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Abstract: This review is a comprehensive introduction to the effects of poultry exposure to 

the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1). The relationship between AFB1 

sensitivity and metabolism, major direct and indirect effects of AFB1, recent studies of gene 

expression and transcriptome responses to exposure, and mitigation strategies to reduce 

toxicity are discussed. Exposure to AFB1 primarily occurs by consumption of contaminated 

corn, grain or other feed components. Low levels of residual AFB1 in poultry feeds can cause 

reduction in growth, feed conversion, egg production, and compromised immune functions, 

resulting in significant economic costs to producers. Thus, AFB1 acts as a “force multiplier” 

synergizing the adverse effects of microbial pathogens and other agents, and factors 

detrimental to poultry health. Domestic turkeys (Meleagris gallopavo) are one of the most 

sensitive animals known to AFB1 due, in large part, to a combination of efficient  

hepatic bioactivation by cytochromes P450 1A5 and 3A37, and deficient hepatic  

glutathione-S-transferase (GST)-mediated detoxification. Because of their sensitivity, 

turkeys are a good model to investigate chemopreventive treatments and feed additives for 

their ability to reduce AFB1 toxicity. Transcriptome analysis (RNA-seq) of turkey poults 

(liver and spleen) has identified AFB1-induced gene expression changes in pathways of 

apoptosis, carcinogenesis, lipid regulation, antimicrobial activity, cytotoxicity and antigen 

presentation. Current research focuses on further identifying the molecular mechanisms 
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underlying AFB1 toxicity with the goal of reducing aflatoxicosis and improving  

poultry health. 

Keywords: turkey; aflatoxin B1; hepatotoxicity; immunosuppression; feed additives; 

transcriptome; RNA-seq 

 

1. Introduction 

Dietary exposure to aflatoxins can have severe toxic and carcinogenic effects in humans and animals. 

The production and metabolism of aflatoxin, symptoms and biomarkers of exposure, and methods to 

reduce aflatoxicosis have been extensively investigated over the past 50 years [1–9]. Most studies have 

focused on humans, laboratory model species, or agricultural animals, and have identified conserved and 

species-specific aspects of aflatoxicosis [2,10–15]. This review specifically examines the responses of 

poultry, a particularly sensitive group, to aflatoxin B1. Aflatoxin metabolism, toxicity, and expression 

responses in poultry are discussed, along with potential mitigation strategies. 

2. Etiology of Aflatoxicosis 

The acute toxicity of dietary aflatoxin was discovered in 1960 when a then unknown disease, termed 

Turkey “X” Disease, caused the deaths of over 100,000 turkeys (Meleagris gallopavo) and other poultry 

in England [16,17]. Upon examination, the causative agent was identified as imported Brazilian  

peanut-meal contaminated with aflatoxins [16,18]. Aflatoxins belong to a heterologous group of fungal 

secondary metabolites called mycotoxins that adversely affect human and animal health. Structurally 

derivatives of difurocoumarin, aflatoxins are most commonly produced by strains of Aspergillus flavus, 

A. parasiticus, and A. nominus, although many other Aspergilli (including Emericella teleomorphs) have 

aflatoxigenic capabilities [7,19–21]. Named according to their blue or green fluorescence under  

UV light, there are four primary aflatoxins: aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2) 

(Figure 1) [7,21]. Of these, AFB1 is the most hepatotoxic, the most mutagenic, and the most prevalent 

worldwide [2,3,21,22]. 

Livestock, including poultry, are exposed to AFB1 and other aflatoxins by consuming contaminated 

feed. Many agricultural feed commodities (corn, cottonseed, peanuts and sorghum) and other foods (figs, 

tree nuts and spices) are at especially high risk [21,23]. Stress from drought or insect damage can reduce 

crop resistance to Aspergilli and lead to aflatoxin contamination prior to harvest [21,24].  

Warm and humid conditions during maturation, harvest, transport or storage, promote Aspergillus 

colonization and subsequent aflatoxin production [21,24]. Temperatures near 30 °C and water activity 

of 0.99 provide ideal conditions for AFB1 biosynthesis, although substrate, time, CO2 levels, and other 

environmental factors are also important [25–30]. Along with primary contamination of crops, aflatoxins 

can transfer to milk, meat and eggs of livestock and poultry fed the toxins [23,31–38]. Therefore, AFB1 

is a human food safety risk in both plant and animal products. 
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Figure 1. Molecular structures of the four primary aflatoxins. 

Animal susceptibility to the acute effects of aflatoxicosis varies widely (Table 1). Domestic  

turkeys and ducks (Anas platyrhynchos) are highly sensitive to both the acute and chronic toxicity of  

AFB1 [21,39,40]. Chickens (Gallus gallus) are more resistant to acute aflatoxicosis than other poultry 

species, except during embryonic development (Table 1). Even when exposure does not cause mortality 

or morbidity, aflatoxicosis contributes directly and indirectly to losses for the poultry industry. While 

precise numbers are not available, it has been estimated that aflatoxins inflict a loss of at least  

$143 million each year due to AFB1-induced hepatotoxicity, reduced performance and secondary 

infections [23,41]. 

Table 1. Comparative acute toxicity of a single oral dose of aflatoxin B1 (AFB1). 

Species Age Oral LD50 (mg/kg Body weight) 1 

Baboon A 2.0–2.2 

Cat A 0.6 

Chicken E 0.3–5.0 

Chicken Y 6.5–18.0 

Dog A 0.5–1.0 

Duck E 0.5–1.0 

Duck N 0.3–0.6 

Guinea Pig Y 1.4–2.0 

Hamster Y 10.2–12.8 

Macaque (Cynomolgus) A 2.2 

Macaque (Rhesus) A 7.8–8.0 

Mouse N 1.5 

Mouse Y 7.3–9.0 

Rabbit Y 0.3–0.5 

Rat N 0.6–1.0 

Rat Y 5.5–7.4 

Rat A 6.3–18.0 

Sheep A 2.0 

Swine Y 0.6 

Trout Y 0.5 

Turkey Y 1.4–3.2 

Lethal dose in 50% (LD50), adult (A), embryo (E), neonate (N), young (Y); 1 compiled from [7,10–12,14,22]. 
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3. AFB1 Metabolism and Sensitivity 

3.1. Metabolism 

Bioactivation is required for AFB1 to be toxic and this processing predominantly occurs in 

hepatocytes [1,4,7,21]. AFB1 is initially absorbed in the small intestine, especially the duodenum [42]. 

