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Abstract: Crop type information at the field level is vital for many types of research and applications.
The United States Department of Agriculture (USDA) provides information on crop types for US
cropland as a Cropland Data Layer (CDL). However, CDL is only available at the end of the year after
the crop growing season. Therefore, CDL is unable to support in-season research and decision-making
regarding crop loss estimation, yield estimation, and grain pricing. The USDA mostly relies on field
survey and farmers’ reports for the ground truth to train image classification models, which is one of
the major reasons for the delayed release of CDL. This research aims to use trusted pixels as ground
truth to train classification models. Trusted pixels are pixels which follow a specific crop rotation
pattern. These trusted pixels are used to train image classification models for the classification of
in-season Landsat images to identify major crop types. Six different classification algorithms are
investigated and tested to select the best algorithm for this study. The Random Forest algorithm stands
out among selected algorithms. This study classified Landsat scenes between May and mid-August
for Iowa. The overall agreements of classification results with CDL in 2017 are 84%, 94%, and 96% for
May, June, and July, respectively. The classification accuracies have been assessed through 683 ground
truth data points collected from the fields. The overall accuracies of single date multi-band image
classification are 84%, 89% and 92% for May, June, and July, respectively. The result also shows higher
accuracy (94–95%) can be achieved through multi-date image classification compared to single date
image classification.
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1. Introduction

Crop-specific acreage information, such as crop types with their location, is useful for crop statistics,
yield estimation, change in cropland use, cropland environmental dynamics, crop loss assessment, crop
pricing, decision support, and policy formulation [1]. Generating yearly or seasonal information for
each crop field at the regional scale is not a trivial task in any part of the world. Field survey-based
information collection has been replaced using satellite images. Information can be extracted from
satellite images multiple times within or outside of the growing season. Therefore, satellite images are
useful for crop condition monitoring, growth stage monitoring, and loss assessment. Moreover, the use
of satellite images in crop type identification is time and cost effective over vast areas. Worldwide, the
National Agricultural Statistics Service (NASS) of the US Department of Agriculture (USDA) probably
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made the first attempt to produce unique crop-specific land cover products and dissemination methods
annually at a national scale [1,2]. This crop-specific land cover product for the United States (US) is
called the Cropland Data Layer (CDL), which has been produced since 1997 for more than 100 unique
crop categories across the US; it is delivered annually with 85% to 95% accuracy at a 30–56 m spatial
resolution [1]. The usefulness of CDL data has already been proven in practice; for instance, mapping
crop types using CDL time series data [3], identifying agricultural production areas [4,5], examining
the relationship between agricultural chemical exposure and disease [6], crop specific inundation
mapping [7], yield estimation [8,9], crop growth monitoring [10], pure crop pixel identification [11],
land use transformation [12–14], agricultural rotational patterns [15,16], chemical/environmental
studies for cropland [17,18], crop carbon dynamics [19,20], and cyberinfrastructure for agroecosystem
modeling [21]. Therefore, an accurate and timely cropland data layer can facilitate many applications
and research in the agriculture sector.

Satellite remote sensing is useful for mapping both crop types and crop rotation patterns.
The synoptic and repeated collection of data for vast areas is the main advantage of the application of
satellite remote sensing in crop mapping [22–25]. Optical data are one of the most attractive choices for
crop mapping among satellite remote sensing options because they offer vegetation indices, frequent
revisit, adequate spatiotemporal resolutions, and options for free of charge data distribution [26].
Waldhoff et al. [24] mapped the crop rotation pattern at a catchment scale in Germany for eight
consecutive years (2008–2015). At first, they identified crop types through supervised classification of
images from multiple sensors (e.g., Landsat, ASTER, SPOT) for each year. They extracted crop rotation
patterns at the field level for eight consecutive years from crop maps. Martínez-Casasnovas et al. [22]
mapped multi-year cropping patterns between 1993 and 2000 using Landsat images in Spain. Although
their approach is not suitable to extract specific sequence of cropping patterns at the field level over
the years, spatial distribution of cropping patterns in study area can be visualized. The combination
of remote sensing-derived landcover and census data has also been utilized to map the cropping
pattern at a half-degree grid in China [23]. Panigrahy and Sharma utilized a similar approach of
Waldhoff et al. [24] to map three years of crop rotation patterns in west Bengal of India using the Indian
Remote Sensing Satellite (IRS) LISS-I [27]. Conrad et al. [28] mapped crop types and crop rotation
using classification and regression trees (CARTs) in central Asia. They utilized MODIS optical bands
and derived products such as NDVI. Sonobe et al. [26] mapped crop cover with very high accuracy
using multi-temporal Landsat 8 images and derived products in Hokkaido, Japan. Landsat images
have been one of the most attractive options due to its high spatial and temporal resolution, which
is very suitable for crop mapping [25,26,29,30]. Many derived vegetation indices such as NDVI, EVI,
LAI, and SAVI have been utilized along with original Landsat bands to ensure better accuracy in crop
classification [25,29–31]. A wide range of classification algorithms such as support vector machine
(SVM), random forest (RF), maximum likelihood, spectral angle mapper (SAM) has been utilized for
crop mapping [25,26,28,30]. Most of the crop mapping approaches around the world utilize ground
truth collected from the field to train the classification models.

