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Abstract: This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus
blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 µg/mL A. blazei spent substrate water
extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK
cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10
µg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating
ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression
levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α

(TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay
demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial,
Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS)
for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when
Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate
being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second
trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups
were given the control feed for several days prior to bacterial challenge in order to investigate the
duration of the protective effect provided by ABSS. The results showed that the protective effects
were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A.
blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.

Keywords: immunoregulator; Agaricus blazei; spent substrate; Streptococcus agalactiae; gene expression

1. Introduction

Aquaculture has grown extensively since the late 1980s and continues to supply fish
for human consumption. According to the Food and Agriculture Organization (FAO),
global aquaculture production of farmed aquatic animals increased at a rate of 5.3% per
year between 2001 and 2018. More specifically, aquaculture production supplied over 82.1
million tons of food in 2018 [1], and is expected to reach 109 million tons in 2030, which is a
32% (26 million tons) increase from 2018 [1]. Obviously, aquaculture will continue to be a
main source of global fish production.
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Among the fish species cultured, tilapia is regarded as the second most widely farmed
fish in the world after carp and provides precious animal protein for humans [2]. There
are only about 10 species of commercial tilapia culture, and globally the Nile tilapia is
the most important farmed tilapia species [2]. The global expansion of tilapia production
is driven by its high growth rate, suitability for various aquatic habitats, tolerance to
a wide range of environmental factors (e.g., temperature, water salinity, and dissolved
oxygen), selective breeding, strong resistance to disease, and potential to replace marine
fish products [3]. With such advantages, global farmed tilapia production increased by
3.3% in 2020, surpassing 6 million tons for the first time despite the impact of COVID-19 [3].
The intensification of aquaculture has increased the distribution and spread of infectious
agents, such as Streptococcus agalactiae [4], Streptococcus iniae [4,5], Aeromonas hydrophila [6],
Edwardsiella tarda [7], Flavobacterium asiatica [8], Lactococcus garvieae [9], and tilapia lake
virus (TiLV) [10], which is a major barrier against the growth of aquaculture [11].

Recently, the tilapia culture industry has been progressively threatened by disease,
resulting in high mortality and great economic losses. Streptococcus is thought to be the
worst disease for tilapia worldwide, and infectious diseases caused by S. agalactiae are
commonly reported in tilapia culture, which can lead to significant economic losses [12].
The pervasiveness and seriousness of pathogens can be influenced by environmental
conditions such as high ammonia, low dissolved oxygen, and warm water temperature [13].
The threat from bacterial diseases in tilapia culture has increased the use and misuse of
antibiotics, which adversely affect the environment and human health and facilitate the
emergence of antibiotic-resistant bacteria.

Agaricus blazei is an edible mushroom native to Brazil that has become of interest to
various areas of medical research, as it has shown remarkable immunomodulating and tu-
moricidal effects [14]. A. blazei has drawn substantial attention due to its health-promoting
and medicinal properties [15], such as its immunomodulation [16], antihypertensive [17],
antihypercholesterolemia [18], weight-controlling [18], hepatic disease-controlling [19], and
anticancer [20] effects. The amount of byproducts and spent substrate from mushroom
production has increased dramatically with increased demand [21,22]. The annual global
mushroom yield is estimated to be over 25 million tons [23], creating a large amount of
spent mushroom substrate that is detrimental to the environment. Efforts to overcome this
issue have focused on recycling and reusing spent mushroom compost, e.g., enzyme recov-
ery [24], biodegradation of polycyclic aromatic hydrocarbons [25], phenol oxidation [26],
pentachlorophenol decontamination [27], providing animal feed for ruminants [28], and
biosorption of heavy metals [23].

Immunostimulants and immunoregulators have attracted much attention in aquacul-
ture since they are famous for their environmentally friendly properties and ease of use [29].
As prophylactic and protective substances, they are frequently utilized in aquaculture to
promote the health and disease resistance of cultured animals [30]. Recently, many func-
tional feed additives for managing the health of aquatic animals have been developed [31].
These additives aim to modulate the immune response and disease resistance of cultured
animals to infectious microbes, thereby reducing the use of antibiotics and disease-related
economic losses [32,33]. So far, only a few papers [31,34] have reported on the use of spent
mushroom substrate in aquatic animals as a source of immunomodulators. Therefore,
we conducted in vitro and in vivo experiments to examine the potential of A. blazei spent
substrate (ABSS) to be used as an immunomodulator for Nile tilapia.

