possible, using growers’ expertise
to identify relevant sources of data. Where suitable data could not be obtained, an SEJ
exercise was held with growers, horticultural advisers and other relevant experts to derive
the missing probability distributions, as described in detail above. The data from both
sources were used to construct conditional probability tables, as shown in Figure 1 and
Table 3, where the 50th percentile value was used.
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Table 3. Aggregated estimates of change in expected crop yield from three experts.

Question Percentile
5th 50th 95th

What is the percentage change in the expected crop yield if ...
IPM is unchanged, pesticide use is reduced by 10% and fertiliser is reduced by 5%? −7.917 −3.500 −1.417
IPM is unchanged, pesticide use is reduced by 10% and fertiliser is reduced by 10%? −10.000 −6.667 −4.333
IPM is unchanged, pesticide use is reduced by 10% and fertiliser is reduced by 20%? −18.833 −13.000 −8.500
IPM is unchanged, pesticide use is reduced by 25% and fertiliser is reduced by 5%? −16.667 −8.667 −6.000
IPM is unchanged, pesticide use is reduced by 25% and fertiliser is reduced by 10%? −18.083 −12.833 −8.250
IPM is unchanged, pesticide use is reduced by 25% and fertiliser is reduced by 20%? −24.583 −18.500 −11.083
IPM is unchanged, pesticide use is reduced by 50% and fertiliser is reduced by 5%? −26.250 −14.833 −10.750
IPM is unchanged, pesticide use is reduced by 50% and fertiliser is reduced by 10%? −28.167 −19.333 −12.000
IPM is unchanged, pesticide use is reduced by 50% and fertiliser is reduced by 20%? −37.500 −25.333 −18.833

IPM is increased, pesticide use is reduced by 10% and fertiliser is reduced by 5%? −4.083 1.333 4.083
IPM is increased, pesticide use is reduced by 10% and fertiliser is reduced by 10%? −6.833 −3.167 −0.833
IPM is increased, pesticide use is reduced by 10% and fertiliser is reduced by 20%? −14.000 −8.833 −4.667
IPM is increased, pesticide use is reduced by 25% and fertiliser is reduced by 5%? −12.083 −5.750 −1.750

IPM is increased, pesticide use is reduced by 25% and fertiliser is reduced by 10%? −14.833 −9.917 −4.667
IPM is increased, pesticide use is reduced by 25% and fertiliser is reduced by 20%? −20.000 −13.917 −9.167
IPM is increased, pesticide use is reduced by 50% and fertiliser is reduced by 5%? −23.750 −13.917 −9.167

IPM is increased, pesticide use is reduced by 50% and fertiliser is reduced by 10%? −24.167 −17.167 −11.167
IPM is increased pesticide use is reduced by 50% and fertiliser is reduced by 20%? −30.667 −22.833 −16.667

The prototype BN initially conceptualised for this project can be seen in Figure 2.
However, due to the challenge with data availability, some nodes were dropped and
a modified BN structure in Figure 3 was used for this proof of concept. The Growing
Environment, for instance, was a latent node to be derived from the inherent clusters within
a combination of pesticide fertiliser application rate, IPM and weather condition. Indeed
there are specific pest case studies indicating that IPM tactics impact the soil environment.
Our initial models set out to include soil data. However, the available data were typically at
a very high resolution and focused on physical parameters and soil classification. Soil data
relating to chemical and biological properties are not yet widely available; therefore, it was
decided that the node relating to soil should be removed in an effort to focus on nodes where
robust data were available to use, thus allowing us to demonstrate our proof of concept.
Also, due to the lack of data on IPM and its interaction with weather conditions, this element
was omitted.

Figure 2. The BN model derived from interaction with multiple domain experts.
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The prototype of the BN used for this work (Figure 3) was developed with GeNIe
Modeler by ‘BayesFusion’ (Available from http://www.bayesfusion.com/ accessed on
11 March 2024).

Figure 3. The BN model structure used for this proof of concept.

3. Results

The results from the SEJ are based on contributions by three experts, as one expert
did not complete the calibration questions required for assessing experts’ accuracy and
informativeness in Cooke’s method. Each expert’s accuracy and informativeness score
estimates of the 5th, 50th and 95th percentiles for each question of interest were aggregated
using the R expert package [54]. Estimates were aggregated to create a distribution, giving
equal weight to each expert. Table 3 shows the aggregated lowest, best and highest estimates
of the percentage change in crop yield for different scenarios of IPM, pesticide and fertiliser
use. Estimates from the fourth expert, who did not complete the calibration questions
and so could not be included in the analysis, were in the main slightly lower than the
aggregate estimates.