Similar to the approaches for crop mapping using satellite remote sensing images, the CDL
program in the US also uses moderate spatial resolution satellite images, NASS June Agriculture
Survey data and other ancillary data such as National Landcover Data [2]. NASS mainly uses in-season
Landsat images to identify major crop types across the US through supervised image classification.
Supervised learning requires a training dataset to train image classification models. Thus, the NASS
CDL program used ground truth data collected during the June Agricultural Survey (JAS) to train
the model for supervised image classification from 1997–2005 [2]. The JAS is a field-based annual
survey program of NASS which collects data for 11,000 individual one square-mile sample segments
using an area sampling frame. Information on crop types and acreage of all agricultural activities
occurring on the primary sampling units (PSU) is collected during field visits [2,32]. In this survey
program, approximately 85,000 agricultural and non-agricultural land use tracts are identified within
the sampled segments in a given year [33]. The manual digitization requirement of the sampled field
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boundary is one of the major drawbacks of JAS segment data [2]. Thus, this field-based ground sample
collection for training data is time consuming, costly and tedious. Therefore, the Common Land Unit
(CLU) data from the Farm Service Agency (FSA) replaced the JAS segment data in 2017 [2]. The CLU
data are a standardized GIS data layer generated from farmers’ reports on crop types and acreage
sent to 2300 FSA county offices [34,35]. Since this new approach depends on farmers’ reports and
construction of GIS layer from reported crop types, it may be time and cost intensive. Therefore, the
current study proposed a new solution for the training dataset construction based on crop rotation
patterns instead of field surveys and depending on the farmers’ reports. Usually, CDL is released
after a few months of the growing season, approximately at the end of each year [1]. Therefore, the
current CDL may not be able to support many research activities which require early season crop
information, such as crop-specific inundation mapping, rapid yield estimation, crop specific loss
estimation, grain pricing, crop-specific irrigation need, grain supply, and flood policy. Early season
crop type identification will facilitate many types of research and applications in the agriculture sector.

From the above discussion, it is evident that CDL is unique and very useful data on US croplands,
which contributes to many research activities and applications in this field. However, there are two
major drawbacks: the time and cost-extensive training sample collection and the delayed release of the
data at the end of the year; these drawbacks hinder the use of CDL in in-season research. Therefore, this
study specifically aims to address these two weaknesses of CDL and propose a solution to overcome
them. This study aims to extract major crop rotation patterns from historic CDL instead of mapping
crop rotation patterns directly from satellite images. The goal of this study is to create in-season CDL
based on crop rotation patterns and Landsat image classification with similar accuracy of current CDL.

2. Materials and Methods

2.1. Study Area

The study area, Iowa State, is a midwestern state in the United States (US) which is located
between Missouri and Mississippi rivers (Figure 1). Geographically, Iowa is part of the Great Plains,
and about 90% of the lands of this state are devoted to agriculture because of the high fertility of the
soils [36]. Iowa ranks second in the nation for agriculture production. This state is also second in total
agricultural exports with farmer’s exporting more than $10 billion worth of agricultural products in
2013. The state is also considered as the corn belt region of the US due to its high proportion of corn
cultivation. According to the Iowa agricultural statistics 2017, corn, soybean, and alfalfa are the top
three agricultural products by value of sale $8.5 billion, $5.2 billion, and $0.75 billion, respectively [36],
and hence an ideal study area for this research. Every year the usual planting of major crops begins in
the middle of April and harvesting starts from the second week of September in Iowa [37].
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Figure 2 illustrates the distribution of landcover categories and percentage share of crop types
in 2017. Around two-thirds of the land area are used as crop field in Iowa (Figure 2a). Forest, grass,
developed areas, and waterbodies cover 9%, 14%, 7%, and 1% of the state land, respectively. Land
use distribution of cropland in 2017 shows corn and soybean were dominant crops in 2017. These two
crops together cover 96% of cropland (Figure 2b). Alfalfa was planted only on two percent of the
cropland. Other crops such as oats, wheat, rye, millet, potatoes, vegetables were together planted only
on 2% of the cropland. Therefore, this study focuses only on three major crops: corn, soybean, and
alfalfa considering the significant presence of these crops in the study area. Other crops are ignored
for two reasons: firstly, it is very difficult to find trusted pixels for these crop types for the study area;
secondly, these crop types cannot be considered as major crops in Iowa because of their negligible
individual share of the crop production of the state.
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2.2. Data

