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Abstract: The present study was undertaken to determine the effect of different sowing strategies
and spring nitrogen (N) fertilizer rates on the technological quality of winter wheat (Triticum aestivum
L.) grain in terms of its milling quality, protein complex quality, and enzyme activity (falling number).
Winter wheat grain for laboratory analyses was produced in a small-area field experiment conducted
between 2018 and 2021 in the AES in Bałcyny (53◦35′46.4′′ N, 19◦51′19.5′′ E, NE Poland). The
experimental variables were (i) sowing date (early: 6 September 2018, 5 September 2019, and 3
September 2020; delayed by 14 days: 17–20 September; and delayed by 28 days: 1–4 October),
(ii) sowing density (200, 300, and 400 live grains m−2), and (iii) split application of N fertilizer in
spring (40 + 100, 70 + 70, and 100 + 40 kg ha−1) at BBCH stages 22–25 and 30–31, respectively.
A sowing delay of 14 and 28 days increased the bulk density (by 1 and 1.5 percent points (%p),
respectively), vitreousness (by 3 and 6%p, respectively), and total protein content of grain (by 1% an
2%, respectively). A sowing delay of 14 days increased grain hardness (by 5%), the flour extraction
rate (by 1.4%p), and the falling number (by 3%) while also decreasing grain uniformity (by 1.9%p). In
turn, a sowing delay of 28 days increased the wet gluten content of grain (+0.5–0.6%p) and improved
the quality of the protein complex in the Zeleny sedimentation test (+1.5%). An increase in sowing
density from 200 to 300 live grains m−2 led to a decrease in grain uniformity (by 2.6%p), the total
protein content (by 1.5%), and the wet gluten content of grain (by 0.7%p). A further increase in
sowing density decreased grain vitreousness (by 1.4%p). The grain of winter wheat fertilized with 40
and 100 kg N ha−1 in BBCH stages 22–25 and 30–31, respectively, was characterized by the highest
hardness (64.7), vitreousness (93%), flour extraction rate (73.9%), total protein content (134 g kg−1

DM), wet gluten content (36%), and Zeleny sedimentation index (69 mL).

Keywords: Triticum aestivum L.; grain; milling quality; protein; gluten; sedimentation index; falling number

1. Introduction

Wheat grain accounts for 21% of total dietary calories, 20% of protein, and 55% of
carbohydrates consumed by 4.5 billion people around the world. Wheat a staple food for
36% of the global population [1–4] and one of the most popular cereal crops around the
world [5–8]. Wheat, rice, and maize are the three main pillars of the human diet [5]. In 2021,
the global harvests of maize, rice, and wheat reached 1210, 778, and 771 Tg, respectively, and
accounted for 90% of the total cereal grain harvests worldwide [7]. However, wheat has a
considerable advantage over other strategic cereals in terms of global food security because
it easily adapts to varied environmental conditions due to its high plasticity [2,6,9,10].
Wheat is cultivated from 67◦ N in Scandinavia and Russia to 45◦ S in Argentina, including
in elevated areas of tropical and sub-tropical regions [9]. The global area covered by wheat
is estimated to be 216–221 million ha (2019–2021), which accounts for around 16% of
gross cropped area [7]. In 2019–2021, the world’s leading wheat producers were China
(135 million Mg y−1), India (107 million Mg y−1), Russia (79 million Mg y−1), the United
States (49 million Mg y−1), France (35 million Mg y−1), Canada (30 million Mg y−1), and
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Ukraine (29 million Mg y−1). Wheat is also a principal cereal in the European Union
(135 million Mg y−1, 2019–2021), including Poland (12 million Mg y−1, 2019–2021). In
2019–2021, wheat accounted for 46% and 36% of total cereal production in the EU and
Poland, respectively [7]. Due to the observed increase in the global human population,
wheat will continue to play an important role as a strategic cereal crop for sustaining food
security [10].

At present, hexaploid common wheat (Triticum aestivum L.) accounts for 95% of the
wheat grown worldwide, whereas the remaining 5% is mostly tetraploid hard wheat (T.
durum Dest.) [9]. Common wheat grown for consumption should be characterized by
high yields and high technological quality [11,12]. The processing suitability of wheat is
determined by grain quality attributes, including (i) the physical properties of grain that
influence its milling quality [8,13,14] and (ii) the protein complex, the starch complex, and
the activity of amylolytic enzymes [15]. Milling quality is defined as the processing suitabil-
ity of grain for the milling industry by determining the properties of kernels responsible
for high milling yields [16–18]. The milling quality of grain can be evaluated directly in
laboratory milling tests [19], and it can be assessed indirectly by analyzing the physical
properties of grain (hardness, vitreousness, bulk density, 1000-kernel weight, and unifor-
mity) [14,20]. Kernels with hard (vitreous) and soft (floury) endosperm can be identified in
grain hardness tests [21–23]. Hard endosperm strongly adheres to protein particles, which
increases its compressive strength. Grain with floury endosperm is characterized by a
lower milling yield (milled grain tends to clog the sieves), which increases with a rise in
endosperm hardness [16,22,24]. Endosperm color is linked with vitreousness [17,25]. White
endosperm is typically found in starchy kernels with low protein content. In turn, gray
endosperm is characteristic of vitreous (hard) kernels that are high in protein but contain
less starch [26,27]. Vitreousness and hardness are good predictors of grain filling [27], and
seed coat thickness affects grain hardness. These parameters determine the bulk density of
grain, namely the ratio of kernel weight to kernel volume [20,28–32]. To maximize flour
extraction rates in common wheat, bulk density should be a minimum of 72 kg hL−1 and
optimally exceed 76 kg hL−1 [10,33,34]. Wheat kernels should also be characterized by
uniform thickness (minimum 2.5 mm–thicker kernels are more desirable) because this
parameter facilitates processing and increases milling yields [8,10,35]. In the milling and
baking industry, the milling quality of wheat grain has to be monitored and controlled to
support the production of high-quality flour and cereal products. The milling quality of
grain is also an important consideration for farmers and agricultural producers, as it may
affect grain purchase prices [10,19].

The protein content of grain also significantly affects flour quality [36,37]. Storage
proteins (gliadin and glutenin) play an important role during dough formation and are
chiefly responsible for the baking value of wheat flour [38–41]. Gliadins contribute to
the extensibility and viscosity of dough, whereas glutenins enhance its elasticity and
strength [42,43]. During mechanical kneading, the two proteins are combined in the
presence of water to form a viscous and elastic mass (gluten). Gluten determines the
water absorption capacity of flour and, consequently, the elasticity and springiness of
the obtained dough [44]. The quality of the protein complex is evaluated based on the
value of the sedimentation index in the sodium dodecyl sulfate (SDS) test or the Zeleny
sedimentation test [45–47]. These tests rely on differences in the size of glutenin particles
(high-molecular-weight glutenins, or HMW-GSs, and low-molecular-weight glutenins, or
LMW-GSs) [48,49]. Grain with a higher content of HMW-GSs is characterized by higher
values of the sedimentation index [10]. HMW-GSs are regarded as the critical determinants
of the processing suitability of wheat grain [50–53] despite the fact that they account for only
5–10% of storage proteins in wheat kernels [4,54]. The endosperm of wheat kernels contains
20–30% LMW-GSs [4,54]. Wheat flours with a high HMW/LMW-GSs ratio are characterized
by higher baking value [55,56]. The milling quality of wheat grain is also influenced by
enzyme activity, which is measured in the falling number test [15,57]. Wheat grain for
bread production should have a falling number of 250–350 s. The activity of amylolytic
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enzymes is very high in grain with a low falling number (<150 s) and low in grain with a
high falling number (>400 s). In both cases, the produced bread is of low quality [58,59].
Protein complex quality and enzyme activity in wheat grain are key parameters in the food
processing sector. They are also important for farmers because they determine the quality,
technological properties, and nutritional value of flour, being taken into account when
selecting cultivars and agronomic management strategies [10,13,15,33,58].