While bioactivating enzymes with low affinity for AFB1 are present in the small intestine [43],  

the majority of the toxin is metabolized in the liver, where AFB1 is converted by hepatic  

cytochromes P450 (CYP) enzymes into the reactive and electrophilic exo-AFB1-8,9-epoxide (AFBO) 

(Figure 2) [1,3,4,21,22,40]. An endo stereoisomer of the AFBO epoxide can also be produced, but is far 

less toxic and not relevant to AFB1 toxicity [1,4]. 

 

Figure 2. Metabolites and enzymes involved in aflatoxin B1 (AFB1) metabolism in the 

turkey liver. Arrow width shows reaction efficiency (wide > narrow), while a dashed line 

indicates that a reaction does not occur in all birds. Cytochrome P450 (CYP) enzymes 

effectively interact with AFB1. Domestic turkey glutathione S-transferase (GST) enzymes 

cannot conjugate exo-AFB1-8,9-epoxide (AFBO), although wild and heritage turkey GST 

enzymes can have activity. 

AFBO is a highly unstable intermediate (t0.5 ~ 0.5 s) and quickly reacts to form adducts with DNA, 

RNA, and proteins [1,4,7], which are then responsible for AFB1 toxicity. In most mammals, AFBO is 

primarily detoxified by glutathione S-transferase (GST) enzymes that add glutathione (GSH) to form an 

8,9-dihydro-8-(S-glutathionyl)-9-hydroxy-AFB1 (AFB1-SG) adduct (Figure 2) [3,4,7,21,40]. Although 

AFBO is the most toxic, other metabolites of AFB1 include aflatoxicol (AFL), aflatoxin M1 (AFM1), 

aflatoxin P1 (AFP1), and aflatoxin Q1 (AFQ1,) [3,4,7]. 

3.2. Sensitivity: Mice to Humans 

Sensitivity to AFB1 is determined not only by the rate of P450-mediated bioactivation, but  

more importantly by the subsequent detoxification of the reactive AFBO intermediate [1,4]. In mice 



Agriculture 2015, 5 746 

 

 

(Mus musculus), P450 enzymes such as P450 2A5, 3A11 and 3A13, effectively activate AFB1 and can 

produce large amounts of AFBO [4,44–50]. However, the murine alpha-class GST (GSTA) enzyme 

mGSTA3 has high affinity for AFBO, making mice extremely resistant to aflatoxicosis [4,45,51–55]. 

Interestingly, the orthologous hepatic GST enzymes from rats (Rattus norvegicus) can have more than 

50 times lower activity towards AFBO [45,54,56]. Effective activation by rat P450 3A2 and 2C11 and 

minimal conjugation by the rat orthologue of mGSTA3 (rGSTA3, Yc1) make the rat far more susceptible 

to aflatoxicosis [4,44,45,51,55,57–59]. Another rat AFBO-conjugating enzyme rGSTA5 (Yc2) has high 

affinity for AFBO, but expression is limited to neonatal tissue, some female adults and after  

antioxidant-induction [59–62]. Therefore even within rodents, the metabolism and sensitivity to AFB1 

is species-specific. 

In humans (Homo sapiens), multiple hepatic P450 enzymes can activate AFB1, but P450 1A2 and 3A4 

are the primary producers of AFBO [4,43,63–67]. Human P450 3A4 is active at high AFB1 

concentrations, while P450 1A2 has high affinity at low biologically-relevant concentrations [64,66]. 

Overall, human P450 enzymes produce far less AFBO than rodents, even at high concentrations  

of AFB1 (1/4 that of rats, 1/8 that of mice) [48]. Although lower levels of AFBO reduce toxicity,  

the epoxide is less effectively detoxified in humans. Hepatic GST enzymes in humans can have over 

3000 fold less activity against AFBO than murine GST [56]. Human enzymes hGSTA1 and hGSTA2 

have little AFBO-conjugating activity [57,59,68]. Instead, some AFB1-SG adducts are produced by the 

mu-class GST (GSTM) enzyme hGSTM1 [59,68–71]. Although hGSTM1 forms more AFB1-SG 

adducts from the endo stereoisomer, it is able to detoxify mutagenic exo-AFBO [68]. 

3.3. Sensitivity: Poultry 

Poultry are sensitive to even low levels of AFB1, and among species of agricultural importance, the 

order of sensitivity is ducks > turkeys > Japanese quail (Coturnix japonica) > chickens [7,21,72–75]. 

Therefore, lower concentrations of AFB1 are lethal to turkeys and ducks and more adversely affect 

production and health in these species (Table 2). In domestic turkey, efficient production of AFBO 

contributes to sensitivity. We have conducted considerable research to determine the P450 enzymes 

responsible for AFB1 bioactivation and metabolism in turkey livers. This work revealed two turkey P450 

enzymes, encoded by CYP1A5 and CYP3A37, predominantly responsible for converting AFB1 into 

AFBO in vitro and in vivo [76–79]. P450 1A5 has high-affinity (high Vmax, Kcat; low Km) and catalyzes 

the production of both exo-AFBO and the detoxified metabolite AFM1 according to traditional  

Michaelis-Menten kinetics [76,77]. P450 3A37 is the lower affinity catalyst, exhibiting apparent subunit 

allostery conforming to Hill enzyme kinetics and producing exo-AFBO and AFQ1 [76,77]. 

We used polyclonal anti-peptide antibodies in a series of immunoinhibition experiments to determine 

the relative importance of these P450 enzymes in AFB1 bioactivation in turkey livers  

and liver microsomes. Turkey P450 1A5 is the predominant catalyst (>98%) at low (<50 μM) 

pharmacologically-relevant AFB1 concentrations commonly seen in the livers of exposed turkeys, while 

P450 3A37 predominates at much higher AFB1 concentrations not likely to be achieved in tissues under 

in vivo conditions [78]. Another P450 enzyme, likely orthologous to mammalian P450 2A6, also 

converts AFB1 to AFBO in turkeys, chickens, ducks and quail [80–82]. However, the specific gene 

encoding this protein has not been identified in any poultry species [80–83]. These same studies 
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implicated a P450 1A1 orthologue in AFBO production, which is likely encoded by CYP1A5 in  

turkeys [78,80–82]. 