Two datasets, Cropland Data Layer (CDL) and Landsat 8 Operational Land Imager (OLI), are
used for this study. Trusted pixels for each targeted landcover type are extracted from CDL time series
data from 2007 to 2017 downloaded from CropScape (https://nassgeodata.gmu.edu/CropScape/)
for the study area. CropScape is a web service of the US Department of Agriculture (USDA) for US
geospatial cropland data products [38]. Landsat scenes are downloaded from the USGS Earth Explorer.
A total of 12 Landsat scenes, path 25 to path 28 and row 30 to row 32, are required to cover all of
Iowa (Figure 1). Due to the growing season of major crops in this state, Landsat scenes between late
April and mid-August are downloaded. Six Landsat bands, from band-2 to band-7, are selected for
each scene considering the usability of these bands for landcover classification. In addition, three
derived products, Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), and Normalized Difference Built-up Index (NDBI), are added to the image stack.
Therefore, an image stack of nine layers, including six Landsat original bands and three derived
products, is used as input for the classification. The reason behind the use of three derived products is
to reduce the misclassification among landcover types to ensure a better classification result.

2.3. Trusted Pixel Identification

Trusted pixels are pixels which maintain a specific crop rotation pattern. In this study, trusted
pixels refer to these pixels for which crop types are known from the past use of these pixels. These pixels
can be used as substitutes for ground truth data, either from field survey or farmer reports of crop
plantation. This trusted pixel approach reduced the cost and time associated with field-based ground
truth collections. Figure 3 illustrates two major patterns of crop rotation from 2007 to 2016. An alternate
crop rotation pattern indicates that the same crop is planted in a given field in an alternate year.
Figure 3a shows soybean and corn alternative patterns, which indicates if a field had corn last year,

https://nassgeodata.gmu.edu/CropScape/
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then it has soybean this year. Similarly, a monoculture pattern can illustrate a pattern where a field
always has the same crop in the past ten years. The field with red marked in Figure 3b shows a
monoculture pattern of corn from 2007 to 2016. Pixels which follow these two patterns are considered
trusted pixels. Moreover, most of the non-crop landcover types do not change frequently. Therefore,
trusted pixels can be found for non-crop land covers through this pattern. These trusted pixels are
useful to know the current year crop types at their location.
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cropping pattern.

Trusted pixels are extracted for 2017 using historical CDL from 2007 to 2016 based on two rotation
patterns over ten years. Figure 4 illustrates trusted pixels of different land cover types (Figure 4a) and
CDL in 2017 (Figure 4b) for the same extent in Iowa. These trusted pixels are used as ground truth
to train image classification model for 2017 in-season Landsat imageries. It is important to test the
accuracy of these trusted pixels before using them as ground truth. In total, 1023 sample pixels from
trusted pixels are selected across the state using stratified random sampling for accuracy assessment.
The confusion matrix in Table 1 shows the agreement between these trusted pixels and 2017 CDL
data. The overall agreement of nine landcover types is 97%. Kappa measures also show significant
agreement (94.5%) of these trusted pixels. Since croplands are the main focus of this research, the
user accuracy and the producer accuracy of trusted pixels are 97% and 94%, respectively, for corn.
Likewise, soybean has 94% for both user and producer accuracy. Only alfalfa has moderate accuracy
where producer accuracy is reported as 78%, and user accuracy is 70%. It can be noted that a crop type
which is not very common in an area may lead to lower accuracy of trusted pixels compared to a more
dominant crop type. Since the percentage of alfalfa crop covers only 2% of arable land, the accuracy of
alfalfa may have minimal impact on overall classification. Because of the high accuracy, trusted pixels
can be utilized as ground truth to train the classification model for in-season crop identification. Since
long-term CDL is available for US croplands, this study utilized historic CDL data to extract trusted
pixels based on major crop rotation pattern. Although CDL data may not be available in many parts of
the world, crop rotation patterns can be identified through multi-year crop mapping using remote
sensing data [24].
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Table 1. The accuracy of trusted pixels in Iowa.

Class Corn Soybean Alfalfa Water Developed Barren Forest Grass
Land Wetland Total User

Accuracy

Corn 334 9 1 0 0 0 0 0 0 344 0.97
Soybean 17 270 1 0 0 0 0 0 0 288 0.94
Alfalfa 2 0 7 0 0 0 0 0 0 9 0.70
Water 0 0 0 15 0 0 0 0 0 15 1.0

Developed 0 0 0 0 104 0 0 0 0 104 1.0
Barren 0 0 0 0 0 10 0 0 0 10 1.0
Forest 0 0 0 0 0 0 139 0 1 140 0.99

Grass Land 1 0 0 0 0 0 1 101 0 103 0.98
Wetland 0 0 0 0 0 0 0 0 10 10 1.0

Total 354 279 9 15 104 10 140 101 11 1023
Producer Accuracy 0.94 0.94 0.78 1.0 1.0 1.0 0.99 1.0 0.91 0.97

