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Abstract: The pricing behavior of agricultural processing firms in input markets has large impacts
on farmers’ and processors’ prosperity as well as the overall market structure. Despite analytical
approaches to food processors’ pricing in agricultural input markets, the need for models to represent
complex market features is urgent. Agent-based models (ABMs) serve as computational laboratories
to understand complex markets emerging from autonomously interacting agents. Yet, individual
agents within ABMs must be equipped with intelligent learning algorithms. In this paper, we
propose supervised and unsupervised learning agents to simulate the pricing behavior of firms in
agricultural markets’ ABMs. Supervised learning firms are pre-trained to accurately best respond to
their competitors and are deemed to result in the market Nash equilibria. Unsupervised learning
firms play a course of pricing interaction with their competitors without any pre-knowledge but
based on deep reinforcement learning. The simulation results show that unsupervised deep learning
firms are capable of approximating the pricing equilibria obtained by the supervised firms in different
spatial market settings. Optimal discriminatory and uniform delivery pricing emerges in agricultural
input markets with the high and intermediary importance placed on space. Free on board pricing
emerges in agricultural input markets with small importance placed on space.

Keywords: agent-based model; oligopsony; duopsony; spatial competition; spatial price theory;
game theory; deep learning; price discrimination; free on board pricing; uniform delivery pricing

1. Introduction

Although microeconomic textbooks often introduce agricultural markets as examples
for perfectly competitive markets, a large number of studies have shown that such markets
often indicate features of imperfect competition [1,2]. In food processing input markets, a
large number of spatially dispersed farms supply the primary input to a small number of
large processing firms. The spatial pricing of processing firms in input markets—competing
for farmers’ products—is investigated in the existing literature, often based on the models
of oligopsonistic competition [3–10]. The food processors’ spatial competition has short-
to long-term impacts on emerging prices in procurement markets. This determines the
prosperity of farmers and processors as well as the overall structure of the market.

Most existing theoretical approaches in the literature [11–14] utilize analytical meth-
ods to understand the procurement pricing policies of processing firms. Although these
approaches develop solid mathematical models to explain the emerging prices, they are
not suited to describing pricing policies in the real complex market environments:

• Whereas these models often presume only two extreme pricing policies, namely free
on board (FOB) pricing (where the processors set the farm gate price and farms must
pay the total transportation cost from farm gate to the processing company gate) and
uniform delivered (UD) pricing (where the processors set the farm gate price and bear
the entire transportation costs), in the real life markets, the processing firms are free to
choose prices with various possible degrees of absorbing transport costs comprising
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not only the FOB to UD but also in-between degrees of shared transport costs to be
absorbed by both the purchasing firms and the farmers.

• Whereas these models often assume that the interactions of firms takes place in
one-stage games, real life markets can incorporate infinitely dynamic firm interactions.

Agent-based models ABMs [15] have recently been proposed approaches to cope with
the deficiencies mentioned above. These frameworks are utilized to facilitate the simulation
of the interaction of autonomous agents in complex environments [16]. Yet, individual
agents within ABMs must be equipped with appropriate decision-making mechanisms in
order to enable the entire model to successfully simulate emergent behavior at the system
level [17]. Thus, agents must discover a solution autonomously through observations and
relying on their own knowledge by means of learning [18].

Our objective in this paper is to develop algorithms based on artificial intelligence (AI)
to overcome the learning problem within ABMs of agricultural input markets. The main
research questions (RQs) driving this research are:

RQ 1: How to build AI-based pricing firms which autonomously choose optimal prices
in the food processing input market given the competitors’ policies?

RQ 2: How to design a proper game theoretical benchmark to assess the decency of
the learned prices by learning firms?

RQ 3: Which pricing policies emerge as equilibrium in agricultural input markets
under different spatial market settings?