Table 2. Minimum AFB1 concentrations with major effects in poultry. 

Species 
Minimum Dietary Contamination Level (ppb) to Cause 

100% Lethality Gross Hepatic Lesions Impaired Production 

Chicken NR (>4000) 800 1 800 1 

Duck 1000 2 500 2 500 2 

Goose 4000 2 500 2 700 3 

Pheasant 4000 2 500 2 1000 2 

Quail (Bobwhite) ND ND 700 3 

Turkey 800 1 400 1 400 1 

Compiled from studies that examined aflatoxicosis in multiple poultry species; parts per billion (ppb); not determined (ND); 

not reached (NR); 1 [39]; 2 [75]; 3 [72]. 

The activity of P450 enzymes in the turkey, and therefore AFBO production, is inversely related to age, 

with extreme sensitivity to AFB1 in young poults [39,77,84,85]. A similar age-dependent sensitivity occurs 

in chickens [86–88]. Hepatic microsomal P450 enzymes from turkeys and quail produce 2 to 4 times 

more AFBO than ducks or chickens [74]. A later study confirmed the highest AFBO production in 

turkey, with intermediate levels in duck and quail, and the lowest in chicken [83]. AFBO production 

correlates with the sensitivity of poultry, except for the duck. In addition, the levels of AFL produced by 

liver cytosol are highest in turkey, followed by ducks, chickens and quail [74]. The sensitivity of ducks 

may be more linked to AFL production and toxicity or to oxidative stress [74,83,89]. 

Like the cytochrome P450 enzymes, hepatic tGSTA enzymes contribute to the severity of 

aflatoxicosis in the turkey. Six tGSTA genes have been amplified, cloned and heterologously expressed 

turkey liver (GSTA1.1, GSTA1.2, GSTA1.3, GSTA2, GSTA3, and GSTA4) [90,91]. Hepatic cytosolic 

GST enzymes from domestic turkey have essentially no AFBO-conjugating activity [40,91]. However, 

tGSTA enzymes can conjugate AFBO to GSH in vitro using recombinant proteins in an E. coli 

expression system, suggesting that gene silencing mechanisms or post-transcriptional modifications are 

likely responsible for their lack of function in vivo [91]. The high sensitivity of the domestic turkey to 

AFB1 appears to be due to an unfortunate combination of efficient P450 enzymes and dysfunctional GST 

enzymes that allow accumulation of AFB1 adducts in the liver. 

The effects of AFB1 exposure on North American wild turkeys are similar to, but less severe than 

those seen in domestic poultry [92]. This difference in response may be the result of genetic changes 

that occurred during domestic selection, but could also be due to the separate genetic background of the 

domestic turkey. Although members of the same species, domestic turkeys were originally derived from 

the Mexican subspecies (Meleagris gallopavo gallopavo) of wild turkey native to Central America; the 

Eastern subspecies from North America (Meleagris gallopavo silvestris) was likely involved in later 

crosses [93]. Wild turkeys were originally exported to Europe from Mexico in the 1500’s and then 

reintroduced to North America in the 1600’s. Reintroduced turkeys were selectively bred, first forming 

the heritage breeds, and then developed into the modern commercial breeds. Current commercial 

production predominately utilizes the Broad Breasted White. Selection for production traits in poultry is 
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known to increase metabolic disorders [94] and decrease immune functions [95–98]. Likewise, 

detoxification capabilities could be reduced as an unintended side-effect of selection in domestic birds. 

Eastern wild turkeys are more resistant to aflatoxicosis than their domestic relatives [92]. AFBO 

detoxification is likely a main contributor to the differences seen among turkeys. Consistent with this 

hypothesis, hepatic cytosolic GST enzymes from both the Eastern and Rio Grande (Meleagris gallopavo 

intermedia) subspecies of wild turkey have activity against AFBO [99], unlike their domestic 

counterparts. Wild turkey GSTA enzymes heterologously expressed in vitro also had AFBO-conjugating 

activity [99]. Like wild strains, the Royal Palm turkey, a heritage breed, retains hepatic and in vitro 

activity [99]. tGSTM enzymes were also amplified, cloned and heterologously expressed from the livers 

of wild and domestic turkeys, but had no measurable affinity toward AFBO, and therefore are not 

thought to be involved in AFB1 detoxification [100]. 

4. Effects of AFB1 Exposure 

4.1. AFB1 Adducts 

Formation of AFB1 adducts is detrimental to cellular processes. AFBO can react with DNA  

or RNA to form trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxy-AFB1 (AFB1-N7-guanine) adducts  

(Figure 2) [1,3,4,7,21]. Some AFB1-N7-guanine adducts convert into stable AFB1-formamidopyrimidine 

(AFB1-FAPY) adducts [1,3,7,101]. These AFB1-DNA and AFB1-RNA adducts can inhibit transcription 

and translation, induce DNA mutations during DNA repair and replication, and even initiate apoptosis 

or carcinogenesis [1,3,4,21,44,102]. AFBO can hydrolyze into AFB1-8,9-dihydrodiol (AFB1-diol) and 

through a series of reactions generate adducts with lysine residues in proteins [4,89,103]. AFB1-lysine 

adducts can cause toxicity by impairing protein stability and function [4,89,103]. Although not as well 

studied, AFB1 adducts have similar effects on poultry. In chicken primary hepatocytes, the interaction 

between AFBO and DNA, RNA and proteins has been verified and shown to strongly inhibit synthesis 

of these macromolecules [104]. 

4.2. Mutagenicity 

Binding of AFBO to DNA introduces G-T transversion mutations in hepatic DNA [4,65,105].  