After the data from the SEJ were entered into the model, some plausible scenarios
were tested to see how the food loss rates changed.

Scenario 1 represented minimal reductions in fertiliser and pesticides using the ap-
plication rates in Q1 (Table 2) and no increase in integrated pest management (IPM). To
investigate this, we set the fungicide, herbicide, insecticide and molluscicide nodes to Q1,
pesticide to reduce 10% and fertiliser to reduce 5%. Typical food losses are around 10%,
so the losses reported here are additional. The outputs showed that the additional food
loss was likely up to 8.5%, which we categorised as very low. The probability of losses
being very low was 60% and losses being in other categories (low (8.6–13.5%), medium
(13.6–17.5%), high (17.6–22.5%) or very high (over 22.6%)) 10% (see Figure 4). As we had
few experts, the data are less smooth than they would be with a larger pool of experts.

Scenario 2 represented moderate reductions in fertiliser and pesticides using the
application rates in Q1 (Table 2) and no increase in IPM. To investigate this, we set the
fungicide, herbicide, insecticide and molluscicide nodes to Q1, pesticide to reduce 25%
and fertiliser to reduce 10%. The outputs showed that the additional food loss was likely
between 13.6 and 17.5%, which we categorised as medium. The probability of losses being
medium was 60% and losses being in other categories (very low (0.0-8.5%), low (8.6–13.5%),
high (17.6–22.5%) or very high (over 22.6%)) 10% (see Figure 5).

http://www.bayesfusion.com/
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Figure 4. Scenario 1: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 10% and fertiliser to reduce 5%. Typical food losses are around 10%, so the
losses reported here are additional.

Figure 5. Scenario 2: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 25% and fertiliser to reduce 10%. Typical food losses are around 10%, so
the losses reported here are additional.

Scenario 3 represented reductions in fertiliser and pesticide in line with the EU Green
Deal based on the application rates in Q1 (Table 2) and no increase in IPM. To investigate
this, we set the fungicide, herbicide, insecticide and molluscicide nodes to Q1, pesticide to
reduce 50% and fertiliser to reduce 20%. The model outputs showed that the additional
food loss was likely over 22.6%, which we categorised as very high. The probability of
losses being very high was 60% and losses being in other categories (very low (0.0–8.5%),
low (8.6–13.5%), medium (13.6–17.5%), high (17.6–22.5%)) 10% (see Figure 6).

Next, we ran the same scenarios with IPM increased. Scenario 4 represented minimal
reductions in fertiliser and pesticides based on the application rates in Q1 (Table 2) with
an increase in IPM. To investigate this, we set the fungicide, herbicide, insecticide and
molluscicide nodes to Q1, pesticide to reduce 10% and fertiliser to reduce 5%. The model
outputs showed that the additional food loss was likely up to 8.5%, which we categorised
as very low. The probability of losses being very low was 60% and losses being in other
categories (low (8.6–13.5%), medium (13.6–17.5%), high (17.6–22.5%) or very high (over
22.6%)) 10% (see Figure 7).
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Figure 6. Scenario 3: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 50% and fertiliser to reduce 20%. Typical food losses are around 10%, so
the losses reported here are additional.

Figure 7. Scenario 4: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 50% and fertiliser to reduce 20%. Typical food losses are around 10%, so
the losses reported here are additional.

Scenario 5 represented moderate reductions in fertiliser and pesticides using the
application rates in Q1 (Table 2) with an increase in IPM. To investigate this, we set the
fungicide, herbicide, insecticide and molluscicide nodes to Q1, pesticide to reduce 25% and
fertiliser to reduce 10%. The model outputs showed that the additional food loss was likely
between 13.6 and 17.5%, which we categorised as medium. The probability of losses being
medium was 60% and losses being in other categories (very low (0.0-8.5%), low (8.6–13.5%),
high (17.6–22.5%) or very high (over 22.6%)) 10% (see Figure 8).

Scenario 6 represented reductions in fertiliser and pesticides in line with the EU Green
Deal with the application rates in Q1 (Table 2) with an increase in IPM. To investigate
this, we set the fungicide, herbicide, insecticide and molluscicide nodes to Q1, pesticide to
reduce 50% and fertiliser to reduce 20%. The model outputs showed that the additional
food loss was likely over 22.6%, which we categorised as very high. The probability of
losses being very high was 60% and losses being in other categories (very low (0.0-8.5%),
low (8.6–13.5%), medium (13.6–17.5%), high (17.6–22.5%)) 10% (see Figure 9).
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Figure 8. Scenario 5: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 25% and fertiliser to reduce 10%. Typical food losses are around 10%, so
the losses reported here are additional.