Kappa 0.945

2.4. Choice of Classifiers

There are many algorithms available in supervised learning for image classification. However,
there is no single algorithm which is better than others for all problems. Wolpert and Macready
stated in the “No Free Lunch” theorem that there is no such thing as the “best” algorithm in machine
learning, which means an algorithm may work well for one data set whereas another does not work
well [39]. Therefore, for each problem, selection of an appropriate algorithm is important. There are
many ways to select the appropriate algorithm for a specific problem. This study aims to evaluate
the performance of the algorithm through empirical judgment. Six algorithms are selected from six
groups of supervised learning algorithms to test the performance for cropland image classification.
Six algorithms—Random Forest [40], Support Vector Classification (SVC) [41], K-Nearest Neighbor
(KNN) [42], Gradient Boost (Gboost) [43], Multi-layer Perceptron (MLP) [44], and Gaussian Naive
Bayes (GNB) [45]—are selected from ensemble methods (forests of randomized trees), support vector
machine, nearest neighbor, boosting algorithm, neural network models, and probability-based Naïve
Bayes, respectively. All images of study areas from 2007 are classified separately using these algorithms.
Therefore, single date multi-band and multi-date multi-band data are investigated for the classification
of cropland. Single date multi-band is a stack of Landsat bands on a specific day. Multi-band multi-date
is an image stack of Landsat bands from multiple dates. The spatial agreements between classified
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images with CDL of 2017 are assessed. The study choses best classifiers for this study based on the
performance of the classifiers

2.5. Post-Classification Process

In general, it is evident that image classification results have a salt-and-pepper effect. This is
mainly because of mixed pixels, which have multiple land covers within a pixel. Therefore, the
signature of these pixels differs from the signature of pure pixels for a land cover class. Figure 5a
shows the result of the classified image where some isolated pixels appear as a different class than
the class of homogenous patch. The assumption here is a cropland unit contains only the same crop.
Crop land units are extracted based on the land use homogeneity of the last five years CDL. Thus,
salt-and-pepper like isolated pixels are removed from a cropland unit using the majority vote. Crop
type is assigned to all pixels within a cropland unit based on the class of the majority the pixels of that
cropland unit. Figure 5b illustrates the improvement for the result of crop types of cropland units from
the classification result in Figure 5a. This post-classification processing result improves the crop type
identification at the field level.
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Figure 5. (a) Classified image; (b) Improved result after post-classification processing.

2.6. Ground Truth Collection for Validation

Ground truth is important to validate classification accuracy since this study focuses on major
crop type identification through supervised classification of remote sensed images. Ground truths are
collected on crop fields through field surveys for the validation of in-season crop type identification.
A purposeful sampling process is undertaken for this study for several reasons. Firstly, the study
area is vast; therefore, it is difficult to follow any random sampling in the whole state. Secondly, the
objective is to collect samples only over cropland. Thirdly, purposeful sampling is convenient with
limited resource and manpower. Ground truth data points are collected by taking geotagged cellphone
(iphone 7s device) photographs along major roads. Highways are selected from Cerro Gordo County in
the north, Pottawattamie County in the west. Interstate 80, Interstate 380, Highway 20, and Highway
169 cover the central part of Iowa. Samples of 683 crop fields are collected from more than 600 miles
of major roads. Figure 6 shows the spatial distribution of collected samples and crop types for these
selected fields.
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3. Results

3.1. Performance of the Selected Classifiers

Figure 7 illustrates the agreement of selected algorithms for all 12 scenes. Three algorithms—
Random forest, SVC, and Gboost—show better agreement than the other three algorithms in most
of the scenes. However, agreement varies scene to scene even for the same algorithm. For instance,
agreement of the three algorithms for path 26 row 30 in May is more than 85%, whereas the agreemet
of path 26 row 32 is just above 70%. Similarly, agreements of all selected algorithms are below 90% in
July for the scene Path 25 Row 32, but more than 90% for Path 25 Row 31. Another important aspect
is that the agreements increased from May to July for all algorithms in most of the cases. Therefore,
crops are more easily differentiated in their mature stage (in July) than in the early stage (in May).
The performances of these three algorithms—Random Forest, SVC, and Gboost—are also steady in the
sense that they have better accuracy as growing season progresses. However, the performance of the
other algorithms fluctuates and does not follow a specific trend. Therefore, Random forest, SVC, and
Gboost are more reliable than others. Since June data have better separability than May data, and July
data have better separability than June data, the progressive data classification may provide a better
result. Progressive data refer to adding more data in the feature space for image classification.
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Figure 7. Classification accuracy of different classifiers in different Landsat scenes.