2. Materials and Methods
2.1. Experimental Fish

A batch of healthy Nile tilapia (Oreochromis niloticus) was transported from the aquatic
center at National Taiwan Ocean University (NTOU; Keelung, Taiwan) to the laboratory
and acclimatized for seven days to the laboratory conditions. Fish were kept in 1.8 ton
freshwater in 2-ton fiberglass-reinforced plastic (FRP) tanks, and 30% of the tank water was
renewed with fresh dechlorinated water every 20–24 h. Fish received pelleted feed (Tairoun
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Products Company Ltd., Taipei, Taiwan) two times a day at 3–5% of fish body weight.
Water parameters were ensured as follows: temperature at 28 ± 2 ◦C, pH at 7.0 ± 0.2,
and dissolved oxygen at 5.0 ± 0.5 mg/L. Concentrations of ammonia-N and nitrite-N in
the water were maintained at no more than 0.10 and 0.05 ppm, respectively. The animal
experiments were approbated by the Institutional Animal Care and Use Committee at
NTOU (Approval number: 109005). Moribund fish with unstable, disoriented swimming
actions from bacteria challenge assays were euthanized by using an overdose of MS222
(Sigma–Aldrich, Massachusetts, USA).

2.2. Preparation of ABSS and Crude Extract Preparation

The main elements for culturing A. blazei are calcium, rice bran, sponges, herbs,
straw, cotton, sawdust, poultry manure, wheat bran, and agricultural byproducts rich in
lignocellulosic complexes [35,36]. Protein-rich ingredients such as soybeans can be added
to growth substrate to stimulate A. blazei production and reduce waste [37]. Therefore, in
this study, a mixture of brown rice, rice bran, soybeans, and calcium carbonate was used
to grow A. blazei, and the fermented spent substrate was applied to evaluate its ability to
promote the immune status of Nile tilapia and disease resistance to S. agalactiae infection.
The ABSS powder was provided by Yeeder Biotechnology Co., Ltd. (New Taipei City,
Taiwan). The substrate comprised brown rice (70%), rice bran (20%), soybeans (8%), and
calcium carbonate (2%). The time of fermentation was approximately 60 days, and the
fermentation temperature was controlled at 24 ± 1 ◦C (Taiwan patent no. I284502). The
moisture, ash, fiber, crude protein, and crude lipid content in ABSS were measured by
standard methods from the Association of Analytical Communities (AOAC) [38].

Crude extracts from ABSS were obtained by soaking 10 g of ABSS powder in 90 mL of
water in a glass bottle, followed by incubation at 40 ◦C for 3 h. The tube was slowly inverted
several times during extraction. Then, the tube was spun at 9900× g for 10 min at 4 ◦C
(Allegra X-30R, Beckman Coulter, California, USA), and the supernatant was transferred to
a clean sterile glass bottle. This supernatant, A. blazei spent substrate extract (ABSSE), was
filtered through a filter with 0.2 µm pore size, freeze-dried, then kept at 4 ◦C until its use
for the in vitro experiments.

The contents of monosaccharide and polysaccharide as well as monosaccharide el-
ements within the polysaccharides of the ABSSE were resolved using nuclear magnetic
resonance (NMR) spectrometry (Sugarlighter, Taipei, Taiwan). The β-glucan content was
analyzed using a β-glucan assay kit (Megazyme, Bray, Ireland), following the manufac-
turer’s instructions. The sulfate content in ABSSE was analyzed using the BaCl2–gelatin
turbidity method described previously [39].

2.3. In Vitro Trials
2.3.1. Cell Viability Assay

Macrophages were isolated from liver and spleen followed by the protocol described
earlier [40] and were used to examine the effects of the ABSSE on cell viability. Liver and
spleen samples from three tilapia (500 ± 50 g) were perfused for 15 min via a portal vessel
using a solution (10 mmol/L glucose, 2.68 mmol/L KCl, 0.7 mmol/L Na2HPO4-12H2O,
0.5 mmol/L EDTA-2Na, 137 mmol/L NaCl, and 10 mmol/L HEPES in calcium-free water).
The splenic or hepatic tissues were then chopped into small pieces and incubated for 30 min
in a buffer contains 0.05% collagenase IV (Sigma-Aldrich, St. Louis, MO, USA). The solution
was then pushed through a filter with 100 µm pore size to remove undigested tissues and
the cells in the flow through were segregated using 16% Nycodenz gradient medium
followed by gradient centrifugation in 30% and 50% Percoll solution (GE Healthcare,
Chicago, IL, USA). The desired cell fraction was aspirated and cultured in RPMI 1640
medium (Gibco, Waltham, MA, USA). Ten million macrophages and the THK cells [41]
were cultured in a culture medium containing 0, 10, 100, or 1000 µg/mL ABSSE. The cell
proliferation assay was conducted at 12 and 24 h using Kit-8 a cell counting kit (CCK-8;
Bimake, Houston, TX, USA) following the manufacturer’s instructions.
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2.3.2. Analysis of Phagocytic Activity