The high incidence of G-T transversions results from AFB1-FAPY adducts predisposing bypass DNA 

synthesis machinery to make G-T changes [101]. A G-T transversion in codon 249 of the p53 tumor 

suppressor has been identified in many human liver cancers and may mechanistically contribute to cancer 

formation [7,65,71,101,105–107]. Chronic AFB1 exposure, especially in combination with  

hepatitis-B infections, severely increases the risk of hepatocellular carcinoma in  

humans [1,3–6,9,21,105,108]. Dietary AFB1 is known to have hepatocarcinogenic effects in other 

mammals, especially the sensitive rat [4,109–111]. Based on this evidence from humans and other 

mammals, AFB1 is classified as a group I carcinogen by the International Agency for Research on  

Cancer [4,105]. AFBO is highly mutagenic in poultry, although adenoma and hepatocellular carcinoma 

have only been reported in ducks [82,112–114]. The potential synergistic effect of hepatitis-B virus and 

AFB1 has not been consistently reproduced in these studies [112–114]. 
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4.3. Production Losses 

Beyond its mutagenic effects, AFB1 negatively affects production values, resulting in economic 

losses for the poultry industry. Dietary exposure to AFB1 and other aflatoxins leads to lower weight gain 

and absolute body weights in both chickens and turkeys [34,39,84,88,115–124]. Reduced feed  

intake [34,115,118,122–125] and decreased efficiency of nutrient usage [34,39,84,88,115,122,125] both 

contribute to this impaired growth during aflatoxicosis. AFB1 lowers feed conversion causing poultry to 

require more feed to produce muscle (broilers and turkeys) [39,84,88,115,122] and eggs (layers) [125]. 

Although less severe, AFB1 also reduces feed intake and weight gain in wild turkeys [92]. Similarly, 

feed consumption was decreased in AFB1-exposed quail, but body weight and feed conversion were 

unaffected [126]. In ducks fed AFB1, both feed intake and weight gain were reduced but without 

affecting feed efficiency [127]. 

Exposure to aflatoxins lowers reproductive performance in poultry. In layers fed AFB1, age to maturity 

is increased [34] and egg production is reduced [34,121,125,128–131]. Egg quality parameters such as 

total weight, shape, albumin or yolk percentage, and shell thickness in chickens and quail can be adversely 

affected by AFB1, although the effects were variable among studies [34,125,126,128,131–133]. The declines 

in poultry production traits are often indirect effects of AFB1 reducing the metabolic potential of the liver. 

For example, impaired hepatic protein production likely contributes to AFB1-induced changes within eggs, 

as the liver is the chief site of synthesis of proteins and lipids incorporated into the egg yolk. 

4.4. Hepatotoxicity 

Critical to protein synthesis, enzymatic metabolism and detoxification processes, the liver is the primary 

site of AFB1 activation and therefore toxicity [1,4,7,21]. Aflatoxicosis in poultry is characterized by an 

enlarged, pale, and friable liver [10,34,38,39,84,116,117,120,121,134,135] Although relative liver 

weight can initially decrease [117], longer exposure to dietary AFB1 raises the relative weight of the liver 

and causes pale or yellowed pigmentation [10,84,88,115–117,120–124,135,136]. At the cellular level, 

increased vacuolation of AFB1-exposed hepatocytes allows high levels of lipids to  

accumulate [10,34,39,84,116,120,121,126]. Steatosis is therefore responsible for the changes in liver 

color and size during aflatoxicosis. 

Both acute and chronic AFB1 consumption by poultry cause other hepatic lesions. Common 

histopathological signs of AFB1-induced liver damage include focal necrotic hepatocytes or 

hemorrhages [10,34,39,84,116,121,137]. Acute damage initiates inflammatory responses and leads to 

leukocyte infiltration and proliferation in the liver [10,34,84,112,116,138]. Short-term exposure to 

higher dose can cause morbidity and mortality from extensive liver damage [3,21]. In poultry, chronic 

AFB1 consumption is mutagenic and leads to remodeling of liver tissues. Hyperplasia of bile duct 

epithelial cells or oval cells develops first, followed by periportal fibrosis and nodular tissue  

regeneration [10,34,39,84,112,116,121,126,134,139]. 

AFB1 adducts with biomolecules cause damage to hepatocytes that impairs metabolic functions of 

the liver during AFB1 exposure. This is exemplified by AFB1-reduced total serum protein levels, as the 

liver is responsible for production of most circulating proteins [88,115,117–119,123,127,129,140,141]. 

Aflatoxicosis negatively affects albumin, globulin, cholesterol, and triglyceride levels in  
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serum [88,115,117,119,127,129,136,140–142]. Multiple blood coagulation factors are produced in the 

liver; the activity of these clotting factors and the serum levels of fibrinogen are diminished by AFB1 in 

both chickens and turkeys [142–146]. Hepatic protein concentrations also decrease in AFB1-fed  

chickens [88]. Protein content likely declines because AFB1-DNA adducts inhibit transcription or 

translation and AFB1-lysine adducts result in protein degradation or excretion. Reduced synthesis of 

enzymes in the liver would have systemic effects on poultry metabolism. For example, the decreased 

hepatic fatty acid synthesis observed in AFB1-exposed chickens [147] could be responsible for lower 

production of serum cholesterol and triglycerides [129,140]. 

4.5. Immunotoxicity 

The avian immune system relies on the bursa of Fabricius, thymus and spleen to produce  

mature or active leukocytes. Even at low dietary concentrations, AFB1 can damage these  

immune tissues and suppress innate and adaptive immune responses [3,7,148]. AFB1 consumption 

during growth can lead to immune tissue atrophy, reducing relative weights of the bursa, spleen and 

thymus [120,122,134,139,149–152]. Increases in relative spleen weight have also been observed during 

aflatoxicosis [117,120,153–156]. In young chickens, tissue changes are concomitant to the development 

of histopathological lesions. AFB1 exposure causes visible congestion in the spleen and thymus, while 

nuclear debris accumulates in the thymus and bursa [139,149,150,156]. In AFB1-exposed chicks, vacuoles 

increase in the lymphoid follicles of the bursa and the white pulp of the spleen, especially the T-cell rich 

periarteriolar lymphoid sheaths [139,150,156]. 

At the cellular level, innate and adaptive cell-mediated immune functions are impaired by AFB1 

exposure in poultry [148]. In vivo exposure to AFB1 and other aflatoxins has been shown to decrease 

phagocytic activity in chicken leukocytes, including heterophils [157,158], macrophages [159–161], and 

monocytes [162]. Reduced phagocytosis was demonstrated in vitro for peritoneal macrophages isolated 

from both chickens and turkeys, although microsomally activated AFB1 was required [163,164]. In 

contrast, the phagocytic activity of thrombocytes was not affected in chickens fed an  

aflatoxin-contaminated diet [165]. Dietary AFB1 inhibits T lymphocyte activation in both chickens  

and turkeys as evidenced by delayed hypersensitive skin tests and graft-versus-host response  

tests [39,84,116,122,159,166,167]. 