Figure 8 shows descriptive statistics for the performance of selected classification algorithms for
Landsat scenes. The overall performances of KNN, MLP, and GNB are low compared to the other
three classifiers. This result is also supported by the findings of the other researchers who utilized
different algorithms for crop mapping from remote sensing images [24,25,30,46]. The Random Forest
and SVM have better performance compared to other classifiers in crop mapping [24,30]. For instance,
Ouzemou et al. reported best overall accuracy (89.26%) among all classifiers utilized for crop mapping
in Morocco [30]. The SVM shows the highest mean performance compared to other classifiers in two
scenes (Path 26 Row 30 and Path 27 Row 32). However, it has lower performance than the Random
Forest and Gradient boost classifiers in all other scenes. Among 12 scenes, both the Random Forest
and the Gradient Boost classifiers have their mean highest performance in five scenes. Therefore, the
performances of the Random Forest and the Gradient Boost classifiers are almost similar. The mean
overall accuracies of the Random Forest, the Gradient Boost, and the SVM are 88%, 88%, and 87%,
respectively, for the 12 scenes. The median accuracies of the Random Forest, the Gradient Boost, and
the SVM are 89%, 88%, and 87%, respectively. Although these three classifiers have almost similar
performance, this study chooses the Random Forest algorithm for early season crop types identification
considering overall highest mean and median accuracy across all 12 scenes. Moreover, the Random
Forest algorithm required less computation time than SVM (i.e., minutes compared to hours).
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The upper and lower bounds of the box indicate 75 and 25 percentiles of the distribution, respectively.
The mean (square mark), median (bar at the middle of the box), minimum–maximum bound (dash
line) of each Landsat scene are also shown in the figure.

3.2. Classification Result of Single Date Multi-Bands

Landsat images of all 12 scenes between May and July are classified and processed for major crop
type identification. Monthly mosaics are created from classified images in a month to cover all of
Iowa. In total, 10,000 sample pixels are selected over cropland using stratified random sampling to
assess the agreement between classified landcover and USDA CDL for 2017. Since only three major
crops are identified for the study area, samples are taken only on these three croplands. This study
aims to examine the agreement between CDL and classification results. Figures A1–A3 illustrate
the comparison between classification results and CDL 2017 for May, June, and July, respectively.
Four blowups from four locations a, b, c, and d are shown in each figure for the visual comparison
of classification result (a1–d1) with CDL (a2–d2). The classification results are improved from early
season to late season. The overall agreements between the classification results and CDL are 84%,
91%, and 95% in May, June, and Jul, respectively (Tables A1–A3). Similarly, the kappa statistic is
another measure for accuracy assessment, which evaluates the classification values compared to values
assigned by chance. Kappa values are in the range of 0 to 1; 0 indicates no agreement between the
classified image and the reference image, and 1 indicates both the classified and the reference image
are identical. The kappa statistics of the agreements are 0.70, 0.81, and 0.90 in May, June, and July,
respectively, indicating the gradual improvement of the result (Tables A1–A3). In May, corn has both
higher user accuracy (0.87) and producer accuracy (0.88) than soybean’s user accuracy (0.82) and
producer accuracy (0.87) (Table A1). The user accuracy and producer accuracy of alfalfa are only 50%
and 60%, respectively (Table A2). Corn has higher user accuracy but lower producer accuracy than
soybean in June. Both user and producer accuracies of alfalfa increased to near 70% in the classification
of June image. Both user accuracy and producer accuracy of alfalfa are lower compared to corn and
soybean, which may be the result of the low accuracy of trusted pixels for alfalfa. Since the success of
the major crop type identification is highly dependent on trusted pixel accuracy, this approach may not
be effective in an area where trusted pixels have low accuracy. From June to July, there is no significant
improvement in producer accuracy for corn and alfalfa, but soybean has higher producer accuracy in
July than in June. User accuracy of all three major crops increased significantly from June to July. Corn,
soybean, and alfalfa have producer accuracies of 98%, 98%, and 77% respectively, in July (Table A3).
Therefore, it is evident that overall agreement with CDL 2017 increases as crops grow.
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3.3. Classification Result of Multi-Date Multi-Bands 2017 Images

Similar to single date multi-band image classification, this research also investigated the
classification outcome using multi-date image stacks. An image stack of multi-date and multi-band
is the combination of Landsat bands of multiple dates for classification. An image stack of multiple
dates increases the dimension of data for classification algorithms. This study considered multiple
combinations of images from different dates available within the growing season. For instance, images
from May combine with images from June when data in June are available. Figure 9 compares the
classification result of multi-dates with CDL 2017. From the visual interpretation of Figure 9, the
classification result from the combination of May and July images is closer to CDL than the combination
of May and June images. Likewise, the classification result from the combination of May, June, and
July images is almost identical to CDL. The agreement between classification result and CDL has
been evaluated through 10,000 randomly sampled points. Tables 2 and 3 show agreement between
classification result and CDL through confusion matrix. Table 2 indicates the overall agreement of the
classification result from the combination of May and June images with CDL is 94%, and the kappa
value is 0.87. This multi-date image classification result has a higher agreement (94%) compared to
the overall agreement of single date June images classification result. Likewise, multi-date image
classification has an overall better agreement, 96% in July, compared to the result of single date July
image classification result of 95%. The kappa value is also improved in multidate image classification
from single date image classification. Therefore, higher data dimension from multi-date imageries can
improve the classification accuracy in general for major crop identification.