A phagocytosis assay was performed using pHrodo Green Escherichia coli BioParticles
Conjugate (Life Technologies, Carlsbad, CA, USA) as previously described [42]. Briefly,
hepatic and splenic macrophages from three tilapia (500 ± 50 g) were dispensed into
96-well plates (1 × 106 cells per well) and allowed to settle overnight at 28 ◦C. Cells were
then incubated with 0, 10, 100, and 1000 µg/mL ABSSE for 12 and 24 h in an RPMI-1640-
based medium. At indicated time points, the cell medium was substituted with 200 µL
BioParticles solution in Hank’s Balanced Salt Solution (Gibco), then cells were incubated
for 2 h at 28 ◦C. A similar phagocytosis assay was conducted using THK cells. THK
cells were cultured with L-15 medium (Gibco) supplemented with 10% (v/v) fetal bovine
serum (FBS, Corning), antibiotics mix (penicillin (100 U/mL)/streptomycin, 100 µg/mL,
Gibco), and heparin (10 U/mL, Sigma-Aldrich)). THK cells were treated with or without
10 µg/mL ABSSE prior to the addition of BioParticles. Relative fluorescence units (RFU)
were monitored at an excitation wavelength of 509 nm and an emission wavelength of
533 nm using a spectrofluorometer (SPECTRA max GEMINI XPS; Molecular Devices, San
Jose, CA, USA).

2.3.3. Gene Expression Analysis

THK cells were allowed to settle in a 12-well plate at a density of 1 × 106 cells per
well in triplicate. On the following day, the THK cell line was primed with 0 (named
control group) or 10 µg/mL of ABSS (named ABSSE-only group) for 24 h and subjected
to gene expression analysis. In parallel, THK cells were pretreated with culture medium
with or without ABSSE and then stimulated with 50 µg/mL lipopolysaccharides (LPS,
Sigma-Aldrich) for 24 h. The former group was named “ABSSE + LPS” and the latter
“control + LPS”.

Another similar experiment was performed, except the bacterial ligand peptidoglycan
(PGN, 50 µg/mL, Invivogen, San Diego, CA, USA) was used after priming the THK cells
with ABSSE, as previously described.

Total RNA was extracted from the cells after treatment and cDNA was synthesized
using an iScript gDNA Clear cDNA Synthesis Kit (Bio-Rad, Berkeley, CA, USA) as described
previously [43]. Quantitative real-time PCR (qRT-PCR) was conducted using the primers
listed in Table 1. Briefly, the qRT-PCR reaction (20 µL) comprised 4 µL of cDNA, 10 µL of
RealQ Plus 2×Master Mix (Ampliqon A/S), 1 µL of forward and reverse primers, and 4 µL
of nuclease-free water (Invitrogen). The PCR program was set as follows: 94 ◦C for 15 min,
followed by 40 cycles of 15 s at 94 ◦C and 1 min at 60 ◦C. The expression levels of the genes
of interest were normalized to those of beta-actin (β-actin) and presented as fold changes
relative to the control group. The transcript level of the gene of interest was normalized to
the mRNA level of β-actin and log2-transformed to improve the normality of data before
statistical analysis [44].

Table 1. Primers used in this study.

Gene Forward (5′→3′) Reverse (5′→3′) Accession Number

β-actin TCCTTCCTTGGTATGGAATCC GTGGGGCAATGATCTTGATC KJ126772
IL-1β CAGTGAAGACCGCAAAGTGC TATCCGTCACCTCCTCCAG XM_019365841
IL-8 TCGCCACCTGTGAAGGCAT TCCTTTTCAGTGTGGCAATGAT XM_019359413

IL-12b CAACAGTGACAATCAAATAATTAATAT CGTTATGTTTGTTCACTGTGCA XM_019364048
TNF-α GAACACTGGCGACAAAACAGA TTGAGTCGCTGCCTTCTAGA AY428948

2.3.4. Bacterial Inhibition Assay

S. agalactiae used in the present study was isolated from diseased tilapia [42]. Bacteria
were cultured on tryptic soy agar (TSA, Difco, Franklin Lakes, NJ, USA) for 16 h at 28 ◦C
prior to suspension in sterile phosphate-buffered saline (PBS). Then, 100 µL of S. agalactiae
(1 × 105 colony-forming units (CFU)/mL) was spread on the TSA followed by inoculation
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of 100 µL of ABSSE (50 mg/mL) or water extract from unfermented growth substrate
(control) in the holes on the agar, then incubated at 28 ◦C. The inhibition zone was observed
24 h post inoculation.

In broth inhibition assay, 100 µL of S. agalactiae (106 CFU/mL) in tryptone soy broth
(TSB, Difco) was mixed with 900 µL of TSB with or without 50 mg/mL of ABSSE, then
incubated for 2 h at 28 ◦C on a shaker (150 rpm). Following incubation, some of the 100 µL
of mixture was spread on TSA and incubated for 16 h at 28 ◦C. Colony counts from triplicate
plates were recorded.