The technological quality of grain is determined mostly by the wheat cultivar and its
genetic profile [10,60–63], as well as weather conditions in the generative growth phase of
wheat plants [10,50,64–69]. However, mistakes in the wheat production technology can de-
crease grain quality [13,21,70–76]. Nitrogen (N) fertilization is an agricultural management
practice that exerts the greatest impact on the technological quality of wheat grain [10,77].
Grain quality is significantly affected not only by the N rate, but also by the method and
date of N application [23,78–80]. Under the agroecological conditions of Poland, the op-
timal rate of N fertilizer in wheat grown for human consumption is 160 to 180 kg ha−2,
and 40–50% of the rate should be applied at the beginning of spring growth [10]. Above
all, the N rate affects the biomechanical properties of grain (1000-kernel weight, density,
uniformity, and vitreousness) [31,81]. Higher spring N rates increase the bulk density [13]
and vitreousness of wheat grain [31,82–84]. According to Kindred et al. [85] and Dargie
et al. [86], N fertilization also improves grain filling (by reducing empty spaces and decreas-
ing the content of α-amylase), delays ripening, and prolongs grain dormancy. However,
increasing N rates result in smaller and less uniform grain, which can compromise milling
yields [70,71]. Higher N rates also increase the content of protein [13,31,81,84,87,88] and
gluten in grain [83,88–90]. In turn, lower N rates increase the concentration of gliadins and
decrease the content of HMW-GSs and LMW-GSs in grain [90–92]. However, it should be
noted that the impact of N fertilization on the content and quality of gluten is strongly
correlated with genetic factors (cultivar) and weather conditions during grain filling and
ripening [10,93,94]. In some cultivars of common wheat, high N rates are required to
obtain grain that is abundant in protein and gluten and can be processed into flour with
a high baking value. In other cultivars, the optimal values of these grain parameters can
be achieved already at low N rates, and an increase in the N rate can decrease the content
and quality of gluten. The above is observed when high N rates are accompanied by
high total precipitation, which increases enzyme activity in kernels and triggers kernel
germination in spikes [10,95–98]. High enzyme activity decreases the falling number, which
often renders grain unsuitable for processing in the milling industry [58,99]. The techno-
logical quality of grain is influenced not only by the N rate, but also by N application
timing [100,101]. Nitrogen applied in the early stages of wheat growth and development in
spring (BBCH stages 22–31, Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie–Meier [102]) affects mainly grain yields, whereas N applied in later stages (BBCH
stages 37–51) influences grain quality parameters, mostly total protein content, gluten
content, and the sedimentation index [71,80,103–107]. Due to climate change, which affects
N use efficiency, fertilization strategies should be thoroughly analyzed to produce winter
wheat grain of high technological quality [10,76,93,94].

Different sowing strategies (sowing date and sowing density) are evaluated mostly
in terms of their effect on wheat yields, but they are rarely analyzed in the context of
grain quality. In Poland, 250–350 live grains m−2 should be sown between 15 and 20
September [10]. According to Zende et al. [108], grain characterized by high milling
quality can be obtained only when wheat is sown on the optimal date. Delayed sowing
generally decreases bulk density [109–113], grain hardness, and milling yield [112,114].
In turn, the grain of late-sown wheat is more abundant in protein and gluten, which
increases the sedimentation index [108,112,115–120]. The effect of sowing density on the
quality of wheat grain has been rarely investigated in the literature, and the results are
inconclusive [11,73,74,121,122]. Geleta et al. [121] and Zecevic et al. [74] found that high
sowing density (650 vs. 500 live grains m−2) had a beneficial influence on the milling
quality of grain in several cultivars of winter wheat. In the cited studies, densely sown
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wheat produced a higher number of main shoots and larger and heavier kernels with a
more desirable protein/starch ratio. In less dense stands, grain ripening was delayed, and
the plants produced a higher number of secondary shoots (tillers) and smaller and lighter
kernels with low bulk density and low quality [74,121]. In turn, Guerrini et al. [11] and
Sun et al. [123] found that higher sowing density decreased 1000-kernel weight but did
not affect the bulk density of wheat grain. In the work of Soofizada et al. [122], Caglar
et al. [73], and Zecevic et al. [74], higher sowing density increased the protein content,
gluten content, and the sedimentation index of wheat grain. In view of global climate
change, optimal sowing strategies should be defined again to ensure stable production of
grain characterized by high processing suitability [112].

Previous studies have mostly focused on evaluating the effect of single agronomic fac-
tors on the quality of winter wheat grain. However, the optimal sowing and N management
strategies aimed at improving the technological quality of winter wheat grain have not been
identified to date. The present study can contribute to optimizing winter wheat cultivation
practices in terms of grain quality. The objective of this study was to determine the effect
of split spring application of N fertilizer, sowing date, and sowing density on the milling
quality (bulk density, vitreousness, uniformity, and flour extraction rate), protein complex
quality, and enzyme activity (total protein content, gluten content, Zeleny sedimentation
index, and falling number) of winter wheat grain grown in northeastern Poland. The
findings from this study can be used to formulate recommendations for optimizing winter
wheat cultivation practices, including sowing date, sowing density and N fertilization, to
improve the technological quality of grain.

2. Materials and Methods
2.1. Field Experiment

Winter wheat (Triticum aestivum L.) grain was produced in 2018–2021 during a
small-area field experiment conducted in the Agricultural Experiment Station in Bałcyny
(53◦35′46.4′′ N, 19◦51′19.5′′ E, elevation 137 m, north-eastern Poland, Dfb according to
Köppen’s classification), owned by the University of Warmia and Mazury in Olsztyn. The
experiment had a split-plot design with three replicates. The experimental variables were
as follows: (i) sowing date: early (6 September 2018, 5 September 2019, and 3 Septem-
ber 2020), delayed by 14 days (17–20 September), and delayed by 28 days (1–4 October);
(ii) sowing density: 200, 300, and 400 live grains m−2; (iii) split application of N fertilizer in
spring (BBCH stages 22–25 and 30–31; full tillering stage and first node stage, respectively):
40 + 100, 70 + 70, and 100 + 40 kg ha−1 (ammonium nitrate, 34% N). The third portion of N
fertilizer (40 kg ha−1; ammonium nitrate, 34%) was applied in flag leaf, just visible, still
rolled (BBCH stage 37) in all plots.

Plot size was 15 m2 (10 m by 1.5 m). The forecrop was winter oilseed rape (Brassica
napus L.). All field treatments were consistent with the agronomic requirements of winter
wheat and good agricultural practices. The experimental conditions (soil type and chemical
properties) and the production technology of winter wheat were described in detail by
Lachutta and Jankowski [124].

2.2. Grain Analysis

Grain uniformity was assessed in a mechanical grain separator (ZBPP sp. z o. o.,
Bydgoszcz, Poland) according to Polish Standard PN R–74110:1998 [125]. Wheat kernels
(100 g) were placed on the top screen (2.5 × 25 mm) and separated at 310 rpm. The grain
remaining on the top screen after 3 min was weighed. Grain uniformity was expressed as
the percentage of grain remaining on the top screen in the total weight of the sample. The
analysis was conducted on three grain samples (100 g each) from each plot.

The bulk density of winter wheat grain was determined using a density analyzer with
a volume of 1 dm3 (ZBPP sp. z o. o., Bydgoszcz, Poland) according to Polish Standard
PN-EN ISO 7971–3:2019–03 [126]. Bulk density was measured in three grain samples from
each plot.
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Grain hardness (86% dry matter, DM) was determined with the InfratecTM 1241
grain analyzer (FOSS, Hillerod, Denmark), which relies on the near-infrared transmittance
technology in the wavelength range of 570–1050 nm. The analyses were conducted in three
grain samples from each plot.

Vitreousness was determined by analyzing the horizontal cross-sections of 50 winter
wheat kernels from each plot. The examined kernels were cut in half with a commercial
grain cutter (Farinotom, ZBPP sp. z o. o., Bydgoszcz, Poland). Kernels were classified
as vitreous if >75% of their cross-sectional area had a gray color. Grain vitreousness was
expressed as the percentage of kernels with vitreous endosperm in the total number of the
analyzed kernels, with vitreousness being determined according to Polish Standard PN
R–74008:1970 [127].

The flour extraction rate was determined as the percentage of flour obtained from
a grain sample (on a weight basis). Flour was obtained by grinding wheat grain in a
laboratory mill (Brabender, Quadrumat Junior, Duisburg, Germany). The moisture content
of the grain was brought to 14% before milling. The initial moisture content of wheat
grain was 10.5–13.0%. The amount of water (with a temperature of 20 ◦C) required to
adjust the moisture content of a 1500 g grain sample to 14% was determined. Grain was
conditioned in closed glass containers and stored in a cooled incubator (ICP 500, Memmert,
Eagle, WI, USA) for 48 h. The analysis was conducted on three grain samples (150 g each)
from each plot.