Table 2. Agreement between multi-date classification result of May–June images and CDL in 2017.

Class Name C S A OC W D B F G WL Total UA

C 5289 276 3 4 0 5 0 6 13 5 5601 0.94
S 300 4047 4 5 1 3 0 4 10 2 4376 0.92
A 2 0 16 4 0 0 0 0 1 0 23 0.70

Total 5591 4323 23 13 1 8 0 10 24 7 10,000

PA 0.95 0.94 0.70 Overall Agreement
0.94

Kappa Statistics
0.87

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land; F = Forest;
G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement.

Table 3. Agreement between multi-date classification result of May–June–July images and CDL in 2017.

Class Name C S A OC W D B F G WL Total UA

C 5390 139 5 1 0 11 0 5 21 5 5577 0.97
S 216 4142 3 4 1 9 0 5 15 3 4398 0.94
A 0 0 19 1 0 0 0 0 5 0 25 0.76

Total 5606 4281 27 6 1 20 0 10 41 8 10,000

PA 0.96 0.97 0.70 Overall Agreement
0.96

Kappa Statistics
0.91

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land; F = Forest;
G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement.
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Figure 9. Comparison of the classification results of multi-bands multi-date images with CDL for 2017.

3.4. Current Year In-Season Classification Result

The goal of this study is to identify in-season major crop types. The previous section compares the
in-season crop identification results with USDA CDL. Therefore, the result is the agreement between
the classification outcome and CDL, which is not the actual classification accuracy. Section 3.4 discusses
the current year (2018) classification results through the validation with ground truth collected from
fields. Both single date multi-band and multi-date multi-band image classification results are discussed
here. Figure 10 shows major crop types identified through single date multi-band image classification
in three different months of growing season. Four blowups are also shown from four different locations
in each month. Table 4 shows classification accuracy increases over time; the overall accuracy is 84%,
80%, and 92%, respectively, in May, June, and July. The kappa values, 0.67 in May, 0.76 in June, and 0.83
in July, indicate the improvement in major crop type identification. The classification result is improved
because of the higher separability among crop types in the late growing season compared to the early
growing season. The improvement in user accuracy and producer accuracy also indicates a decrease
in misclassification among crop types (Table 5). The user accuracy of corn increases from 83% in May
to 93% in July. Likewise, producer accuracy increases from 94% in May to 97% in July. Although both
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producer and user accuracy for soybean are lower compared to corn, a significant improvement can be
seen in both user accuracy and producer accuracy from May through July. Based on the agreement
between classification results and CDL 2017 (Tables A1–A3 and Tables 2 and 3), both the user accuracy
and the producer accuracy of alfalfa are lower compared to those of corn and soybean in 2018 as well.
Ouzemou et al. [30] also reported similar problem in crop mapping in Morocco, where they found very
low classification accuracies for alfalfa. Asgarian et al. [25] also reported that the classification accuracy
is lower for alfalfa than other crops in Iran because of the misclassification of vegetation and other
crop types. Therefore, the performance of the crop type identification is consistently low for crops
which are not very common in the study area. Although other states in the US may have different
major crop types, the similar crop rotation patterns can be found in most of the states. Therefore, the
approach of major crop identification utilized in this study may be applicable to other states. Since
crop plantation is a diverse and complex phenomenon widely affected by regional factors, rotation
pattern identification methods can benefit from the use of a more complete historical data and more
sophisticated algorithms. Since the approach of this heavily depends on trusted pixels, this approach
may not be effective for these areas where crop plantation does not follow a pattern.
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Figure 10. Identification of major crops through single date multi-band image classifications; panel
(A–C) show the result for May, June, and July, respectively.

Like the single date multi-band classification, this study also investigated the multi-date multi-band
classification approach. Figure 11 illustrates the result of in-season major crop types identification
through image classification of multi-date multiband images. Panels A, B, C, and D show enlarged
detail of four different locations in Iowa. Boxes 1, 2, and 3 in each panel show the classification result
from May, May–June multi-date, and May–June–July multi-date images, respectively. From the visual
interpretation of Figure 11, multi-date image classification shows higher accuracies compared to single
date image classification. The overall classification accuracy is 94% for May–June multidate image
classification, which is higher than the single date classification accuracy 89% in June. A higher kappa
value of 0.86 for multidate classification compared to a kappa value of 0.83 for single date classification in
June indicates better agreement with multi-date image classification. The highest overall accuracy (95%)
and kappa value (0.88) are achieved from the classification of May–June–July multi-date images. User
accuracies and producer accuracies are also improved in multi-date image classification. Both producer
accuracy and user accuracy for corn and soybean are above 95% and 90%, respectively.
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Table 4. Overall accuracy and a kappa value of major in-season major crop types identification in 2018.