To answer these RQs, we constitute two types of agents: agents who we name su-
pervised agents throughout and agents who we name unsupervised agents throughout.
Supervised agents only confront supervised agents through our study and the unsuper-
vised agents only confront unsupervised agents through our study. The unsupervised
agents are deep learning agents, which are created to answer RQ 1. The supervised agents
are created in our paper to answer RQ 2. While the unsupervised agents are involved in
a course of interactive learning with their competitors, without any pre-knowledge, the
supervised agents are pre-trained with a complete list of best response policies given the
price of the opponent (which is computationally prepared before the market interactions
begin). As the sequential process of mutual best responding will lead the system towards
the same or similar termination points as the Nash equilibrium [19], the supervised agents
are thought to be the benchmark in our study. Hence, we use the supervised agents’ pricing
outcomes as reliable criteria to evaluate the performance of the unsupervised agents with
respect to achieving (or not achieving) the targeted game Nash equilibria prices under
different spatial market settings. Finally, based on the results of market simulations with
regard to the equilibrium behavior of supervised agents and unsupervised agents under
different spatial market settings (resulted from varying the global transportation cost rate
and varying the price elasticity of supply), we answer RQ 3.

The remainder of the paper is organized as follows. Section 2 presents the literature
background with regard to pricing theories in agricultural input markets as well as learning
theories within multi-agent systems. Section 3 presents our ABM’s underlying spatial
market together with the processors’ and farms’ characteristics. Section 4 conveys the
algorithms, which the supervised agents and unsupervised agents apply, respectively. The
results of the simulations of supervised and unsupervised agents by varying the global
transportation cost rate, each within the elastic as well as the non-elastic market environ-
ments are presented in Section 5. Section 6 conveys conclusions and further thoughts.

2. Background

There are three well-known pricing policies practiced by the processors in agricultural
input markets: free on board pricing (FOB), uniform delivered pricing (UD), and optimal
discriminatory (OD) (where the transport costs are shared equally between the processor
and the farmer) pricing [20]. Until the early 1990s, the researchers’ views on the choice
of pricing policies by processors and their market implications fundamentally relied on
non-mathematical models [21–23] but showed the more frequent practices of UD and
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OD pricing relative to FOB pricing. Refs. [11,12] were the first well-known studies that
analytically modeled the spatial pricing of firms. Both studies suggested that UD pricing
policies are likely to be observed in industries where the transportation costs are high
but also in industries with low transportation costs, while FOB is likely for intermediate
market settings. Ref. [13] highlights that the presumed farmers’ output supply elasticity of
price in the models of [11,12] is assumed to be perfectly inelastic, leading to the processors’
policies being biased in favor of UD pricing. Using a supply function with strictly positive
(unitary) price elasticity for farms, Ref. [13] suggests that contrary to the model proposed
by [11], the FOB pricing policies emerge as the equilibrium under market settings with low
transportation costs. Mixed FOB–UD policies (one of processors chooses an FOB and the
other a UD policy) are Nash equilibria in market settings with high transportation costs,
and UD pricing emerges when shipping costs are high relative to the value of the finished
product, for example for markets that are nearly monopsonistic in nature. Ref. [14] adopts
the model proposed by [13] for specific processor objectives and shows that the coexistence
of processors with different objective functions (one of processors is a profit maximizer and
the other aims to simultaneously maximize its profit and the farmers’ profits) are likely
to give rise to mixed pricing policies. According to [14] UD (FOB), pricing is chosen in
markets where transportation costs are small (large) relative to the net value of the primary
product. A mixed FOB–UD pricing equilibrium emerges for an intermediate market setting.

Although these models present strong analytical basics, they fail to reflect complex
environmental features like dynamic interactions as well as pricing policies with various
degrees of transport cost absorptions. Agent-based models (ABMs) serve as computational
laboratories with bottom-up approaches to understand market outcomes emerging from
autonomously deciding and interacting agents. ABMs employ various learning methods.
However, individual agents must be equipped with appropriate adaptive decision mecha-
nisms to successfully simulate such emergent behavior at the system level [17]. In spatial
competition contexts, each pricing agent needs to dynamically keep up with the changes in
the prices of other agents. According to [24], there are three main approaches to learning:
supervised, unsupervised, and reward-based learning. In supervised learning, an agent
deals with the problem of learning through training with a series of input and output
pairs. A teacher or supervisor steers the learning progress by providing feedback on the
success. Deep neural networks (DNNs) [25] are typically examples of supervised learning.
In unsupervised learning, no feedback is provided. The data mining methods clustering
and discovery are examples of unsupervised learning. The reward-based learning methods
are divided into two subsets: reinforcement learning (RL) and stochastic search methods
such as genetic algorithms (GAs).