Total protein content was determined with the AgriCheck instrument (Bruins Instru-
ments, Puchheim, Bayern, Germany), which measures near-infrared transmittance in the
wavelength range of 730–1100 nm. Wet gluten content was determined by the gravimetric
method with a gluten washing device according to Polish Standard PN-EN ISO 21415–
2:2015–12E [128]. Dough was prepared by combing 10 g of sifted flour (250 µm mesh size)
and 4.8 cm3 of 2% NaCl solution in a vortex mixer (ZBPP sp. z o. o., Bydgoszcz, Poland).
Gluten was separated in a dual-chamber glutomatic system (ZBPP sp. z o. o., Bydgoszcz,
Poland) with the addition of 250–280 mL of 2% NaCl solution. The separated gluten was
dried in a gluten centrifuge (ZBPP sp. z o. o., Bydgoszcz, Poland) at 3000 rpm for 60 s.
The total protein content and wet gluten content were determined in three grain samples
from each plot.

The sedimentation index was determined in the Zeleny sedimentation test with the
use of the SWD-89 measuring device with a laboratory shaker (ZBPP sp. z o. o., Bydgoszcz,
Poland) according to Polish Standard PN-EN ISO 5529:2010 [129].

The falling number was determined in the Hagberg–Perten test [130,131] with the use
of the SWD-SŻ falling number system (ZBPP sp. z o. o., Bydgoszcz, Poland) according to
Polish Standard PN-EN ISO 3093:2010 [132].

The bulk density, vitreousness, uniformity of grain, total protein content and wet
gluten content of grain, as well as the Zeleny sedimentation index and the falling number
were determined in the laboratory of ZBPP sp. z o. o. in Bydgoszcz, Poland. Grain
hardness and the flour extraction rate were determined in the laboratories of the University
of Warmia and Mazury in Olsztyn.

2.3. Weather Conditions

Weather conditions (mean daily temperature and precipitation) in the growing seasons
of winter wheat (2018/2019, 2019/2020, and 2020/2021) were described by Lachutta and
Jankowski [124]. Weather conditions between the flowering and fully ripe (harvest) stages
are described in detail in the present study. In these phenological growth stages, tempera-
ture and precipitation exert the greatest influence on the technological quality of winter
wheat grain [10]. Meteorological data (mean daily temperature and total precipitation) were
acquired with the use of the PM Ecology automatic weather station (PM Ecology Ltd., Gdy-
nia, Poland) in the AES in Bałcyny. In each growing season, the number of growing degree
days (GDD) (Equation (1)) and the Sielyaninov hydrothermal index [133] (Equation (2))
were determined between the beginning of flowering and the milk stage (BBCH stages
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61–73), between the milk stage and the dough stage (BBCH stages 73–83), between the
dough stage and the fully ripe stage (BBCH stages 83–89), and between the beginning of
flowering and the fully ripe stage (BBCH stages 61–89). The Sielyaninov hydrothermal
index measures effective precipitation in a given period (as the ratio of precipitation to
evaporation, which is determined mainly by the mean daily temperature).

GDD = Σ (MDT − Tbase) (1)

where:
GDD—growing degree days (◦C),
MDT—mean daily temperature (◦C),
Tbase—the base temperature for GDD calculations was 5 ◦C (period of active plant

growth) [134].

K =
∑ P

∑(T × 0.1)
(2)

where:
K—Sielyaninov index (K: 0–0.5-extreme dry spell, 0.6–1.0-dry spell, 1.1–2.0-humid

spell, >2.1-wet spell),
ΣP—total precipitation in the analyzed period (mm),
ΣT—total mean daily temperature in the analyzed period (◦C),
0.1—constant.

2.4. Statistical Analysis

The obtained data (bulk density, vitreousness, uniformity, flour extraction rate, total
protein content, wet gluten content, Zeleny sedimentation index, and the falling number)
were analyzed in ANOVA using Statistica software, version 13 [135]. Post hoc multiple
comparisons were performed with the use of Tukey’s test (HSD) in subsequent stages of
statistical analyses. Data were regarded as statistically significant at p ≤ 0.05. The results of
the F-test for fixed effects in ANOVA are presented in Table S1. A linear regression method
was used to evaluate the relationship between meteorological variables and the studied
agronomic parameters. The values of Pearson’s correlation coefficient (R) were regarded as
significant at p ≤ 0.01 and p ≤ 0.05 (Table S2).

3. Results
3.1. Weather Conditions

Weather conditions during the phenological growth stages of winter wheat (grow-
ing seasons of 2018/2019, 2019/2020, and 2020/2021) were described by Lachutta and
Jankowski [124]. This article focuses on weather conditions in growth stages that are critical
for grain quality, i.e., from flowering to the fully ripe stage [10]. Mean daily temperature
and precipitation between the flowering and harvest (BBCH stages 61–89) of winter wheat
varied considerably across the experimental years (2018–2021) (Table 1). The mean thermal
time between flowering and harvest was 696–796, 630–649, and 695–706 ◦C GDD in 2019,
2020, and 2021, respectively. In the first growing season, the mean thermal time between
flowering and harvest increased by 22 and 100 ◦C GDD when sowing was delayed by 14
and 28 days, respectively. Delayed sowing induced a particularly high increase in GDD in
BBCH stages 83–89 (93 vs. 118–187 ◦C). In the remaining years, delayed sowing did not
lead to significant differences in GDD during flowering and ripening. In these phenological
growth stages, precipitation was determined at 154–178 (1st growing season), 127–128
(2nd growing season), and 134–153 mm (3rd growing season). In the first growing season,
late-sown plants were exposed to higher precipitation between flowering and ripening. In
the second growing season, rainfall distribution in BBCH stages 61–89 was weakly differen-
tiated by the sowing date. In the third growing season, more abundant precipitation was
noted in the flowering stage and in the early stages of grain ripening (BBCH stages 61–73
and BBCH stages 73–83, respectively) in late-sown stands. The last stages of grain ripening
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(BBCH 83–89) occurred during a dry spell (41 vs. 0–2 mm). In general, optimal values of the
Sielyaninov hydrothermal index were noted during wheat flowering and grain ripening
(humid spell). However, in the second growing season, a dry spell (K = 0.35–0.98) was
observed between the milk stage and harvest (BBCH stages 73–89) (Table 1).

Table 1. Phenological development of winter wheat and weather conditions (2018/2019, 2019/2020,
and 2020/2021).

Parameter Growing Season Sowing Date
Growth Stage

BBCH 61–73 BBCH 73–83 BBCH 83–89 BBCH 61–89

Growing Degree
Days (◦C)

2018/2019

6 September 445 158 93 696

20 September 450 156 118 718

4 October 447 166 187 796

2019/2020

05 September 349 180 120 649

19 September 359 153 107 630

3 October 338 160 132 630

2020/2021

3 September 351 202 152 705

17 September 390 171 134 695

1 October 381 172 152 706

Mean daily
temperature (◦C)

2018/2019

6 September 21.5 16.3 16.6 19.2

20 September 21.5 16.1 18.0 19.4

4 October 21.5 15.2 20.5 19.5

2019/2020

5 September 19.0 17.0 18.3 18.2

19 September 18.8 17.7 18.4 18.5

3 October 19.1 17.3 18.2 18.4

2020/2021

3 September 20.3 21.8 20.2 20.7

17 September 21.3 22.1 19.9 21.2

1 October 21.6 22.2 20.2 21.4

Total
precipitation

(mm)

2018/2019

6 September 92.0 49.9 12.4 154.3

20 September 91.9 49.9 29.7 171.5

4 October 101.4 52.8 23.5 177.7

2019/2020

5 September 94.6 25.1 7.9 127.6

19 September 107.4 13.4 5.7 126.5

3 October 111.0 9.9 6.3 127.2

2020/2021

3 September 55.1 56.9 41.0 153.0

17 September 59.2 79.2 0.0 138.4

1 October 65.2 73.2 2.3 140.7

Sielyaninov
index (K)

2018/2019

6 September 1.59 2.19 0.93 1.64

20 September 1.58 2.21 1.83 1.77

4 October 1.74 2.18 0.95 1.66

2019/2020

5 September 1.99 0.98 0.48 1.43

19 September 2.20 0.63 0.39 1.49

3 October 2.42 0.44 0.35 1.47

2020/2021

3 September 1.18 2.17 2.03 1.65

17 September 1.16 3.59 0.00 1.52

1 October 1.31 3.29 0.11 1.53

K: 0–0.5-extreme dry spell, 0.6–1.0-dry spell, 1.1–2.0-humid spell, >2.1-wet spell. BBCH 61–73: beginning of
flowering–milk stage; BBCH 73–83: milk stage to dough stage, BBCH 83–89: dough stage to fully ripe stage; BBCH
61–89: beginning of flowering to fully ripe stage.
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3.2. Milling Quality