Figure 9. Scenario 6: The BN model with fungicide, herbicide, insecticide and molluscicide nodes set
to Q1, pesticide to reduce 50% and fertiliser to reduce 20%. Typical food losses are around 10%, so
the losses reported here are additional.

All the possible combinations are shown in Tables 4–6 below.
The models for the application rates in Q2 are shown in Table 5, and the models for the

application rates in Q3 are shown in Table 6. The same pattern as in scenarios 1–6 persists
regardless of the beginning levels of application rates. In a full model, further scenarios
could be run, with different combinations of fungicide, herbicide, insecticide and mollusci-
cide starting application rates.
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Table 4. Probability of food loss: Q1. Typical losses are around 10%. The losses above are
additional. Very Low represents additional losses up to 8.5%, Low 8.6–13.5%, Medium 13.6–17.5%,
High 17.6–22.5% and High over 22.6%.

% Reduction Probability of Food Loss (%)

Q IPM Fertiliser Pesticide Very
Low Low Medium High Very

High

1 No 5 10 60 10 10 10 10
1 No 10 10 10 60 10 10 10
1 No 20 10 10 10 60 10 10
1 No 5 25 10 60 10 10 10
1 No 10 25 10 10 60 10 10
1 No 20 25 10 10 10 60 10
1 No 5 50 10 10 60 10 10
1 No 10 50 10 10 10 60 10
1 No 20 50 10 10 10 10 60
1 Yes 5 10 60 10 10 10 10
1 Yes 10 10 10 60 10 10 10
1 Yes 20 10 10 10 60 10 10
1 Yes 5 25 10 60 10 10 10
1 Yes 10 25 10 10 60 10 10
1 Yes 20 25 10 10 10 60 10
1 Yes 5 50 10 10 60 10 10
1 Yes 10 50 10 10 10 60 10
1 Yes 20 50 10 10 10 10 60

Table 5. Probability of food loss: Q2.

% Reduction Probability of Food Loss (%)

Q IPM Fertiliser Pesticide Very
Low Low Medium High Very

High

2 No 10 5 60 10 10 10 10
2 No 10 10 10 60 10 10 10
2 No 10 20 10 10 60 10 10
2 No 25 5 10 60 10 10 10
2 No 25 10 10 10 60 10 10
2 No 25 20 10 10 10 60 10
2 No 50 5 10 10 60 10 10
2 No 50 10 10 10 10 60 10
2 No 50 20 10 10 10 10 60
2 Yes 10 5 60 10 10 10 10
2 Yes 10 10 10 60 10 10 10
2 Yes 10 20 10 10 60 10 10
2 Yes 25 5 10 60 10 10 10
2 Yes 25 10 10 10 60 10 10
2 Yes 25 20 10 10 10 60 10
2 Yes 50 5 10 10 60 10 10
2 Yes 50 10 10 10 10 60 10
2 Yes 50 20 10 10 10 10 60

We note that the increase in food loss is lowest when input reduction is lowest,
regardless of whether IPM is being used or not. Conversely, when the input reduction is at
full EU Green Deal levels, the increase in food loss is at its greatest, independent of IPM
use. This research demonstrates that, whilst increasing use of IPM to balance the reduction
in fertiliser and pesticide does make some difference (Table 3), it is insufficient, in the view
of our experts, to compensate for the reductions in pesticide and fertiliser to a sufficient
degree to change the category of likely percentage of food losses.



Agriculture 2024, 14, 458 14 of 21

Table 6. Probability of food loss: Q3.

% Reduction Probability of Food Loss (%)

Q IPM Fertiliser Pesticide Very
Low Low Medium High Very

High

3 No 10 5 60 10 10 10 10
3 No 10 10 10 60 10 10 10
3 No 10 20 10 10 60 10 10
3 No 25 5 10 60 10 10 10
3 No 25 10 10 10 60 10 10
3 No 25 20 10 10 10 60 10
3 No 50 5 10 10 60 10 10
3 No 50 10 10 10 10 60 10
3 No 50 20 10 10 10 10 60
3 Yes 10 5 60 10 10 10 10
3 Yes 10 10 10 60 10 10 10
3 Yes 10 20 10 10 60 10 10
3 Yes 25 5 10 60 10 10 10
3 Yes 25 10 10 10 60 10 10
3 Yes 25 20 10 10 10 60 10
3 Yes 50 5 10 10 60 10 10
3 Yes 50 10 10 10 10 60 10
3 Yes 50 20 10 10 10 10 60

4. Conclusions

We have demonstrated that a BN approach can guide grower decisions to minimise
food loss whilst transitioning to reduced pesticide and fertiliser use, using lettuce as an
exemplar crop. BNs can model the relevant complexity and interactions in the growing
system to form the basis for an IDSS to quantify expected food loss percentages under a
range of agricultural input and IPM combinations. This proof of concept provides a basis
for developing this approach for decision support for growers and policy makers.