The study of market power in a broad range of studies in computational economics
is often carried out using genetic algorithms [7,26–29]. Agents using a genetic algorithm
require less prior competence in specific tasks [28]. Such evolutionary algorithms can
be quite useful for some classes of complex problems, especially when the problem is
non-trivial to deal with. Refs. [7,30] were among the first studies that applied ABMs
with incorporation of GAs to investigate the spatial pricing policy of firms in agricultural
procurement markets. They found that UD pricing is an equilibrium behavior under high
and medium transport rate market regimes, and OD emerges in markets with high shipping
costs. In contrast, FOB pricing does not emerge in equilibrium. Ref. [31] investigated the
joint selection of location and price policy by processing firms and found that, when buyers
have the flexibility to jointly choose their locations and pricing policies, farm product
procurement markets are both more competitive and more efficient. In particular, they
reach the result that pricing policies close to FOB pricing re-emerge as equilibrium strategies
in market settings with low transport costs. The representative articles in the context of the
firms’ spatial pricing are depicted in Table 1.
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Table 1. Firms’ pricing policies in agricultural input markets from different agricultural economic
studies’ points of view.

Work by Pricing Game Supply
Elasticity

Specific Firm
Character

Equilibrium
by High

Transport Cost

Equilibrium
by Medium

Transport Cost

Equilibrium
by Low

Transport Cost

[11] Repeated
Game Constant = 0 No UD FOB UD

[13] Static Constant = 1 No UD FOB-UD FOB

[14] Static Constant = 1 IOF or COOP FOB FOB-UD UD

[30] Repeated
Game Variable No OD UD UD

[31]
Repeated

Location and
Pricing Game

Variable No OD UD Close to FOB

From a critical point of view, the interpretation of the dynamics of genetic algorithms
as individual learning processes is not in all cases clear [32]. Hence, instead of elaborating
on GAs, in this paper, we opt for using a reward-based method, i.e., reinforcement learning.
Thus, we made use of deep neural networks (DNNs) to develop RL pricing agents in
agricultural input markets. Choosing DNNs in our study was due to the capability of
DNNs to process unprecedented amounts of data [25]. Hence, we combine the application
of RL with DNNs. The joint application of RL and DNNs is a solution first presented
by [33] to overcome the course of dimensionality issue in market interactions with rich
decision spaces. We used a well-known RL algorithm, i.e., the Q-learning algorithm [34].
Q-learning agents elaborate decisions based on the notion of dynamic programming [35] to
solve optimization problems by combining solutions to sub-problems. Each agent solves
each sub-problem just once and saves its answer in a memory table (named Q-table), to
avoid the re-computation. The entries of tables are called Q-values. The evaluations of
Q-values are then iteratively reinforced and improved as the game is played more and
more. As the basic Q-learning algorithm needs huge values of storage table capacity, it is
predominantly applicable to just problems with small decision spaces [36]. Ref. [33] was the
first to introduce the joint usage of Q-learning together with the utilization of deep artificial
neural networks (DNNs) to overcome the issue of memory storage capacity. Hereby, the
deep learning model takes the role of storage tables and can predict the Q-values without
usage of any tables.

To examine the results of deep reinforcement learning processors (which act in line
with [33]), in our study, we utilized unsupervised agents as well. The behavior of su-
pervised agents serves as a game theoretic benchmark to assess the performance of the
unsupervised agents.