Grain uniformity was negatively correlated with the mean daily temperature between
flowering and harvest (BBCH stages 61–89) (Figure 1). The most uniform grain (83.0%) was
harvested in the second growing season (Table 2) when the mean daily temperature was
low at BBCH stages 61–89 (18.2–18.5 ◦C) (Table 1). Grain uniformity was lowest (69.7%)
in the third growing season (Table 2), which was characterized by the highest mean daily
temperature between flowering and harvest (20.7–21.4 ◦C) (Table 1). Late-sown plants were
exposed to higher mean daily temperatures between flowering and ripening (BBCH stages
61–89) (Table 1), which decreased grain uniformity by 1.9 percent points (%p) (Table 2).
Sowing date exerted the greatest influence on grain uniformity in the first growing season
when a sowing delay of 14 days decreased grain uniformity by 6.1%p (Figure 2a), mainly
due to higher mean daily temperatures between flowering and ripening stages (20.7 vs.
21.2–21.4 ◦C) (Table 1). An increase in sowing density from 200 to 300 live grains m−2

induced a 2.6%p decrease in grain uniformity (Table 2). The split spring N rate had no
significant effect on grain uniformity (Table S1).
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Figure 2. The effect of the sowing date on (a) grain uniformity and (b) the bulk density of winter
wheat grain (2018/2019, 2019/2020, 2020/2021). Early sowing: 3–6 September; delayed sowing
(+14 days): 17–20 September; delayed sowing (+28 days): 1–4 October. Means followed by the same
letters are not significantly different at p ≤ 0.05 in Tukey’s test.

The bulk density of winter wheat grain ranged from 80.7 (2019/2020) to 81.1–81.3 kg hL−1

(2018/2019 and 2020/2021). Bulk density increased by 1.0%p and 1.5%p when winter
wheat was sown, with a delay of 14 and 28 days, respectively (Table 2). In the first growing
season, the grain of wheat sown in the middle of September had the highest bulk density
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(81.6 kg hL−1). In the second and third growing seasons, bulk density was highest (81.3
and 81.7 kg hL−1, respectively) in winter wheat stands sown at the beginning of October
(Figure 2b). Sowing density and the split spring N rate did not induce significant differences
in the bulk density of grain, regardless of weather conditions (Table S1).

Table 2. Milling quality of winter wheat grain.

Parameter Uniformity (%) Bulk Density
(kg hL−1) Hardness Vitreousness (%) Flour Extraction

Rate (%)

Growing season

2018/2019 79.1 b 81.3 a 62.7 b 90.9 b 73.2 b

2019/2020 83.0 a 80.7 c 58.8 c 88.9 c 71.2 c

2020/2021 69.7 c 81.1 b 68.0 a 97.1 a 74.7 a

Sowing date, mean for 2018–2021

Early 78.0 a 80.4 c 61.4 b 89.2 c 71.8 b

Delayed (+14 days) 76.1 b 81.2 b 64.3 a 92.5 b 73.2 a

Delayed (+28 days) 77.7 ab 81.6 a 63.8 a 95.2 a 74.0 a

Sowing density (live grains m−2), mean for 2018–2021

200 78.8 a 81.0 63.4 93.1 a 73.2

300 76.2 b 81.1 63.2 92.0 ab 72.9

400 76.9 b 81.1 63.0 91.7 b 73.0

Split spring N rate (kg ha−1), mean for 2018–2021 †

40 + 100 76.7 81.1 64.7 a 93.2 a 73.9 a

70 + 70 77.8 81.1 62.0 b 91.9 b 73.0 ab

100 + 40 77.3 81.1 62.9 b 91.8 b 72.1 b

† BBCH stages 22–25 + BBCH stages 30–31. Early sowing: 3–6 September; delayed sowing (+14 days): 17–20
September; delayed sowing (+28 days): 1–4 October. Means followed by the same letters are not significantly
different at p ≤ 0.05 in Tukey’s test. Means without letters indicate that the main effect is not significant.

Grain hardness was negatively correlated with grain uniformity (Table S2) and posi-
tively correlated with main daily temperature between flowering and harvest (Figure 3). Win-
ter wheat plants produced the hardest grain (68.0) in the third growing season (2020/2021)
(Table 1), which was characterized by the highest mean daily temperature between flower-
ing and harvest (20.7–21.4 ◦C) (Table 1). Grain hardness was 8% and 14% lower in the first
and second growing season, respectively (the mean daily temperature was 1.7 ◦C and 2.7 ◦C
lower in BBCH stages 61–89, respectively). Grain hardness increased by 5% when wheat
was sown with a 14-day delay (mid-September) relative to the early sowing date (Table 2).
Late-sown plants were exposed to higher temperatures during flowering and ripening
(Table 1), which explains the observed increase in grain hardness (Figure 3). Sowing density
(200, 300, and 400 live grains m−2) had no effect on grain hardness (Table S1). The split
spring N rate of 40 + 100 kg ha−1 (BBCH stages 22–25 and 30–31, respectively) promoted
an increase in grain hardness. An increase in the early spring N rate with a simultaneous
decrease in the N rate applied in the stem elongation stage (70 + 70 or 100 + 40 kg ha−1)
decreased grain hardness by 3–4% (Table 2).

Grain vitreousness ranged from 88.9% to 97.1% (Table 3). The regression analysis
revealed a positive correlation between vitreousness and mean daily temperature in the
dough stage (BBCH stages 83–89) (Figure 4); therefore, grain vitreousness was highest
(97.1%) in the third growing season (Table 2), which was characterized by the highest mean
daily temperature in BBCH stages 83–89 (19.9–20.2 ◦C) (Table 1). Late-sown plants were
exposed to higher mean daily temperatures in the dough stage (Table 1), which increased
grain vitreousness by 3%p (+14 days) and 6%p (+28 days) (Table 2). There was a lack of
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interaction between grain vitreousness and the sowing date in the third growing season
exclusively (Figure 5), which could be attributed to the absence of a relationship between
the sowing date and the mean daily temperature in the dough stage (Table 1). Grain
vitreousness decreased by 1.4%p when sowing density was increased from 200 to 400 live
grains m−2. An increase in the first spring N rate (BBCH stages 22–25) from 40 to 70 or
100 kg ha−1 with a simultaneous decrease in the N rate in BBCH stages 30–31 (from 100 to
70 and 40 kg ha−1) increased grain vitreousness by 1.3–1.4%p (Table 2).
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Table 3. Protein complex quality and enzyme activity in winter wheat grain.

Parameter Total Protein
Content (g kg−1 DM)

Wet Gluten Content
(%)

Zeleny Sedimentation
Index (mL) Falling Number (s)

Growing season

2018/2019 137 a 34.0 b 68.1 b 364 b

2019/2020 129 c 34.3 b 68.2 b 328 c

2020/2021 132 b 38.3 a 69.0 a 381 a

Sowing date, mean for 2018–2021

Early 131 c 35.4 b 68.0 b 352 b

Delayed (+14 days) 132 b 35.3 b 68.3 ab 364 a

Delayed (+28 days) 134 a 35.9 a 69.0 a 358 ab

Sowing density (live grains m−2), mean for 2018–2021

200 134 a 36.0 a 68.8 360

300 132 b 35.3 b 68.1 359

400 132 b 35.3 b 68.3 354

Split spring N rate (kg ha−1), mean for 2018–2021 †

40 + 100 134 a 36.0 a 68.9 a 356

70 + 70 133 b 35.5 b 68.4 ab 359

100 + 40 131 c 35.2 b 68.0 b 357

† BBCH stages 22–25 + BBCH stages 30–31. Early sowing: 3–6 September; delayed sowing (+14 days): 17–20
September; delayed sowing (+28 days): 1–4 October. Means followed by the same letters are not significantly
different at p ≤ 0.05 in Tukey’s test. Means without letters indicate that the main effect is not significant.

The flour extraction rate ranged from 71.2% (2019/2020) to 74.7% (2020/2021) (Table 2),
and it was significantly differentiated by the sowing date and the split spring N rate
(Table S1). The flour extraction rate was lowest (71.8%) in early sown stands (beginning
of September). The analyzed parameter increased from 1.4 to 2.2%p when sowing was
delayed by 14 and 28 days. The flour extraction rate peaked (73.9%) in response to the
spring N rate of 40 and 100 kg ha−1 applied in BBCH stages 22–25 and 30–31, respectively.
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An increase in the early spring N rate with a simultaneous decrease in the N rate applied in
BBCH stages 30–31 (100 + 40 kg ha−1) decreased the flour extraction rate by 1.8%p (Table 2).
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Figure 5. The effect of the sowing date on grain vitreousness (2018/2019, 2019/2020, 2020/2021). Early
sowing: 3–6 September; delayed sowing (+14 days): 17–20 September; delayed sowing (+28 days): 1–4
October. Means followed by the same letters are not significantly different at p ≤ 0.05 in Tukey’s test.