Accuracy Metrics
Single Date Multi-Band Multidate-Date Multi-Band

May June July May–June May–June–July

Overall Accuracy 0.84 0.89 0.92 0.94 0.95
Kappa Value 0.67 0.76 0.83 0.86 0.88

Table 5. User accuracy and producer accuracy of major in-season major crop type identification in 2018.

Crop Types Accuracy
Single Date Multi-Band Multidate-Date Multi-Band

May June July May–June May–June–July

Corn
User

Accuracy 0.84 0.90 0.93 0.95 0.96

Producer
Accuracy 0.94 0.96 0.97 0.98 0.98

Soybean
User

Accuracy 0.85 0.88 0.91 0.92 0.93

Producer
Accuracy 0.75 0.82 0.87 0.89 0.91

Alfalfa
User

Accuracy 0.57 0.64 0.79 0.79 0.86

Producer
Accuracy 1.00 1.00 1.00 0.92 1.00
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Figure 11. Identification of major crops through multi-date multi-band image classifications. (A1): 16
May 2018; (A2): 16 May, and 1 June 2018; (A3): 16 May, 1 June, and 3 July 2018; (B1): 16 May 2018; (B2):
16 May, and 1 June 2018; (B3): 16 May 1 June, and 3 July 2018; (C1): 18 May 2018; (C2): 18 May and 3
June 2018; (C3): 18 May, 3 June, and 22 Augus 2018. (D1): 18 May 2018; (D2): 18 May, and 3 June 2018;
(D3): 18 May, 3 June, and 22 August 2018.
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Table 6 shows the summary of the results of in-season major crop type identification through
satellite image classification. This study processed in-season Landsat images for the years 2017 and
2018 for Iowa. The results of the 2017 image classification are assessed through the spatial agreement
with 2017 CDL. The actual accuracy of the results of current year in-season major crop identification
are validated through ground truth collected from the field. Both overall agreement and the kappa
value between classification results and 2017 CDL are increased from May through July. Similarly, the
in-season classification accuracies are improved from 0.84 in May to 0.92 in July. The improvement
in classification accuracies indicates that crop types are easily identifiable as the season progress.
Multi-date multi-band image classification shows a better result both in June and July compared to
single-date multi-band image classification. Therefore, progressive data classification can be more
helpful for accurate crop type identification.

Table 6. Summary table of the results of in-season major crop type identification.

Single-Date Multi-Band Multidate-Date Multi-Band

Month May June July June July

Overall Kappa Overall Kappa Overall Kappa Overall Kappa Overall Kappa

Agreement with
CDL 2017 0.84 0.7 0.91 0.81 0.95 0.9 0.94 0.87 0.96 0.91

Classification
Accuracy in 2018 0.84 0.67 0.89 0.76 0.92 0.83 0.94 0.86 0.95 0.88

4. Conclusions

In-season crop type identification is crucial for research and decision-making processes. In-season
crop type identification supports many in-season studies such as crop loss estimation, yield prediction,
agriculture trade, and environmental research. The USDA provides crop-specific information each
year. However, crop-specific information is only available at the end of the year, many months after
the crop growing season. One of the major reasons for this delay is because of the collection of ground
truth to train the image classification model. This study utilized trusted pixels identified from major
crop rotation patterns as training data to train the image classification model. The overall accuracy
of the trusted pixel is 97%, which is very high considering there are nine major land cover classes
including crops. This study selected the Random Forest algorithm as a classifier due to the better
performance over pre-selected six classifiers. In-season images from both 2017 and 2018 are classified in
this study. The classification results from 2017 are compared with CDL to investigate overall agreement.
The results show very high overall agreement up to 96% with most of the cases above 90%. The CDL
program reports classification accuracy between 85% and 95%. The agreement with CDL is not the
actual classification accuracy. In-season classification results of 2018 are validated through the ground
truth collected by field survey. The results show classification accuracy between 84% and 95%, which is
similar to CDL. Multi-date image classification shows higher accuracy compared to single date image
classification. The overall accuracies of multi-date image classification are 94% and 95% in June and
July, respectively. The only limitation of in-season crop identification is cloud contamination in optical
imageries. Although this study focuses on Landsat data, optical data from sentinel mission may also be
useful for major crop identification. The Sentinel mission has more frequent revisit capability compared
to Landsat which increases the chances to obtain more in-season cloud-free images. This approach
to major crop-type identification can be useful in areas that have a certain/fixed patterns of crop
rotation. Since different areas tend to have different patterns of crop rotation, the patterns adopted
and utilized in this study may not be representative of the patterns in other areas. Therefore, it is
necessary to investigate the major crop rotation patterns before the extraction of trusted pixels. It can
be concluded that major crop type identification through the proposed method can achieve a similar
accuracy of CDL. In-season crop research can benefit through the proposed methodology of in-season
crop classification.