AFB1 can induce circulating lymphocytopenia [34,159,166,168] and cause lymphoid  

depletion in the bursa, spleen and thymus [34,134,139,149,150,159,166]. This likely results from  

increased apoptosis of splenocytes, thymocytes and bursal B-cells as seen in young chickens  

during aflatoxicosis [139,149,156,169,170]. In the chicken, both CD4+ and CD8+ T lymphocytes  

in the spleen, thymus, peripheral blood, and even the ileum can be affected by AFB1  

exposure [149,150,156,168,171,172]. Oxidative stress and DNA damage from AFB1 are likely 

responsible for initiating apoptotic processes in lymphocytes [169,170]. Together these losses reduce 

the adaptive immune potential of poultry fed AFB1. 

Although some studies only observed effects on cell-mediated immunity [39,84,116], others found 

that AFB1 can similarly diminish innate and adaptive humoral immune capabilities. Total serum 

complement is decreased by feeding AFB1 to chickens, ducks and turkeys [115,127,173–175]. Antibody 

titers are often reduced, whether measured as total serum levels of IgA, IgG and IgM [139,141,167], as 
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production of specific antibodies in response to sheep red blood cells [122,152,159] or as exposure 

response to infectious bronchitis virus, infectious bursal disease virus, Newcastle disease virus or 

Pasteurella multocida [128,176,177]. AFB1 can also impair the effectiveness of vaccination for these 

poultry diseases [128,158,176–178]. 

As a consequence of AFB1-driven immunosuppression, exposed poultry have lower resistance to 

secondary infections [148]. Poultry with aflatoxicosis are more susceptible to the bacterial diseases, fowl 

cholera [151,176,179–181] and salmonellosis [182–184]. Exposure to AFB1 can increase the severity of 

the protozoan disease, cecal coccidiosis [185–188] and the fungal infection, crop mycosis [189]. 

Similarly, AFB1 consumption decreases resistance to viral pathogens, including infectious bronchitis 

virus [128,177], infectious bursal disease virus [128,176,177,190,191], Marek’s disease virus [185,192], 

and Newcastle disease virus [128,158,177,178,193]. These secondary infections dramatically increase 

the economic losses attributed to AFB1 exposure. Thus, AFB1 is a potent immunotoxin and acts as a 

synergistic “force multiplier” that can enhance the incidence and impacts of avian diseases. 

4.6. Intestinal Toxicity 

Nutrients are primarily absorbed by epithelial cells in the small intestine and these cells facilitate uptake 

of AFB1. Most AFB1 is transferred directly into the blood stream; however, as in mammals [43], some 

may be metabolized in intestinal tissues. Therefore in poultry, both local and systemic effects of AFB1 

exposure likely occur in the small intestine, but these are not well characterized. Dietary exposure to 

AFB1 can lower the unit weight (length/weight) of the duodenum and jejunum [194,195] and affect tissue 

morphology. In chickens, AFB1 has been shown to raise crypt depth in the jejunum [196], decrease villus 

height in the duodenum [197], and lower the ratio between villus height/crypt depth in all three sections 

of the small intestine [197]. However, these histopathological effects may not be pervasive [198]. 

The severity of aflatoxicosis in poultry can be affected by nutrition [7]. Deficiencies in some  

dietary vitamins raised AFB1 sensitivity in chickens, although feeding vitamins in excess was not 

protective [199,200]. Dietary supplementation with tryptophan also increased hepatotoxicity of  

AFB1 [201]. Conversely, diets high in fat or protein may be beneficial to chickens and turkeys fed  

AFB1 [202–204]. 

Direct investigations of AFB1-effects on absorption or retention of individual nutrients have had 

variable results [34,194,196,205–208]. Exposure to AFB1 decreases the apparent metabolizable energy 

poultry can obtain from their diet [34,195,196,205–207]. Therefore, increased dietary nutrients are 

needed to compensate for impaired uptake. It is currently unclear how much reduced nutrient uptake in 

the intestine contributes to AFB1 effects on growth and feed efficiency in poultry. 

4.7. Embryotoxicity 

Exposure during development recapitulates many of signs of aflatoxicosis seen in hatched chicks and 

poults. Although most studies are carried out by in ovo AFB1 injections, embryonic exposure to the toxin 

is a known risk to poultry. AFB1 and its metabolites can be transferred from the laying hen into the 

albumin and yolk of the egg [31,34,37,128,131,133,209]. AFM1 is a common metabolite detected in 

eggs and, while not as carcinogenic as AFB1, is acutely toxic [4,37,133]. Contamination of unfertilized 

shell eggs is therefore a food safety risk when used for human consumption. 
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Transfer of aflatoxins into embryonated eggs is also a concern for poultry producers. In experimental 

settings, in ovo exposure of chickens or turkeys to AFB1 caused DNA damage in the embryonic liver 

and increased embryo mortality [131,161,210–215]. When introduced into the maternal diet to simulate 

the natural route of embryonic exposure, AFB1 caused reduced hatchability [130,131,161]. Consistent 

with studies in hatched poultry, turkeys may be more sensitive to embryotoxic effects than  

chickens [215]. Since embryonic liver has an active protein from the CYP1A family [216], hepatotoxicity 

in turkey embryos is likely mediated by the same P450 1A5 as in poults. 

Embryonic AFB1 exposure can lead to morphological defects [212], such as abnormal area opaca 

cells [210,214], skeletal defects in the tibia growth plate [213], and inhibition of bursal follicle 

development [210,214]. These mutagenic effects can reduce embryo viability and adversely affect 

hatched progeny. In ovo AFB1-driven immunosuppression has the potential to increase the incidence of 

infectious disease in young poultry and negatively affect their health and productivity. Whether  

in ovo injection or maternal feeding, chickens exposed to AFB1 during embryogenesis have 

compromised cellular and humoral immune functions post hatch [160,161,211,217,218]. 