3.3. Protein Complex Quality and Enzyme Activity in Grain

The total protein content of winter wheat grain was positively correlated with GDD,
precipitation, and the Sielyaninov hydrothermal index between flowering and harvest
(BBCH stages 61–89) (Figure 6). Weather conditions were least favorable in the second
growing season (Table 1), which resulted in the lowest total protein content of grain
(129 g kg−1 DM) (Table 3). In the second and third growing season, weather conditions
were more favorable during wheat flowering and grain ripening (Table 1), which increased
the total protein content of grain (132–137 g kg−1 DM) (Table 3). Delayed sowing increased
total protein content by 1% (+14 days) and 2% (+28 days) (Table 3). A sowing delay of 14 and
28 days induced a particularly high increase in the total protein content of grain in the first
growing season (4% and 8%, respectively) (Figure 7a). In this season, late-sown plants were
exposed to higher GDD (696 vs. 718–796 ◦C), higher precipitation (154 vs. 172–178 mm),
and higher values of the Sielyaninov index (1.64 vs. 1.66–1.77) (Table 1) between flowering
and harvest, and these parameters are positively correlated with the total protein content
of grain (Figure 6). The total protein content of winter wheat grain decreased by 1.5%
when sowing density was increased from 200 to 300 live grains m−2 (Table 3). It should
also be noted that the effect exerted by sowing density on the total protein content of
grain was significantly modified by weather conditions during the growing season and
the sowing date (Table S1). In the first growing season, a reduction in total protein content
was observed already when sowing density was increased from 200 to 300 live grains m−2.
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In the second growing season, total protein content decreased only when sowing density
was increased to 400 live grains m−2. In turn, sowing density had no effect on the total
protein content of grain in the third growing season (Figure 7b). An increase in sowing
density decreased the total protein content of grain only in stands sown with a delay of 14
and 28 days (by 2% and 3%, respectively) (Figure 7c). Total protein content was highest
when winter wheat was supplied with 40+100 kg N ha−1 in BBCH stages 22–25 and 30–31,
respectively. An increase in the first spring N rate with a simultaneous decrease in the N
rate applied in BBCH stages 30–31 (70 + 70 or 40 + 100 kg ha−1) decreased the total protein
content of grain by 1% and 2%, respectively (Table 3).
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Figure 6. Linear regression between the total protein content of winter wheat grain and (a) growing
degree days at BBCH stages 61–89; (b) precipitation at BBCH stages 61–89; (c) Sielyaninov index at
BBCH stages 61–89. * significant at p ≤ 0.05; ** significant p ≤ 0.01.
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Figure 7. The effect of (a) the sowing date, (b) sowing density (2018/2019, 2019/2020, 2020/2021),
and (c) the interaction between the sowing date and sowing density (mean for 2018–2021) on the
total protein content of winter wheat grain. Early sowing: 3–6 September; delayed sowing (+14 days):
17–20 September; delayed sowing (+28 days): 1–4 October. Means followed by the same letters are
not significantly different at p ≤ 0.05 in Tukey’s test.

The wet gluten content of winter wheat grain was negatively correlated with grain
uniformity and positively correlated with grain vitreousness (Table S2). Wet gluten content
was also influenced by the mean daily temperatures in BBCH stages 61–89, and by pre-
cipitation and the Sielyaninov index in BBCH stages 73–83. An increase in the values of
these parameters promoted the accumulation of wet gluten in grain (Figure 8). Therefore,
wet gluten content was highest in grain harvested in the third growing season (38.3%),
and it was 4.3%p and 4.0%p lower in the first and second growing season, respectively.
A sowing delay of 28 days increased wet gluten content by 0.5–0.6%p. In stands sown
with a 28-day delay, a greater increase in wet gluten content (2.2%p) was observed in the
first growing season (Figure 9a). In this season, late-sown plants were exposed to more
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favorable weather conditions during flowering and grain ripening. In turn, higher precipi-
tation (by 6%) and higher values of the Sielyaninov index (by 52–65%) were observed in
the milk stage (BBCH stages 73–83) (Table 1). An increase in sowing density from 200 to
300 live grains m−2 decreased wet gluten content by 0.7%p (Table 3). A greater decrease in
the wet gluten content of grain (by 0.8%p and 1.5%p) was noted in late-sown stands (+14
and +28 days, respectively). In early sown stands (beginning of September), an increase
in sowing density did not induce significant differences in wet gluten content (Figure 9b).
The split application of different N rates in spring had no effect on the wet gluten content
of winter wheat grain (Table S1).
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Figure 8. Linear regression between the wet gluten content of winter wheat grain and (a) mean daily
temperature at BBCH stages 61–89; (b) precipitation at BBCH 73–83; (c) Sielyaninov index at BBCH
stages 73–83. * significant at p ≤ 0.05; ** significant at p ≤ 0.01.
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Figure 9. The effect of (a) the sowing date and (b) the interaction between the sowing date and sowing
density on the wet gluten content of winter wheat grain (2018/2019, 2019/2020, 2020/2021). Early
sowing: 3–6 September; delayed sowing (+14 days): 17–20 September; delayed sowing (+28 days): 1–4
October. Means followed by the same letters are not significantly different at p ≤ 0.05 in Tukey’s test.

The quality of the protein complex (evaluated in the Zeleny sedimentation test) was
somewhat higher in the grain of winter wheat grain harvested in the third growing season
than in the first and second growing season (69.0 vs. 68.1–68.2 mL). A 28-day delay in
sowing improved the sedimentation index of grain (Table 3) regardless of year, sowing
density, or the split spring N rate (Table S1). These results could be indirectly indicative of
a higher content of HMW-GSs and higher baking quality of flour. The sedimentation index
was not differentiated by sowing density (200, 300, and 400 live grains m−2) (Table S1). The
spring N rate of 40 + 100 kg ha−1 applied in BBCH stages 22–25 and 30–31, respectively,
exerted a more favorable influence on protein complex quality. An increase in the first
spring N rate (BBCH stages 22–25) with a simultaneous decrease in the N rate applied in
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BBCH stages 30–31 (40 + 100 vs. 70 + 70 or 100 + 40 kg ha−1) decreased the sedimentation
index by 0.7% and 1.3%, respectively (Table 3).

The falling number was positively correlated with the wet gluten content of winter
wheat grain (Table S2). The falling number was also positively correlated with a mean
daily temperature between flowering and harvest, as well as with precipitation and the
Sielyaninov index in the milk stage (Figure 10). Enzyme activity in grain (falling number)
was highest in the growing seasons of 2018/2019 and 2020/2021 (364 and 381 s, respec-
tively), and it was 10% and 14% lower, respectively, in the second growing season (Table 1).
This season was characterized by the lowest mean daily temperature (18.2–18.5 ◦C) be-
tween flowering and harvest and a dry spell in the milk stage (9.9–25.1 mm, K = 0.44–0.98)
(Table 1). Alpha-amylase activity was very high, but it remained within (250–350 s) or
somewhat above the optimal range of values for the falling number, not exceeding the level
at which flour is unsuitable for breadmaking (<400 s). The falling number increased by
3% when sowing was delayed by 14 days (Table 3), which could be attributed to the fact
that late-sown plants were exposed to higher mean daily temperatures during flowering
and ripening, and more abundant precipitation and higher values of the Sielyaninov index
in the milk stage (Table 1). These parameters were positively correlated with the falling
number (Figure 10). Sowing density and the split spring N rate caused no significant
differences in the falling number (Table S1).
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4. Discussion
4.1. Milling Quality