3. Market Spatial Setting and Processing Firms’ Pricing Components

In this section, we describe the spatial setting of the underlying simulated market in
our study and introduce processing firms’ pricing components. We presume two price
setting processors (as purchasers) located on a one-dimensional space. The region is
discrete in space, consisting of a grid of cells with each cell occupied by exactly one farm
(as supplier) and locations are accessible by X-Y coordinates, where X = {−100, . . ., −1, 0,
1, . . ., 100} and Y = 0. The location of processors in each simulation is fixed on the points
(−100, 0) and (+100, 0). To normalize the factor distance, each distance between two next to
each other points of the grid world is normalized by dividing by 100, so that each farm’s
distance to its direct neighbor is equal to 0.01 and the fixed processors’ distances to each
other is equal to 2.
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Processors are price-setting profit maximizing processors. A general price equation
is assumed to describe the net price per unit quantity of supply (local price) received by
farmers at each location:

up
(
dsp

)
= mp − tαpdsp (1)

In our study, the vector (mp, αp) is the representative of a processor’s pricing policy
describing the price for a farmer at the processor’s location by term mp and the share of
transportation cost absorbed by each farm due to the spatial differences of agents expressed
by the term αp. up

(
dsp

)
is the local price of processor each supplier farm receives at its

location point s; dsp is the distance between processor p and the supplier farm s; and t
describes a global variable for transportation cost rate. We limit the maximum possible
values for product price ρp of processors in the downstream market via normalization
equal to 1. The price policy parameters of agents mp and αp have discrete values between 0
and 1 with predetermined increments equal to 0.01. In line with the predecessor studies,
we assume that suppliers are price takers and will produce the amount qsp

qsp = up(dsp)
ε (2)

based on the local price they receive and the factor ε, which represents the price elasticity
of supply. Note that the local prices received by each farm must be positive. However, the
deep learning processors in our study are learning agents, who are free to purchase the raw
product even if it does not yield a positive local profit for them. Hence the set of potential
suppliers for each processor was not limited by us beforehand within the space by any
marginal location.

After submitting the processors’ bids to potential suppliers, each processor will earn a
local profit
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sp = ρp − up
(
dsp

)
− tdsp (3)

Ultimately, each processor’s profit in our model is the sum of all local profits of its
contracted suppliers. If two processors submit equal local bids to a farm, the supply of that
farm is shared between the contracted processors (market overlap).

4. Learning Model

In this section, we convey the description of the two types of learning agents in our
study, i.e., the unsupervised agents and the supervised agents.

4.1. The Unsupervised Agents

The unsupervised agents in our study are deep Q-learning pricing agents. The theory
of Markov decision processes (MDPs) offers a framework for modeling the decision-making
procedure by agents in the context of Q-learning. Q-learning uses MDPs for world rep-
resentation. A MDP [37] is a tuple (S, A, T, R), where S is the set of states, A is the set of
actions, T is a transition function S× A× S→ [0, 1], and R is a reward function S × A→R.
The transition function defines a probability distribution over the next states as a function
of the current state and the agent’s action. The reward function defines the reward the
agent receives when selecting an action at a given state. Solving MDPs consists of finding a
policy function µ, µ : S→ A , which maps states to actions. An optimal policy maximizes
the sum of future rewards r, discounted by factor γ, over time t. The optimal way for
agents to learn the optimal policy is learning the optimal value function [38]. A Q-function
is defined as the expected discounted reward given the agent takes a certain action a in
state s following policy µ.

qµ(s, a) = E(
∞

∑
k=0

γkrt+k+1|st = S, at = a, µ) (4)
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The optimal Q-function is defined as q∗(s, a) = maxµqµ(s, a). It satisfies the Bellman [35]
optimality equation:

q∗(s, a) = ∑s′∈S T
(
s, a, s′

)[
r
(
s, a, s′

)
+ γmaxa′q

∗(s′, a′
)]
∀s ∈ S & a ∈ A (5)

Equation (5) states that the optimal value of taking a in s is the expected immediate
reward from undertaking a plus the expected discounted maximum value attainable from
the next state s′. Once q∗ values corresponded to actions in each state are available, the
optimal policy will be returned in every state by reinforcing the action with the largest
optimal q-value.