5. Gene Expression and AFB1 

5.1. P450 and GST Enzymes 

Gene expression can improve our understanding of responses to AFB1 and provide targets to 

modulate the mechanisms of toxicity. Both cellular responses to toxicity and AFB1 inhibition of 

transcription and translation will affect gene expression [102]. For example, AFB1 down-regulates p53 

expression in human cells [67] and in tissue from hepatocellular carcinomas in rats [219], likely due to 

mutations introduced by AFB1-DNA adducts. Expression of AFB1-metabolizing genes can also be 

affected by AFB1. Exposure in the rat liver to AFB1 can increase expression of P450 (CYP3A, CYP4F1), 

and rGSTM2 genes (Yb2) [220]. Another study in rats identified effects on multiple P450 and GST genes, 

with greatest up-regulation in rGSTA5 and pi-class GST (GSTP) rGSTP1 [221]. In chickens, dietary AFB1 

up-regulated hepatic expression of CYP1A1 and CYP2H1, and down-regulated expression of epoxide 

hydrolase (EH) and GSTA, although the specific GSTA gene target was not identified [123,124]. Other 

P450 family members were significantly down-regulated [124]. Interestingly, a recent study in broilers 

observed the opposite changes in the liver, down-regulation of CYP1A1 and up-regulation of EH and 

GST [115]. 

5.2. Cytokines and the MHC 

AFB1 is known to initiate hepatic inflammation, and correspondingly, was shown to affect expression 

of pro-inflammatory cytokines in both mammals and poultry [124,171,222–226]. Splenic expression of 

interleukins 1 beta (IL1β), 6 (IL6), 10 (IL10), interferon gamma (IFN-γ) and tumor necrosis factor alpha 

(TNF-α) in pigs (Sus scrofa) were increased by AFB1 exposure [225]. Expression of IFN-γ and TNF-α 

increased in rats during aflatoxicosis, and protein levels of IL-1, IL-2, and IL-6 were also  

modulated [224,226]. In chickens, dietary AFB1 increased hepatic expression of IL6 [115,124]. However, 

in another experiment [123], expression of the IL6 receptor (IL6R) and IL10 receptor beta (IL10RB) 

were reduced in the liver. Exposure to AFB1 reduced ileac expression of IL2, interleukin 4 (IL4), IL6, 
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IL10, interleukin 17 (IL17), and IFN-γ in chickens [171,172]. Lipopolysaccharide-induced TNF factor 

(LITAF) expression also decreased in the intestine [171,172]. This gene is used as a marker for TNF 

activity since TNF-α has not been identified and may not be present in birds. Lastly, serum protein levels 

of IL-2 and IFN-γ were lower in chickens exposed to AFB1 [168]. Down-regulation of these cytokines 

and their receptors in poultry may result in decreased T lymphocyte activation and proliferation. 

Both up- and down-regulation of major histocompatibility complex (MHC) class I genes in response 

to AFB1 exposure was observed in pigs [227], rats [221], and rainbow trout (Oncorhynchus  

mykiss) [228]. The MHC is a highly polymorphic genomic region that contains genes encoding proteins 

essential to innate and adaptive immune functions. For example, MHC class I and class II molecules are 

necessary for antigen presentation to T lymphocytes and are common to the galliform MHC [229–237]. 

In turkeys and chickens, the MHC is composed of 2 genetically unlinked regions, the B-locus (MHC-B) 

and Y-locus (MHC-Y), co-located on a single microchromosome (GGA16 or MGA18,  

respectively) [229–237]. Although some genes are well characterized, the functions and expression 

patterns of many poultry MHC genes are still unknown. In the turkey, expression of multiple MHC genes 

significantly increased in response to AFB1 exposure [238]. 

5.3. Moving towards Transcriptomics 

Few studies have examined gene expression changes across the entire transcriptome. Although the 

specific genes affected by AFB1 vary between species, exposure to the toxin has an up-regulatory effect 

on expression of damage responses, or when those fail, pathways of carcinogenesis. In rats, AFB1 

enhanced hepatic expression of genes involved in xenobiotic detoxification, cell cycle regulation, 

oxidative stress, DNA damage repair, tumor development and amino acid metabolism [221]. For 

example, E2F transcription factor 1 (E2F1) and many genes downstream of E2F1 were up-regulated by 

AFB1 exposure; E2F1 regulates DNA replication and apoptosis, and could contribute to  

carcinogenesis [221]. Aflatoxicosis in pigs affects expression of many of the same pathways, with 

greatest effects on metabolism, cell cycle, DNA damage responses and apoptotic processes in one  

study [239] and on protein degradation, metabolism, apoptosis, and immune responses in another [227]. 

Hepatocellular carcinomas from AFB1-exposed rainbow trout showed changes in cell cycle, metabolism, 

immune and acute phase response genes when compared to adjacent non-cancerous liver tissue [228]. 

Two of these studies utilized high throughput RNA sequencing (RNA-seq), rather than microarrays, to 

characterize transcriptome changes after AFB1 exposure [221,239]. 

5.4. Poultry Transcriptomics and AFB1 

AFB1 effects on the transcriptome have been investigated in chickens using microarray [123]. 

Exposure to AFB1 affected hepatic expression of genes associated with fatty acid metabolism, 

development, detoxification, coagulation, immunity and cell proliferation [123]. Among these, the 

greatest proportions of differentially expressed genes were involved in cell proliferation and metabolism. 

For example, aflatoxicosis had the greatest effect on expression of the cell signaling inhibitor Dickkopf 

homolog 3 (DKK3) (down-regulated) and the metabolic glycogen synthase 1 (GYS1) (up-regulated). 

More recently, RNA-seq has been applied to the domestic turkey transcriptome to elucidate hepatic 

and splenic responses to dietary AFB1 [227,238,240]. Similar to expression changes in other species, 
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transcriptome analysis in the turkey found that more genes were up-regulated than down-regulated by 

AFB1 [227,238,240]. In one study of the liver, more than 80 genes belonging to cancer or focal adhesion 

pathways were up-regulated during aflatoxicosis, whereas smaller numbers of genes involved in cell 

signaling, cytoskeleton, and cell cycle were also up-regulated [227]. Conversely, the greatest numbers 

of down-regulated genes were involved in complement and coagulation. 