Grain uniformity is an important indicator of grain quality and milling perfor-
mance [136,137], and this trait is strongly influenced by the sowing date [112,138–142]. In
the work of Meena et al. [112], early sown wheat produced the largest kernels (with a diam-
eter of 2.87 and 2.90 mm). Kernel diameters decreased by 3–4% when sowing was delayed
by 6 weeks. According to Meena et al. [112], the decrease in kernel size in late-sown stands
could be attributed to higher temperature and lower precipitation during grain formation.
The presence of a relationship between the sowing date and grain uniformity/kernel size
was also noted by Panazzo and Eagles [138], Waraich et al. [140], Coventry et al. [141], and
in this study [Table 2, Figure 1]. In the present study, grain uniformity was negatively
correlated with mean daily temperatures between flowering and harvest (BBCH stages
61–89). The most uniform grain (83.0%) was harvested in a growing season with a low
mean daily temperature at BBCH stages 61–89. In turn, wheat plants exposed to the highest
mean daily temperature in BBCH stages 61–89 produced the least uniform grain (69.7%).
Late-sown stands were exposed to higher mean daily temperatures during flowering and
ripening, which decreased grain uniformity by 1.9%p. In a study by McKenzie [139], an
increase in the sowing density of barley (Hordeum vulgare L.) from 150 to 350 grains m−2
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decreased kernel size by 5%. In the work of Forster et al. [142], the size of durum wheat
kernels was reduced by 4% when sowing density was increased from 222 to 371 grains m−2.
In the current study, an increase in sowing density from 200 to 300 live grains m−2 also
decreased grain uniformity by 2.6%p. In the experiment conducted by Sadowska et al. [143],
an increase in the N rate from 50 to 150 kg ha−1 had no effect on the size of common wheat
kernels. Varga [144] found no correlation between agricultural inputs in the production
technology of wheat and kernel size (dimensions). Similar observations were made in the
present study, where the split spring N rate had a minor influence on the uniformity of
winter wheat grain.

Bulk density is an important indicator of grain development, grain structure, and the
thickness of the seed coat [13]. Higher bulk density enhances the processing suitability of
wheat grain [13,145]. In a study by Meena et al. [112], wheat grown on sandy-loamy soil in
a semi-arid region of India was characterized by higher bulk density (80.2 kg hL−1) in early
sown stands (beginning of November) and significantly lower bulk density (78.3 kg hL−1)
in stands sown with a 6-week delay. According to the cited authors, delayed sowing led to
premature ripening and drying of unripe grain in the filling stage due to high temperature.
In a study conducted by Kaur et al. [111] in India, delayed sowing decreased the bulk
density of wheat grain by 3%. Delayed sowing also considerably reduced the bulk density
of grain grown in Australia, Brazil, India, and Iraq [109,110]. In contrast, in the present
experiment, bulk density was highest (81.6 kg hL−1) when sowing was delayed by 28 days,
which could be attributed to the absence of a relationship between the bulk density of grain
and weather conditions (GDD, mean daily temperature, precipitation, and the Sielyaninov
index) between flowering and harvest. Densely sown wheat plants generally develop
smaller and fewer spikes, which can contribute to an increase in kernel size [146]. In the
current study, sowing density was not correlated with the bulk density of winter wheat
grain, probably because the phenological development of grain occurred in periods when
precipitation and nutrient levels were sufficient to counteract the decrease in the number
and size of spikes. Similar observations were made by Otteson et al. [147] and Guerrini
et al. [11], who found no correlation between sowing density and the bulk density of wheat
grain. The bulk density of winter wheat grain can also be modified by adjusting the N
rate [147–149]. Jankowski et al. [13] demonstrated that an increase in agricultural inputs
in the production technology of winter wheat increased the bulk density of grain by 1%.
In a study by Harasim and Wesołowski [148], the bulk density of wheat grain increased
by 1% when the N rate was increased from 100 to 150 kg ha−1. In turn, Jańczak-Pieniążek
et al. [149] found that bulk density was associated with the cultivar of winter wheat. In
open-pollinated cultivars, the bulk density of grain increased significantly (by 5%) when
the N rate was increased from 110 to 150 kg ha−1. In hybrid cultivars, the N rate had no
influence on bulk density. No correlations between N fertilization and the bulk density of
wheat grain were reported by either Otteson et al. [147], Guerrini et al. [11], or in this study
[Tables S1 and 2].

Grain hardness determines milling quality by influencing milling yield and the bak-
ing value of flour [150]. In the present study, grain hardness was negatively correlated
with grain uniformity (an increase in uniformity led to a decrease in hardness). In the
work of Meena et al. [112], early sown stands produced the hardest grain, while delayed
sowing decreased grain hardness by 7–11%. Similar results were reported by Coventry
et al. [141,151]. In the current experiment, grain hardness was positively correlated with
mean daily temperatures between flowering and harvest. Late-sown stands were exposed
to higher temperature during flowering and ripening, which increased grain hardness by
5%. Grain hardness was not affected by sowing density (200, 300, and 400 live grains m−2),
which corroborates the findings of McKenzie et al. [152] and Twizerimana et al. [153].
According to Souza et al. [154], grain hardness is influenced by cultivar, environmental con-
ditions, location, and N availability. In the present study, the hardest grain was produced
in winter wheat stands supplied with 40 + 100 kg N ha−1 in BBCH stages 22–25 and 30–31,
respectively. An increase in the early spring N rate, accompanied by a decrease in the N
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rate at the beginning of stem elongation (70 + 70 or 100 + 40 kg ha−1), decreased grain
hardness by 3–4%. In the work of Zhong et al. [155], grain hardness peaked in response
to 60 kg N ha−1 applied in BBCH stage 17 or 31, and it was 8% lower when N fertilizer
was applied in BBCH stage 37. Hao et al. [156] found that grain hardness was reduced by
around 10% when the total N rate of 210 kg ha−1 was split into two portions (applied at the
beginning of stem elongation and during flowering) than when the same N rate was split
into four portions (beginning of stem elongation, heading, flowering, and grain filling). In
turn, Blandino et al. [157] reported that the hardness of wheat grain was not affected when
the total N rate of 130 kg ha−1 was applied in one split (BBCH stage 23) or in two splits
(BBCH stages 23 and 32). In a study by Valdés-Valdés et al. [158], N rates of 0 to 300 kg ha−1

did not induce differences in the hardness of wheat grain. Split application of N fertilizer
had no effect on grain hardness in the work of Mor et al. [159] and Zhang et al. [44].

Vitreousness is an important property of endosperm [13]. Vitreous kernels contain
more endosperm and protein and are harder than non-vitreous kernels [160]. In the present
study, harder grain was also characterized by higher vitreousness and higher milling yield.
Vitreousness was positively correlated with mean daily temperatures in the dough stage.
Late-sown plants were exposed to higher temperatures in the dough stage, which increased
grain vitreousness by 3%p (+14 days) and 6%p (+28 days). A relationship between the
sowing date and grain vitreousness was not observed only in the growing season when
delayed sowing was not associated with different temperatures in the dough stage. In
turn, Forster et al. [142] reported that neither sowing date nor sowing density affected
the vitreousness of durum wheat grain. In the work of Bożek et al. [161] and Karabínová
et al. [162], the vitreousness of durum wheat and common wheat grain, respectively, was
not significantly influenced by sowing density, either. In the current study, an increase in
sowing density from 200 to 400 live grains m−2 decreased grain vitreousness by 1.4%p.
The results of studies investigating the effect of agricultural inputs on grain vitreousness
are inconclusive [13]. In the work of Jańczak-Pieniążek et al. [149], an increase in the N
rate from 110 to 150 kg ha−1 in the production of open-pollinated wheat cultivars had no
influence on grain vitreousness. Higher N rates increased grain vitreousness by 23–25%p in
only two out of the seven examined hybrid cultivars of winter wheat. Jankowski et al. [13]
reported that the vitreousness of winter wheat grain increased by 11%p in a high-input
production technology. Higher N rates also increased the percentage of kernels with
vitreous endosperm in the work of Budzyński et al. [70] and Narkiewicz-Jodko et al. [82].
In the present experiment, grain vitreousness was highest (93.2%) in winter wheat stands
supplied with 40 + 100 kg N ha−1 (BBCH stages 22–25 and 30–31, respectively). An increase
in the N rate in BBCH stages 22–25, with a simultaneous decrease in the N rate in BBCH
stages 30–31 (70 + 70 or 100 + 40 kg ha−1), decreased grain vitreousness by 1.3–1.4%p.