The contribution of the Structured Expert Judgement of expected losses for lettuce
under a range of scenarios, where measured data are not available, is a valuable contribu-
tion. However, since the number of experts contributing their estimates was fewer than
ideal, it would be wise to re-run the elicitation with more experts for a system to be used in
business or policy decision making.

The principles of IPM have been well articulated in articles [6,55]. In line with our
objective to model Green Deal objectives to reduce pesticide use, we ultimately focus on
addressing Principal 6 [55], which indicates the following: “Reduced pesticide use, in
terms of frequency, spot spraying, or dose reduction is a recognised tactic along the IPM
continuum that can be combined with other ones”. As such, we feel we align well with
principal 6. The minimal contribution we find IPM makes to supporting pesticide and
fertiliser reductions may be explained by the varied definitions and understandings of IPM
[6], as well as the perception among practitioners of a high cost associated with practising
IPM and complications in applying it [56].

Modelling relationships of crop loss under different pesticide and fertiliser regimes
in the context of IPM adoption, as well as the collective use of different types of data, are
strengths of this study. One limitation is the low number and diversity of the experts
contributing to the SEJ. Experience suggests that the facilitated discussion would have iden-
tified more subtle aspects of the system, and experts’ estimates would have been shaped by
this. It is possible that the probability distributions would be broader with more academics
contributing, although experience shows that where calibration is used, a small number of
experts typically contribute the majority to the joint estimate. Although some nodes in the
BN, which experts had agreed should be present in this proof of concept, were omitted due
to a lack of data, the BN structure derived through Soft Elicitation techniques is reported
and is a valuable contribution to developing robust and defensible decision support. Policy-



Agriculture 2024, 14, 458 15 of 21

makers can leverage this proof of concept and, having addressed the limitations, use a full
model to ascertain the food loss implications of candidate policy options. This will allow
policymakers to select from among the candidate policies those which keep food loss within
acceptable levels.
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Appendix A

Figure A1. The BN model with fungicide, herbicide, insecticide and molluscicide nodes set to Q1,
pesticide to reduce 25% and fertiliser to reduce 5%. Typical food losses are around 10%, so the losses
reported here are additional.

https://www.stfcfoodnetwork.org/
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Figure A2. The BN model with fungicide, herbicide, insecticide and molluscicide nodes set to Q1,
pesticide to reduce 50% and fertiliser to reduce 5%. Typical food losses are around 10%, so the losses
reported here are additional.

Figure A3. The BN model with fungicide, herbicide, insecticide and molluscicide nodes set to Q1,
pesticide to reduce 10% and fertiliser to reduce 10%. Typical food losses are around 10%, so the losses
reported here are additional.

Figure A4. The BN model with IPM set to “No”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 50% and fertiliser to reduce 10%. Typical food losses are around
10%, so the losses reported here are additional.
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Figure A5. The BN model with IPM set to “No”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 10% and fertiliser to reduce 20%. Typical food losses are around
10%, so the losses reported here are additional.

Figure A6. The BN model with IPM set to “No”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 25% and fertiliser to reduce 20%. Typical food losses are around
10%, so the losses reported here are additional.

Figure A7. The BN model with IPM set to “Yes”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 25% and fertiliser to reduce 5%. Typical food losses are around
10%, so the losses reported here are additional.
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Figure A8. The BN model with IPM set to “Yes”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 50% and fertiliser to reduce 5%. Typical food losses are around
10%, so the losses reported here are additional.

Figure A9. The BN model with IPM set to “Yes”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 10% and fertiliser to reduce 10%. Typical food losses are around
10%, so the losses reported here are additional.

Figure A10. The BN model with IPM set to “Yes”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 50% and fertiliser to reduce 10%. Typical food losses are around
10%, so the losses reported here are additional.
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Figure A11. The BN model with IPM set to “Yes”, fungicide, herbicide, insecticide and molluscicide
nodes set to Q1, pesticide to reduce 10% and fertiliser to reduce 20%. Typical food losses are around
10%, so the losses reported here are additional.

Figure A12. The BN model with fungicide, herbicide, insecticide and molluscicide nodes set to Q1,
pesticide to reduce 25% and fertiliser to reduce 20%. Typical food losses are around 10%, so the losses
reported here are additional.
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