Our investigation of AFB1-hepatotoxicity in the turkey by RNA-seq found 313 transcripts 

significantly affected by AFB1 exposure, with up-regulation of genes involved in apoptosis, cancer, and 

cell cycle regulation, and down-regulation of lipid metabolism [240]. Greatest up-regulation was 

observed for keratin 20 (KRT20), cell-death activator CIDE-3 (CIDEC), and E3 ubiquitin-protein ligase 

Mdm2 (MDM2). Alpha-2-macroglobulin (A2M) was the most down-regulated gene. Exposure to AFB1 

also turned on expression of HEPACAM family member 2 (HEPACAM2), a protein important in 

modulating cell adhesion and migration, and S-adenosylmethionine synthase isoform type-2 (MAT2A), 

important in methylation pathways. 

Utilizing spleen samples from the same AFB1-challenge trial, immunotoxicity in domestic turkey was 

also examined through RNA-seq [238]. Exposure to AFB1 induced significant expression changes in 

391 de novo assembled transcripts; the greatest up-regulation was seen in E3 ubiquitin-protein ligase 

CBL-B (CBLB) and ubiquitin specific peptidase 40 (USP40). Of the significantly altered transcripts,  

27.6% encoded proteins with known immune functions representing both innate and adaptive responses. 

Antimicrobial genes, including beta-defensin 1 (THP1) and 2 (THP2), were down-regulated, while 

cytotoxic and antigen presentation genes, such as granzyme A (GZMA), perforin 1 (PRF1), MHC class 

IA and class IIB, were up-regulated in AFB1-exposed tissue. 

These studies were also designed to evaluate the ability of a Lactobacillus-based oral probiotic to 

reduce AFB1-effects on the liver and spleen [238,240]. In the same challenge trial, domestic turkeys 

were exposed to probiotics alone or in combination with AFB1. Addition of probiotics during AFB1 

exposure mitigated AFB1-induced expression changes in genes such as serine/arginine repetitive matrix 

protein 1 (SRRM1), 28S ribosomal RNA (RNA28S), and ISG12-2 protein-like (ISG12-2)  

(Figure 3A) [240]. In the spleen, probiotics had greater ameliorating properties, significantly reducing 

AFB1-effects on multiple immune genes, including THP2, GZMA, and PRF1 (Figure 3B) [238]. 

However, probiotics were unable to reverse most AFB1-induced expression changes and even had 

synergistic effects with AFB1. For example, combined treatment increased differential expression in 

apolipoprotein A-IV (APOA4) in the liver and interestingly both RNA28S and ISG12-2 in the spleen 

(Figure 3). Therefore, oral probiotics modulated expression in both tissues, but did not restore normal 

transcriptome profiles.  
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Figure 3. Oral probiotics mitigate gene expression changes induced by aflatoxin B1 (AFB1). 

(A) Liver. (B) Spleen. Graphs show annotated transcripts from each tissue with significant 

differential expression in the AFB1-treated group (AFB) versus the control group (CNTL) 

and in the probiotic + AFB1 group (PBAFB) verses AFB. Bars illustrate log2 fold change in 

AFB verses CNTL (blue) or PBAFB verses CNTL (green). Significance of the probiotics 

(PBAFB verses AFB) is represented by the number of asterisks (*: 0.05 > p-value > 0.01, 

**: 0.01 > p-value > 0.001, ***: p-value < 0.001). Genes with multiple significant transcripts 

are indicated by a; only the most significant transcript in PBAFB verses AFB is shown. 

Apolipoprotein A-IV (APOA4), actin-related protein 2/3 complex subunit 2-like (ARPC2), 

bactericidal permeability-increasing protein (BPI), carbonic anhydrase IV (CA4), carnitine 

O-palmitoyltransferase 1, liver isoform (CPT1A), DNA-damage-inducible transcript 4 

(DDIT), DnaJ homolog subfamily C member 30 (DNAJC30), FAT tumor suppressor 

homolog 1 (FAT1), granzyme A (GZMA), MHC class I antigen alpha chain 1 (IA1), MHC 

class I antigen alpha chain 2 (IA2), MHC class II antigen beta chain 3 (IIB3), ISG12-2 

protein-like (ISG12-2), leukocyte cell-derived chemotaxin-2 (LECT2), uncharacterized 

LOC771720 (LOC771720), MID1 interacting protein 1 (MID1IP1), protocadherin gamma 

subfamily C3 (PCDHGC3), perforin 1 (PRF1), presaposin (PSAP), 28S ribosomal RNA gene 

(RNA28S), serglycin (SRGN), serine/arginine repetitive matrix protein 1 (SRRM1), TBC1 

domain family member 5 (TBC1D5), beta-defensin 2 (THP2), unc-119 homolog B 

(UNC119B), and WW domain-binding protein 2 (WBP2). 
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6. Strategies to Reduce AFB1 Toxicity 

6.1. Chemical Detoxification 

Since prevention of AFB1 contamination is often impractical, methods to chemically detoxify this 

mycotoxin have been intensely investigated [7]. Several candidate chemicals have been examined for 

their ability to detoxify AFB1 in crops such as grain, rice, corn, and cottonseed. These include ammonium 

hydroxide [241–246], calcium hydroxide [243,247], hydrogen peroxide [243,248], sodium  

hydroxide [243,249], and sodium hypochlorite [243,250] all of which reduce AFB1 concentrations 

through hydrolysis and produce a degraded form with reduced or no toxicity. However, most of these 

chemicals are of themselves, hazardous and safe use is often expensive and may decrease the nutrient 

value of feed components. In addition, it is not possible to fully preclude low levels of AFB1 in feed 

production, especially in crops that are heavily contaminated, severely reducing returns for producers. 

6.2. Feed Additives 

Given that eliminating all potential for exposure to AFB1 is not feasible, feed additives have been 

examined for their ability to protect poultry from aflatoxicosis [7,21]. Some additives, such as selenium 

supplementation, attempt to boost detoxification, metabolic, or immune functions to counteract the 

effects of AFB1 [139,149,150,168,170,171,183,251]. However, most additives have been investigated 

for their potential to reduce AFB1 uptake by the intestine [21]. Many natural absorbents have been shown 

to decrease the effects of AFB1 in poultry, including super-activated charcoal [153], zeolites like 

hydrated sodium calcium aluminosilicate [115,143,198,252–257], clinoptilolite [134,138], and sodium 

bentonite [158,258]. Antioxidants like butylated hydroxytolouene (BHT) [137,259–263] and  

turmeric [124,264] can also mitigate the severity of aflatoxicosis. 