The flour extraction rate is a key parameter in analyses of the milling quality of grain,
and it largely determines profits in flour production [13]. In a study by Meena et al. [112],
the grain of early sown wheat was characterized by the highest flour recovery (63–68%),
and delayed sowing decreased flour recovery by 3%p. A similar relationship between the
sowing date and flour yield was reported by Gaire et al. [163] and Zheng et al. [164]. It
should also be noted that milling yield is strongly correlated with kernel size, and the value
of this parameter is highest in large and well-filled grain [13,165]. In the present study,
late-sown wheat produced larger, harder, and more vitreous kernels, which increased
flour extraction rates (by 1.4–2.2%p). Otteson et al. [147] found no correlation between
sowing density and flour yield, and similar observations were made in the present study
[Table 3]. In turn, in the work of Caglar et al. [73], flour yield was reduced by 3% when
the seeding rate was increased from 325 to 625 grains m−2. Milling yield is determined by
the physical properties of kernels (size, hardness, vitreousness, and bulk density), which
are strongly influenced by N fertilization. In the present study, the milling yield peaked
(73.9%) in wheat stands supplied with 40 and 100 kg N ha−1 in BBCH stages 22–25 and
30–31, respectively. An increase in the early spring N rate with a simultaneous decrease
in the N rate at the beginning of stem elongation (100 + 40 kg ha−1) decreased the milling
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yield by 1.8%p. In turn, in the work of Zheng et al. [164], the flour yield was 1%p higher
when N fertilizer was applied at a 6:4 ratio (BBCH stages 00 and 31) than a 7:3 ratio. In a
study by Wu et al. [166], the application of the total N rate of 180 kg ha−1 in three splits
(before sowing and during tillering and stem elongation at a ratio of 5:1:4, 7:1:2, and 5:4:1,
respectively) had no effect on flour yield. Budzyński et al. [70], Otteson et al. [147], and
Jankowski et al. [13] also found that the intensity of agricultural inputs in wheat production
had no significant influence on flour yield.

4.2. Protein Complex Quality and Enzyme Activity in Grain

Wheat grain is a rich source of essential nutrients, including protein, in the human
diet [167,168]. Protein content is the main indicator of wheat grain quality in commerce
and processing [90]. The protein content of wheat grain ranges from 100 to 150 g kg−1

DM [9,11,90]. Genetic factors are responsible for approximately a third of the variation
in the protein content of wheat grain [9]. The remaining two thirds of the variation are
determined by environmental factors (soil quality, weather conditions) and agronomic
practices, including sowing and fertilization [169]. The sowing date significantly affects
the total protein content of grain mainly due to different temperatures during grain filling.
When wheat is sown late, flowering is delayed and plants are exposed to high temperatures
in the grain filling stage [170]. Thermal stress decreases kernel size, inhibits endosperm
development, and increases protein concentration [171–173]. Moderate environmental
stress (high temperature, water deficit during grain filling) can stimulate protein remobi-
lization from vegetative organs to grain [64,174,175]. Meena et al. [112] found that delayed
sowing significantly increased the protein content of grain (by 6–8%). Delayed sowing
and exposure to higher temperatures also increased the protein content of grain in the
work of Gooding et al. [115], Zende et al. [108], Motzo et al. [116], Sattar et al. [176], Farooq
et al. [117], Singh et al. [118], and Shah et al. [177]. In the present study, the total protein con-
tent of grain was positively correlated with GDD, precipitation, and the Sielyaninov index
between flowering and harvest (BBCH stages 61–89). Late-sown plants were exposed to
higher GDD and higher precipitation in these phenological growth stages, which increased
the total protein content of grain by 1–2%. The relationship between sowing density and the
protein content of wheat grain is not unidirectional [11,147,178–184]. Otteson et al. [147],
Nakano and Morita [180], Dragoş and Pîrşan [181], Jemal et al. [182], and Guerrini et al. [11]
did not report any associations between sowing density and the protein content of grain. In
the current study, an increase in sowing density from 200 to 300 live grains m−2 reduced the
total protein content of grain by 1.5% on average. However, the decrease in protein content
induced by higher sowing density was exacerbated when wheat was sown with a delay of
14 and 28 days (protein content decreased by 2–3%). In the work of Gooding et al. [178] and
Han and Yang [179], the protein content of grain also decreased by around 3% when sowing
density was increased from 180–200 to 270–400 live grains m−2. A reverse relationship
was reported by Hao et al. [184], who found that an increase in sowing density from 200 to
250 live grains m−2 induced a 6% increase in the protein content of grain. In turn, Zhang
et al. [183] observed that the protein content of wheat grain was highest at a sowing density
of 260 live grains m−2, whereas lower or higher sowing densities decreased protein content
by 3% [183]. Nitrogen fertilization is one of the key factors that affect the content and
composition of protein in wheat grain [169]. Nitrogen is an essential component of amino
acids, the building blocks of proteins, which is why N supply is critical in all stages of plant
development [11,13,90,185]. However, the use of N fertilizers in crop production has to
be reduced for environmental reasons, and alternative strategies are needed to maximize
protein yields while decreasing the release of unused N to soil, water, and the atmosphere.
For this reason, N fertilization should be optimized by selecting the appropriate total rate or
split rate, application timing, and type of fertilizer [186,187]. The application of N fertilizer
in the late stages of growth promotes protein accumulation in grain [186]. In a study by
Landolfi et al. [185], an N rate of 80 or 160 kg ha−1 applied in two equal portions (50:50) in
tillering and stem elongation stages increased the protein content of grain by 15–18%. In the
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work of Wieser et al. [90], the protein content of grain was 4–9% higher when N fertilizer
was applied only before sowing than when N was applied both before sowing and in the
stem elongation stage. In a study conducted by Landolfi et al. [188] in northern Italy, a total
N rate of 160 kg ha−1 applied in three splits (tillering, stem elongation, heading) increased
the total protein content by around 1% relative to two splits. In the experiment by Xue
et al. [189], the total protein content of grain was 6% higher when N fertilizer was split into
three portions (BBCH stages 00, 30, and 47) than two portions (BBCH stages 00 and 30). A
meta-analysis conducted by Hu et al. [190] revealed that the protein content of wheat grain
was 2–5% higher on average when the total N rate was split into three to four portions. In
the work of Mor et al. [159], an N rate of 120 or 160 kg ha−1 increased the protein content
of grain by 12% when split in two equal portions (BBCH stages 00 and 21), but by only 4%
when split into five equal portions (BBCH stages 00, 21, 31, 39, and 65). In the present study,
protein content peaked when winter wheat was supplied with 40 + 100 kg N ha−1 in BBCH
stages 22–25 and 30–31, respectively. An increase in the first N rate with a simultaneous
decrease in the second N rate (70 + 70 and 100 + 40 kg ha−1) decreased the total protein
content of grain by 1–2%. In turn, Schulz et al. [191] found no correlation between split
N application and the protein content of grain produced in Germany. The influence of N
fertilization on the protein content of wheat grain can be mediated by differences in the
availability of soil mineral nitrogen (Nmin) during the growing season [154].

The concentration of gluten proteins in wheat grain is a very important consideration in
the baking industry [13,90,192]. In this study, wet gluten content was positively correlated
with grain vitreousness. Winter wheat grain produced in northeastern Poland contained
34.0–38.3% of wet gluten. Similar values were reported by Šip et al. [193] in Czechia,
whereas much lower values were noted by Jaskulska et al. [66] and Jańczak-Pieniążek
et al. [149] in Poland. In the work of Meena et al. [112], delayed sowing increased the wet
gluten content of wheat by 9%p. In the present study, wet gluten content was also highest
(35.9%) in late-sown wheat (early October). The analyzed parameter was determined
by mean daily temperatures between flowering and harvest, as well as by precipitation
and the Sielyaninov index in the milk stage. Late-sown wheat was exposed to more
favorable temperatures during flowering and ripening, as well as to higher precipitation
and higher values of the Sielyaninov index in the milk stage, which contributed to the
accumulation of wet gluten in the flowering and milk stages. An increase in sowing
density from 200 to 300 live grains m−2 decreased wet gluten content by 0.7%p. The
negative impact of higher sowing density on wet gluten content was exacerbated by
delayed sowing (decrease of 0.8–1.5%p). When winter wheat was sown early, increasing
sowing density did not significantly affect the wet gluten content of grain. Zecevic et al. [74]
also reported a decrease in the wet gluten content of grain (by 6%p) when sowing density
was increased from 500 to 650 live grains m−2. An increase in sowing density (180 vs.
270 grains m−2) also reduced the wet gluten content of wheat grain (by 3–5%p) in the
work of Han and Yang [179], Dragoş and Pîrşan [181] (400 vs. 500 live grains m−2),
and Twizerimana et al. [153] (112 vs. 225 kg ha−1). A reverse correlation was observed
by Caglar et al. [73] and Guerrini et al. [11], with the former finding that wet gluten
content decreased by 11% when sowing density was reduced from 525 and 625 grains m−2

to 325 and 425 grains m−2. Regardless of cultivar (open-pollinated or hybrid cultivars),
winter wheat is highly sensitive to N fertilization, which affects both grain yield and
grain quality, including the accumulation of gluten proteins [66]. In a study by Jańczak-
Pieniążek et al. [149], an increase in the N rate from 110 to 150 kg ha−1 increased the wet
gluten content of winter wheat grain by 7–11%p (open-pollinated cultivars) and 10–16%p
(hybrid cultivars). Nitrogen fertilization also increased gluten concentration in the grain of
winter and spring wheat in the work of Podolska et al. [79], Sułek and Podolska [89], and
Dubis [88]. In contrast, Jankowski et al. [13] and Wojtkowiak et al. [194] did not observe
any associations between N fertilization and wet gluten content, regardless of cultivar. In
the current study, splitting the N fertilizer rate did not induce differences in the wet gluten
content of grain. In the work of Mor et al. [159], wet gluten content was lowest when the
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total N rate of 120 or 160 kg ha−1 was applied in two equal portions (BBCH stages 00 and
21), and it was 4% higher when the N rate was split into five equal portions (BBCH stages
00, 21, 31, 39, and 65).