µ∗(s)← argmaxaq∗(s, a) (6)

The optimal policy µ∗ of agent in each state would be typically assigning probabili-
ties to actions that obtain higher Q-values. A broad range of single and multi-agent RL
algorithms are derived from the basic Q-learning developed by [34]. A Q-learning agent
maintains the value of each possible action in every state of the environment. These are
called Q-values and are stored in a table. The evaluations of the quality of particular actions
at particular states are iteratively improved. The agent, subject to an error, selects the most
favorable action (the action that gives already the maximum Q-value in his current state)
a in its current state s. For example, in a so-called epsilon-greedy policy (which is used in
our simulations) an agent chooses a random action (error) with a small probability epsilon
and with a probability equal to 1- epsilon decides to take the action, which gives already the
maximum Q-value in his current state. This parameter is set to 0.2 in our study. Then, it
perceives the consequence of this action in form of the new state of the environment s′ and
its reward r. Through this reward, the agent validates the significance of its last action and
updates its Q-value. Hence, Q-learning turns into an iterative approximation procedure.
The agent starts with an arbitrary Q-function, observes transitions (sk, ak, sk+1, rk+1), and
after each transition, updates the Q-function according to

qk+1(sk, ak) = qk(sk, ak) + αk
[
rk+1 + γmaxa′qk

(
sk+1, a′

)
− qk(sk, ak)

]
(7)

The term within the bracket on the right-hand side of Equation (7) is the difference
between the current estimate of Q-value of (sk, ak) and the updated estimate of (sk, ak).
Parameter settings influence the quality of learning. For example, setting factor αk to 0
means that the Q-values are never updated; hence, nothing is learned. Setting a high
value such as 0.9 means that learning can occur quickly. This parameter is set to 1.0 in our
study. The discount factor γ describes how an agent will evaluate the rewards, which are
obtained afterwards. If the discount factor meets or exceeds 1, the q-values may diverge.
This parameter is set to 0.5 in our study.

The classical Q-learning algorithms are predominantly applicable to small problems
only, e.g., games with two players and two possible actions per each player. By increasing
the interaction, the domain tabular storage of Q-functions for agents becomes economically
infeasible, i.e., impractical. The number of actions and states in a real-life environment can
be thousands upon thousands, making it extremely inefficient to manage Q-values in a
table. Recent advances in deep neural networks (DNNs), especially in deep learning, have
enabled the application of Q-learning algorithms to large-scale decision problems [33,39]. In
this case, one can use DNNs to predict Q-values for actions in a given state instead of using
tables. As an alternative for initializing and updating a Q-tables in Q-learning processes,
we initialized and trained a neural network model to predict Q-values. DNNs consist of
artificial neurons that receive and process input data. Data are passed through the input
layer, the hidden layer, and the output layer to predict complex patterns [40,41]. The layers
of the neural network used in our study comprise the following. The input layer consists of
four nodes comprising a tuple of mp and αp of both players, which represents the state of
the world in our study. There are three hidden layers in the neural network architecture of
our study, each of them consisting of 50 neurons, respectively. The output layer consists
of five nodes comprising the number of actions that each processor can undertake by
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observing the state of the world. Each of the five actions enable processors to decide upon
the change in each element of their pricing vectors (mp, αp) with the preferred increment
sizes δ = 0.01, in line with the following gradients: [(−δ, 0), (0, − δ), (0, 0), (0, δ), (δ, 0)].

The DNN minimizes the error function (called loss function) presented in Equation (8)
through the course of learning, i.e., the square value of the difference between the predicted
qk(sk, a) and the target q values (rk+1 + γmaxa′qk(sk+1, a′)):

lossk+1 =
{

rk+1 + γmaxa′qk
(
sk+1, a′

)
− qk(sk, a)

}2 (8)

The unsupervised agents’ (deep Q-learning pricing agents) learning algorithm is
shown in the following in pseudo-code format:

I. Initialize a DNN model;
II. Initialize a list for memorizing (state of the world, action, new state of the world, reward)

in each step of the game;
III. In each step of the game:

a. Observe the state of the world comprising all processor firms’ prices;
b. Demand the DNN model to predict the Q-value of each action from the state of

the world;
c. If you are not in error mode:

i. Choose the action with the highest Q-value;

d. Otherwise:

i. Choose a random action;

e. Adjust the pricing policy based on the chosen action;
f. Participate in the spatial competition by applying the determined pricing policy;
g. Each farmer decides whether to connect and deliver to which processor based on