Agriculture 2019, 9, 17 16 of 21

Author Contributions: M.S.R. and L.D. conceptualized and designed the experiment; M.S.R. performed the
analysis. H.M., E.Y., and C.Z. collected ground truth, processed geotagged photographs, and prepared reference
map of ground truth for the validation of 2018 image classification. E.Y., and C.Z. contributed in the design of
data processing framework. M.S.R. wrote the whole article. L.D. supervised the overall research.

Funding: This study was supported by a grant from the U.S. National Science Foundation (Grant # CNS-1739705
PI: L.D.).

Acknowledgments: We would like to thank the United States Geological Survey (USGS) for their Landsat archive
in the Earth Explorer portal. We are grateful to the National Agricultural Statistics Service (NASS) of the United
States Department of Agriculture (USDA) for historical CDL data. We would like to express our special thanks
to Zhiqi Yu of CSISS, GMU, for his comments and sugestions in initial data preprocessing. We are greatful to
Zhi Chen and Reuben Grandon of the University of Iowa for their assistance during field data collection in
Iowa. We are also thankful to anonymous reviewers for their comments and sugestions for the improvement of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Agriculture 2019, 8, x FOR PEER REVIEW  16 of 21 

 

Acknowledgments: We would like to thank the United States Geological Survey (USGS) for their Landsat 

archive in the Earth Explorer portal. We are grateful to the National Agricultural Statistics Service (NASS) of the 

United States Department of Agriculture (USDA) for historical CDL data. We would also like to thank the 

anonymous reviewers for their valuable comments and suggestions. We would like to express our special 

thanks to Zhiqi Yu of CSISS, GMU, for his comments and sugestions in initial data preprocessing. We are 

greatful to Zhi Chen and Reuben Grandon of the University of Iowa for their assistance during field data 

collection in Iowa. We are also thankful to anonymous reviewers for their comments and sugestions for the 

improvement of the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Classification results of May and CDL in 2017; (a1–d1) are snapshots from the 

classification result, and (a2–d2) are snapshots from CDL at locations a, b, c, and d respectively. 

Table A1. Agreement between classification result of May and CDL in 2017. 

Class 

Name 
C S A OC W D B F G WL Total UA 

C 4813 528 7 10 3 75 1 15 95 12 5559 0.87 

S 635 3599 9 8 1 53 1 9 73 5 4393 0.82 

A 4 5 24 7 0 1 0 2 5 0 48 0.50 

Total 5452 4132 40 25 4 129 2 26 173 17 10,000  

PA 0.88 0.87 0.60     Overall Agreement 

0.84 

Kappa Statistic 

0.70 

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land;  

F = Forest; G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement. 

Figure A1. Classification results of May and CDL in 2017; (a1–d1) are snapshots from the classification
result, and (a2–d2) are snapshots from CDL at locations a, b, c, and d respectively.
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Table A1. Agreement between classification result of May and CDL in 2017.

Class Name C S A OC W D B F G WL Total UA

C 4813 528 7 10 3 75 1 15 95 12 5559 0.87
S 635 3599 9 8 1 53 1 9 73 5 4393 0.82
A 4 5 24 7 0 1 0 2 5 0 48 0.50

Total 5452 4132 40 25 4 129 2 26 173 17 10,000

PA 0.88 0.87 0.60 Overall Agreement
0.84

Kappa Statistic
0.70

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land; F = Forest;
G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement.
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Figure A2. The classification results for June and CDL in 2017; (a1–d1) are snapshots from classification
result, and (a2–d2) are snapshots from CDL at locations a, b, c, and d, respectively.
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Table A2. Agreement between classification results of June and CDL in 2017.

Class Name C S A OC W D B F G WL Total UA

C 5071 265 4 3 0 18 2 27 55 15 5460 0.93
S 467 3966 8 6 2 8 3 5 38 1 4504 0.88
A 1 1 25 5 0 0 1 0 3 0 36 0.69

Total 5539 4232 37 14 2 26 6 32 96 16 10,000

PA 0.92 0.94 0.68 Overall Agreement
0.91

Kappa Statistic
0.81

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land; F = Forest;
G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement.
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Figure A3. Classification result for July and CDL in 2017; (a1–d1) are snapshots from classification
result, and (a2–d2) are snapshots from CDL at locations a, b, c, and d, respectively.
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Table A3. Agreement between classification result of July and CDL in 2017.

Class Name C S A OC W D B F G WL Total UA

C 5302 98 5 2 3 32 0 45 40 26 5553 0.95
S 110 4150 3 18 2 37 0 9 77 2 4408 0.94
A 1 2 27 2 0 2 1 1 3 0 39 0.69

Total 5413 4250 35 22 5 71 1 55 120 28 10,000

PA 0.98 0.98 0.77 Overall Agreement
0.95

Kappa Statistics
0.90

C = Corn; S = Soybean; A = Alfalfa; OC = Other Crop; W = Water; D = Developed; B = Baran Land; F = Forest;
G = Grass Land; WL = Wetland; UA = User Agreement; PA = Producer Agreement.
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