The baking quality of wheat is determined by both the quantity and quality of gluten
proteins in grain. The sedimentation index is the main predictor of gluten quality, and
its value denotes the size of protein aggregates [13,145,195]. Meena et al. [112] found that
delayed sowing increased the sedimentation index by 4–5%. In the work of Knapowski
and Ralcewicz [78], the sedimentation index was also higher (by 12%) when winter wheat
was sown with a delay. In the current experiment, the sedimentation index increased by 1%
when winter wheat was sown with a 28-day delay, regardless of weather conditions. In
turn, in a study conducted in India, the sedimentation index was 7% lower when wheat
was sown with a delay of 40 days [196]. In the present study, sowing density did not affect
the sedimentation index, which is consistent with the findings of Piekarczyk [197] and
Mikos-Szymańska and Podolska [198]. In the work of Twizerimana et al. [153], sowing
density influenced the sedimentation index in only one year of the experiment, when an
increase in the seeding rate from 112 to 225 kg ha−1 decreased the sedimentation index
by 10%. In turn, Han and Yang [179] and Hao et al. [184] found that the sedimentation
index decreased by 2–7% when the seeding rate was increased by 50–90 grains m−2. The
quality of the protein complex in wheat grain is also determined by agricultural inputs,
including N fertilization [13]. Litke et al. [199] demonstrated that an increase in the N rate to
210 kg ha−1 led to a significant increase in the sedimentation index. Nitrogen also improved
protein quality in the grain of winter and spring wheat in the work of Budzyński et al. [70],
Podolska et al. [79], Piekarczyk [197], Ellmann [83], Dubis [88], Rossini et al. [200], Kizilgeci
et al. [201], and Zhang et al. [44]. In this study, the split spring N rate of 40 + 100 kg ha−1

applied in BBCH stages 22–25 and 30–31, respectively, also enhanced the quality of grain
protein. An increase in the first spring N rate (BBCH stages 22–25) with a simultaneous
decrease in the second N rate applied in BBCH stages 30–31 (70 + 70 or 100 + 40 kg ha−1)
decreased the sedimentation index by 1% on average. Mor et al. [159] reported that the
sedimentation index was 3% higher when the N rate was split into five rather than two
portions. In a study by Hao et al. [156], the sedimentation index was 5% higher when the
total N rate of 210 kg ha−1 was applied in four rather than two splits.

The falling number denotes the activity of α-amylase in grain [13,85,202]. In the
present study, the falling number was positively correlated with the wet gluten content
of grain. Flours with a falling number in the range of 250–320 s are most suitable for
baking purposes, and this parameter can be decreased through the addition of α-amylase
preparations [203]. In the current experiment, the falling number was very high (328–381 s),
but it remained within or somewhat above the optimal range of values, not exceeding the
level at which grain is unsuitable for breadmaking (<400 s). According to Grausgruber
et al. [204], α-amylase activity in grain may vary depending on environmental and genetic
factors, particularly weather conditions, during grain ripening. The falling number was
also strongly correlated with weather conditions in this study. A sowing delay of 14 days
increased the falling number by 3%, which could be attributed to the fact that late-sown
plants were exposed to higher mean daily temperatures during flowering and ripening, as
well as higher precipitation and higher values of the Sielyaninov index in the milk stage
(these parameters were also positively correlated with the falling number). In contrast, the
sowing date had no influence on the falling number in the works of Knapowski and Ral-
cewicz [78] or Forster et al. [142]. Sowing density is bound by a weak and multidirectional
relationship with the falling number [142,205,206]. Forster et al. [142] found no correlation
between the sowing density of durum wheat and the falling number. Sowing density was
not associated with α-amylase activity (falling number) in common wheat grain in the
work of Korres and Froud-Williams [205], Piekarczyk [197], and Forster et al. [142], or in
this study [Table 3]. In contrast, Hao et al. [184] found that the falling number increased
by 5% when sowing density was increased from 200 to 250 grains m−2. In wheat grain,
α-amylase activity is also determined by agricultural inputs, including N fertilization [206]
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and genotype [85,149]. In a study by Jańczak-Pieniążek et al. [149], an N rate of 150 kg ha−1

increased the falling number by 0.3–1.6% (open-pollinated cultivar) to 3.5% (hybrid culti-
var). Linina and Ruza [206] reported a significant increase in the falling number up to the
N rate of 180 kg ha−1. Szentpétery et al. [207] found that split N application had a positive
impact on the falling number. In the cited study, the application of 40 or 80 kg N ha−1 in
the tillering stage and 40 kg N−1 ha in the flowering stage increased the falling number by
6–11% relative to the treatment where a single N rate of 80 or 120 kg ha−1 was applied in
the tillering stage. According to Budzyński et al. [70], the absence of positive correlations
between agricultural inputs and the falling number in many published studies can be
attributed to unfavorable weather conditions [88,185,208–210]. In the present study, split N
application did not induce significant differences in the falling number.

5. Conclusions

The present study demonstrated that the milling quality of winter wheat grain pro-
duced in northeastern Poland on Haplic Luvisol originating from boulder clay was sig-
nificantly influenced by weather conditions, sowing strategies, and N fertilization. The
sowing date affected the beginning and duration of phenological growth stages, which were
characterized by different mean daily temperatures and precipitation. Grain uniformity
and grain hardness were positively correlated with the mean daily temperature from the
beginning of flowering until harvest, while grain vitreousness was positively correlated
with the mean daily temperature in the dough stage. The total protein content of grain was
positively correlated with GDD, precipitation, and the Sielyaninov index between flowering
and harvest. Wet gluten content and the falling number were positively correlated with
the mean daily temperature between flowering and harvest, as well as with precipitation
and the Sielyaninov index in the milk stage. In general, delayed sowing exposed wheat
plants to more favorable weather conditions during flowering and grain ripening, which
increased the bulk density, vitreousness and hardness of grain, the flour extraction rate,
the total protein content and wet gluten content of grain, the sedimentation index, and the
falling number. The sowing density of 200 grains m−2 enhanced grain uniformity, grain
vitreousness, total protein content, and wet gluten content. Higher N supply in the stem
elongation stage (BBCH stages 30–31) had a positive influence on grain vitreousness and
hardness, the flour extraction rate, the total protein content and wet gluten content of grain,
and the sedimentation index. These results indicate that the milling quality of winter wheat
grain produced in northeastern Poland can be improved by sowing in late September or
early October at 200 grains m−2 and by applying N fertilizer at 40 and 100 kg ha−1 in BBCH
stages 22–25 and 30–31, respectively.
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Poland, 2012; pp. 23–150. (In Polish)
11. Guerrini, L.; Napoli, M.; Mancini, M.; Masella, P.; Cappelli, A.; Parenti, A.; Orlandini, S. Wheat grain composition, dough rheology

and bread quality as affected by nitrogen and sulfur fertilization and seeding density. Agronomy 2020, 10, 233. [CrossRef]
12. Dilmurodovich, D.S.; Bekmurodovich, B.N.; Shakirjonovich, K.N. Creation of new drought-resistant, high-yielding and high-

quality varieties of bread wheat for rainfed areas. Br. J. Glob. Ecol. Sustain. Dev. 2022, 2, 61–73.
13. Jankowski, K.J.; Kijewski, L.; Dubis, B. Milling quality and flour strength of the grain of winter wheat grown in monoculture.

Rom. Agric. Res. 2015, 32, 191–200.
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