the processors’ determined pricing policies;
h. Collect the input product from the connected farmers based on the pricing policy;
i. Pay the transportation cost according to distance to each farmer;
j. Process the input product and sell the processed product in the downstream market;
k. Calculate the final pay-off;
l. Set the final pay-off as reward;
m. Observe the new state of the world comprising all processor firms’ prices;
n. Extend memory based on new information: (state of the world, action, new state

of the world, reward);
o. For states of the worlds in the memory list:

i. Demand the DNN model predict the Q-value of each action from the new state of
the world;

ii. Set the highest Q-value among actions as the Max_New_state_Q_Value;
iii. Compute the Q-value of the chosen action from the state of the world according to

equation: reward + discount_factor * Max_New_state_Q_Value;

p. Train the DNN model (1 epoch) by using the states of the world as input and
computed Q-values of each action from the state of the world as output.

Note that the unsupervised agents decide simultaneously upon updating their pricing
policies in each step of the game. The training code to replicate the training process is
included in the Supplementary Materials of this paper.

4.2. The Supervised Agents

In order to examine the performance of the unsupervised agents introduced in the
previous section, we use a game theory approach analogous to the sequential move ad-
justment process in [19,42]. We presume that when processors decide to become involved
in spatial competition, they start pricing from an arbitrary price point but proceed to
sequentially apply the best response priced to each other. The processors’ mutual best



Agriculture 2024, 14, 712 8 of 14

responding is expected to lead us to the same termination points as the Nash equilibrium
of the game [19]. Here, we initiate a course of best response sequential play between agents
from the point (mp = 0.50, αp = 0.50) and let the processors undertake moves subject to
the assumption that both agents know to choose the most profitable pricing policy from
all 10 × 102 × 10 × 102 possible combinations of their (mp, αp), given the pricing policy
of the opponent. A complete list of best response policies given the price of the opponent
in the market environment presented in Section 3 was computationally prepared in the
tables and was fed into the agents by us as the supervisors before the sequential move
game began. The supervised agents’ learning algorithm is shown in the following in
pseudo-code format:

I. In each step of the game:

a. Observe the state of the world comprising all processor firms’ prices;
b. Select the best response pricing policy given the opponent’s prices based on the

information provided by supervisor;
c. If the same state of the world is twice observed:

i. Report the sequence of repeated states of the world comprising all
processor firms’ prices as equilibria.

Note that supervised agents do not decide simultaneously. Each of the supervised
agents decides upon its pricing policy at each step of the game when it is its turn. The
training code used to replicate the training process is included in the Supplementary
Materials of this paper.

Furthermore, we do not presume that the supervised agents necessarily report the
unique state of the world as the Nash equilibrium in the market. In spatial competition
with the incorporation of transport cost absorption policies, there is no guarantee for an
existing unique verifiable price combination of processors as the mutually best response of
players to each other. In such circumstances, the cyclic price behaviors can take the place
of Nash equilibria. This phenomenon happens due to the discontinuous nature of best
response functions of players in agricultural markets with transport cost absorptions and is
discussed in the literature [43–47].

5. Simulation Results

The dependent variable of our study is set to be each of two processors’ pricing vectors
(mp, αp) in competition with the opponent in the market environment. The explanatory
variable for the pricing policies of the pricing agents in the existing literature of spatial
competition is a ratio called the importance-of-space measured by s = t × D/ρ, i.e., transport
cost rate (t) multiplied by distance to the competitor (D) divided by the net value of product
being sold at the downstream market (ρ) [5]. The more the ratio s increases, the more the
competition between processors diminishes, to the point where they are eventually spatially
isolated monopsonies. The more the ratio s decreases, the more intensive the competition
between processors becomes. In order to alter the value of s as an explanatory variable in
our study, we exogenously changed the parameter t in the range of the values within the
list t = [0.01, 0.2, 0.4, 0.6, 0.8, 1.0]. In addition, we conducted the simulations, once with the
factor price elasticity of supply ε equal to 1 (which represents a strictly positive (unitary)
price elasticity for farms) and once with the factor price elasticity of supply ε equal to 0.01
(which represents an extremely non-elastic market supply). The near to zero ε parameter
could reflect the fact that, in reality, farmers might have limited flexibility to substitute
outputs, creating a relatively inelastic supply in the short-term [48]. Each simulation
was conducted through 10,000 steps and repeated by changing the parameters, agent
types (supervised or unsupervised), and t and ε, according to the abovementioned values.
Figures 1 and 2 show the finalized mp, αp outcome of the simulations by unsupervised
agents at the final 1000 steps of the agents’ interactions, as well as the equilibrium values of
mp, αp obtained by supervised agents by setting the price elasticity of supply ε equal to 1
and 0.01, respectively for the selected values of transport costs.
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The left-side panels of Figures 1 and 2 reveal that the spatial market system does
comprise a verifiable unique Nash equilibrium with practically symmetric prices for both
processor firms throughout all the market settings. This means that the case of cyclic price
wars, i.e., the non-existence of the Nash equilibrium is not observed in our study through
the underlying market environment and the ranges of selected parameters for transport
rate and the price elasticity of supply.