6.3. Probiotics 

Many Gram-positive bacteria, including Streptococcus, Enterococcus, Lactococcus, and Berevibacillus, 

can bind AFB1 in vitro [265–269]. However, most research has focused on probiotic strains of 

Lactobacillus, Bifidobacterium, and Propionibacterium [42,266,267,270–288]. Interactions between 

AFB1 and Lactobacillus rhamnosus GG (LGG), L. rhamnosus LC-705 (LC-705), Propionibacterium 

freudenrieichii strain shermanii JS (PJS) or mixtures of these strains have been shown to be especially 

effective [42,270–274,276–280,284–286,288]. A mixture of these strains was also utilized in our 

transcriptomic analyzes [238,240]. As gastrointestinal commensals or cultures used in cheese-making, 

yogurt and other dairy products, the safety of these lactic acid bacterial strains is well-established and 

easily applicable as potential chemopreventatives.  

Strains LGG and LC-705 can sequester up to 80% of AFB1 introduced into growth media [272,280]. 

AFB1 interacts with the thick peptidoglycan layer characteristic of the Gram-positive bacterial cell  

wall [282,285]. When bound to AFB1 in vitro, LGG and a mixture of LC-705 and PJS interacted  

less with intestinal mucus [276]. Incubation of LGG with AFB1 reduced LGG adhesion to a Caco-2 

intestinal cell monolayer [284] and decreased transport of AFB1 across the monolayer [278]. These  
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in vitro models suggest the probiotic and the toxin would be excreted together in vivo and thereby 

decrease the effective dose of AFB1. 

Reduced AFB1 toxicity has been demonstrated in both mice [270] and in rats [277] after addition of 

dietary LGG. In humans, probiotics enhanced excretion of AFB1 [289,290]. Furthermore, addition of 

LGG, LC-705 or PJS ex vivo through injection of AFB1 into the lumen of the chicken duodenum 

significantly reduced AFB1 uptake (by 74%, 63% and 37%, respectively) [274]. A mixture of LC-705 

and PJS caused a 40% reduction in AFB1 absorption into chicken duodenal tissue in a repeat  

experiment [42]. Therefore, a probiotic mixture including LGG or LC-705 could be an effective 

preventative for aflatoxicosis if added to poultry feeds. 

6.4. Selection for Resistance 

Another option to minimize the adverse effects of AFB1 is to increase the resistance of domestic 

poultry [7]. Selection for AFB1 resistant lines of chicken [291–295] and quail [296–299] has been 

investigated; however, selection studies have not been performed in the far more sensitive domestic 

turkey. Improvement in AFB1 resistance is highly dependent on starting population [299] and selection 

is most effective during AFB1 challenge since correlations of phenotypic measures like weight gain or 

blood parameters are most informative during exposure [291,292,298]. The requirement for concurrent 

aflatoxicosis makes phenotypic selection difficult to implement in a commercial setting. However, 

understanding the molecular mechanism of aflatoxicosis in domestic turkey and identifying the genetic 

differences underlying decreased sensitivity in wild turkeys could allow targeted genetic selection for 

resistant alleles without constant AFB1-exposure. Due to the similarity of symptoms of aflatoxicosis 

across species, potential genetic targets may be translatable to other poultry species. 

7. Conclusions: Suggested Areas for Further Research 

Future gene expression analyzes can provide insight into the mechanisms of aflatoxicosis and 

methods to reduce its effects. Our characterization of AFB1-induced changes in the turkey liver and 

spleen transcriptomes identified genes responding to aflatoxicosis and host responses to toxicity. Since 

both proliferation and apoptosis occur during aflatoxicosis, the expression of cell cycle genes in the liver 

needs to be quantified alongside measures of apoptotic and mitotic cells. Similarly, gene expression in 

immune tissues such as the spleen should be measured concurrent with lymphocyte numbers, activation 

or apoptotic state to better clarify gene functions. Investigation of individual cell types could also detect 

cell-specific gene modulation. For example, the effects of AFB1 on expression of immune genes could 

be measured in heterophils or T lymphocyte subsets (e.g., CD4+ verses CD8+ T cells). Gene expression 

in cells of the bile duct, known targets of AFB1 mutagenesis, could be used to characterize hyperplasia. 

Expression patterns, as determined from mRNA, do not always directly correlate with protein levels or 

stability; therefore, proteomics could confirm effects on cell cycle regulators or immune mediators and 

provide a measure for AFB1 inhibition of protein synthesis. 

Analyses of systemic responses to AFB1 in other tissues, such as the bursa, thymus, kidney or small 

intestine are needed to fully elucidate AFB1 effects. Intestinal epithelial cells are directly exposed to 

AFB1 during absorption and the potential prevention of AFB1 uptake by feed additives also occurs within 

the small intestine. Therefore, investigation of intestinal transcriptome responses to AFB1 is a priority. 
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The utility of a Lactobacillus-based probiotics as preventative for aflatoxicosis requires further 

examination in vivo. Higher concentrations or different compositions of dietary probiotics should be 

examined for their ability to protect poultry from the development of hepatic lesions and in restoring 

gene expression profiles. Furthermore, no definitive conclusions can be made regarding the effects of 

probiotics without characterizing the intestinal microbiota. Shifts in bacterial population structure of the 

microbiome could be investigated by 16S NGS sequencing for direct comparison to the host effects 

shown by RNA-seq. 

Comparative analysis of transcriptome responses of poultry to AFB1 could help resolve differences 

in their sensitivity. RNA-seq studies investigating both domestic and wild turkey using an in ovo 

exposure model [300] and dietary challenge of poults [301] are currently underway. Preliminary data 

from embryonic exposures illustrates conserved effects on cell cycle regulators and variation in 

metabolic and anti-oxidant enzymes [300]. Genes and pathways identified in these studies will provide 

targets for selection efforts to improve resistance to aflatoxicosis in domestic poultry. 
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