The middle and the right-side panels of Figures 1 and 2 demonstrate the frequency of
mp, αp variable combinations obtained by unsupervised competitor agents. The lighter a
point within the m-α plane, the more frequent the variable combination is observed as the
outcome of the game by unsupervised agents. The points outside of the depicted minimum
and maximum of the m-α plane are non-observed pricing policies in the final steps of the
agents’ interaction.

The findings, with regard to the obtained equilibrium prices in Figures 1 and 2, are
twofold: first, in all the market settings within the selected parameters for transport rate
and the price elasticity of supply, the unsupervised deep learning agents approximated
the Nash equilibrium target mp, αp points in line with the supervised agents’ outcomes,
in the course of market interactions, by learning. This approximation is accomplished
with a minor exception when the parameter t is set extremely small (t = 0.01) both in
elastic (ε = 1) and non-elastic (ε = 0.01) markets. The simulations show that in the extreme
cases of setting the lowest possible transportation rate, unsupervised agents proceed on
the course of overbidding the mill prices mp until they achieve the highest levels of mill
prices, i.e., mp ≈ 1.0, which is completely in line with the Nash equilibrium outcome
of the game by supervised agents; however, whereas the supervised processors, both in
the case of elastic market as well as in the inelastic market incorporated αp ≈ 0.6 (with
regard to the absorption of transportation costs), the most frequently observed mp and
αp values by unsupervised agents varied around αp = 0.0–0.4 in the elastic market and
around αp = 0.0–0.2 by one of the pricing agents in the non-elastic market (whereas the
other unsupervised agent in Figure 2 approximated the target αp ≈ 0.6 level similar to the
supervised agents’ Nash equilibria points). We can interpret this outcome in relation to the
little weight the deep learning might have put on the importance of the αp (as the coefficient
of transport cost) in a market where the role of transport (t = 0.01) is not significant. In this
case, the equilibrium of the market with extremely small transportation costs is expected to
recap the Bertrand solution with maximum mill prices mp ≈ 1.0 set by both processor agents
and a little incentive to regulate the αp together with roughly zero profits obtained by both
processors. Despite this deliberation, it would not be surprising if the deep learning pricing
agents are able to exactly settle on the target Nash equilibrium points through further
learning in extra simulation steps.

The second finding with regard to the obtained equilibrium prices in our study is
related to the question of which prices emerge as Nash equilibrium in spatial agricultural
procurement markets?

From Figures 1 and 2, it is evident that for the cases when the transportation cost rate t
is set as equal to 1.0 and 0.8, both in the elastic market and the non-elastic market, the market
prices move towards the monopsonistic optimal discriminatory prices. A monopsonistic
optimal discriminatory price (OD) policy comprises mill price mp and the transport cost
absorption by the monopsony processor αp equal to the tuple (mp, αp) = (1/(1 + ε), 1/
(ε + 1)) [49]. Thus, where ε = 1.0, we expect the m and alpha variables to converge around
the point (mp, αp) = (0.5, 0.5), and where ε = 0.01, we expect the m and alpha variables
to converge around the point (mp, αp) = (0.01, 0.01). By decreasing the transportation
cost rate t to 0.6, 0.4 and 0.2, we can clearly observe that the processors’ pricing policies,
both in the elastic market and the non-elastic market, converge towards setting the farm
gate price and bearing all the transportation costs, i.e., αp ≈ 0.0. Only in the extremely
competitive market setting where the spatial feature of the market almost does not matter,
i.e., t = 0.01, do the processors’ prices tend to involve the high absorption of (the actually
small) transport costs to be carried by the farms, i.e., close to FOB policies.
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These outcomes are, on the one hand, thorough with regard to the individual learning
and the game theory foundation of the firms’ policies. On the other hand, our simulation
outcomes support the prevalence of pricing policies with the absorption of high portions or
the entire transport charges through the processing firms in a broad range of market settings,
while proposing the emergence of policies close to FOB both in extremely competitive
elastic and inelastic market settings.

6. Conclusions and Further Discussion

After comparing the two major simulation results in Section 5, we reflect on how the
research questions of our paper have been answered, on what main lessons can be drawn,
and what further research needs evolve from our study. Price formation in agricultural
procurement markets is a complex dynamic process with multiple agents and interactions.
Agent-based simulation models are thought to simulate the actions and interaction of au-
tonomous agents in complex environments. However, individual agents must be equipped
with appropriate adaptive learning mechanisms to successfully simulate the emergent
pricing policies at the system level. In this paper, we introduced a deep learning dynamic
model of pricing to the context of agricultural markets in large-scale strategy spaces. We
designed experiment runs (by changing the transport cost rate and price elasticity of sup-
ply) to examine whether the deep learner agents can converge to optimal pricing policies
(to answer RQ 1) in different spatial market settings. To provide decent criteria to answer
the RQ 1, we designed markets comprising cognitively equipped supervised agents, which
are able to pinpoint the market Nash equilibria (to answer RQ 2). Our simulation results
showed that unsupervised deep learning firms are capable of converging towards Nash
equilibria prices. The significance of the deep learning agents is not only the convergence
to the targeted theoretical points in line with the supervised agents pricing policies, but it
is more important that the deep learning agents can inherently keep up with changes in the
environment through considering the state of the environment (consisting of the pricing
policy vectors of all market processors) in their input. Deep learning agents constantly
move towards the optimal action by generating the right decision in their model output.
This means that if, e.g., one of the competitor processors’ price vector changes and settles
on a stationary pricing vector, then a deep learning pricing agent will also update its policy
to converge on a policy that is the best response to the opponent processor’s policy. Based
on the incorporated results obtained both from supervised and unsupervised agents (which
correlate significantly with each other), our research provides insights into equilibrium
pricing policies in agricultural input markets (to answer RQ 3). Our simulations support
the theoretical and empirical reflections of the recent existing studies (introduced in the
background section) with regard to the emergence of optimal discriminatory and uniform
delivery pricing policies in a broad ranges of agricultural input markets with a high and
intermediary amount of importance being placed on space. Moreover, our results show the
emergence of free on board pricing policies both in elastic and inelastic agricultural input
markets with a small amount of importance being placed on space.

While our study’s objective, with regard to the defined RQs within this paper, is
attained, there are limits to the scope of our research which need to be addressed in
future studies. Our simulations are still limited to two agents and fixed firm locations.
Real-world markets can involve pricing with the presence of multiple agents and with
incorporating agents who decide upon the joint selection of pricing and location. Other
real-world constraints could also be imposed on food processors and farmers, including
limitations on production capacity, legal constraints through price rules, objectives of
specific actors rather than profit maximization (Section 2), etc. Increasing the complexity of
the market environment requires more enhanced versions of deep learning models than
the one presented in this paper. The current deep Q-learning model still necessitates agents
to explore a vast number of world states capable of achieving the convergence criteria
in line with the proposed Nash equilibria. Utilizing hierarchical deep learning agents in
agricultural markets could be a future step of research for coping with the computational
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burdens triggered through additional market features. Rational agents in reality guide their
decisions using hierarchical elaboration rather than undertaking exhaustive searches of
the whole decision space. Elaborating on hierarchical learning in such complex systems
can prevent agents from changing their policies in an arbitrary fashion and can reduce the
dimensionality of interactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
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