2.4. In Vivo Experiments
2.4.1. First Feeding Trial

A commercial tilapia diet from Tairoun Products Co., Ltd. was ground as the base for
making experimental feed. Sample 1 was the control diet without additive. Samples 2 and
3 were made by mixing commercial feed with 10 g (1% total feed weight) or 50 g (5% total
feed weight) ABSS per kg feed weight. All ingredients were thoroughly mixed and the
food was re-extruded using a spaghetti squashing machine. The feeds were dried at 40 ◦C
for 24 h in the dark and stored in plastic bags at −20 ◦C until use. The levels of moisture,
ash, crude protein, and crude lipid content in the experimental feeds were measured by
standard methods [38].

Sixty fish (average weight 65.1 ± 8.7 g) were randomly distributed across three FRP
tanks. Fish were fed with experimental diets daily at 3% of their body weight (BW) for 7
and 14 days. At each time point, 10 fish from each group were intraperitoneal injected with
S. agalactiae (1 × 106 CFU/g BW) suspension. Moribund or dead fish were removed from
the tank each day over 21 days of observation. The survival rate (SR) was calculated as
follows: SR (%) = (number of fish survived/number of fish injected) × 100.

2.4.2. Second Feeding Trial

Sixty fish (average weight 64.8 ± 3.7 g) were randomly distributed across two FRP
tanks. Since the continuous feeding of tilapia with feed containing 1% of ABSS provided
better protection against S. agalactiae infection, we aimed to test how long the protective
effects lasted after changing the feed to a normal commercial feed without ABSS. To this
end, fish were given feed containing 0% or 1% ABSS for 7 days, then given a commercial
diet for 1, 7, and 14 days prior to bacterial challenge as described above. At each time point
after the feed was changed 10 fish from each group were challenged with S. agalactiae by
intraperitoneal injection of the bacterial suspension as described in Section 2.4.1.

2.5. Statistical Analysis

Cell viability, phagocytic activity, and gene expression between the treatment and
control groups were analyzed using one-way ANOVA and Tukey’s test in IBM SPSS
Statistics Package 22.0 (SPSS Inc., IBM, Chicago, USA). Additionally, paired-sample t-tests
were performed to analyze the phagocytic activity assays conducted in THK cells and the
bacteria counts described in Section 2.3.4.

3. Results
3.1. Proximate Composition of ABSS

The proximate composition of ABSS is listed in Table 2. ABSS comprised 10.12%
moisture, 4.34% crude protein, 6.25% crude lipid, 11.29% ash, 4.33% fiber, and 63.67%
nitrogen-free extract.
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Table 2. Approximate composition (%) of Agaricus blazei spent substrate.

Moisture 10.12

Ash 11.29
Crude protein 4.34

Crude lipid 6.25
Fiber 4.33
NFE * 63.67

* Nitrogen-free extract (NFE) = 100 − (protein% + lipid% + total ash% + fiber content%).

3.2. Approximate Composition of ABSSE

The recovery rate of ABSSE was around 10–12%. The total carbohydrate content
for ABSSE was over 95%, with monosaccharide (sucrose) making up 65.4% of the total
carbohydrate content and polysaccharides the remaining 34.6%. Of the total carbohydrate,
1.08% was β-glucan and 6.3% was sulfated carbohydrate (Table 3). The polysaccharide
content of ABSSE comprised 62.4% glucose and 37.6% galactose (Table 3).

Table 3. The composition of the carbohydrate of Agaricus blazei spent substrate extracts.

Content Percentage

Total carbohydrate (w/w, %) >95
Sulfate (%) 6.3
β-glucan (%) 1.08

Monosaccharide content (%) 65.4 (Sucrose)
Polysaccharide content (%) 34.6

Glucose 62.4
Galactose 37.6

Others 0

3.3. ABSSE Promotes Proliferation of Hepatic and Splenic Macrophages and the THK Cell Line

The cell viability of macrophages was used as an indicator of immune activation [45].
There was no obvious cytotoxicity in ABSSE-treated cells, except for at the higher concen-
trations of ABSSE (100 and 1000 µg/mL), on splenic macrophages at 12 h (Figure 1). The
highest optical density (OD) values were recorded for 10 µg/mL ABSSE-treated hepatic
and splenic macrophages and THK cells (at least at 12 h) when compared to other the
concentrations. Cell proliferative effects were also seen in 100 µg/mL and 1000 µg/mL
ABSSE-treated hepatic macrophages at 12 h, splenic macrophages at 24 h, and in 100 µg/mL
ABSSE-treated THK cells at both time points.

3.4. ABSSE Induce Phagocytic Activity in Hepatic and Splenic Macrophages and THK Cells

Phagocytic activity significantly increased in 100 µg/mL ABSSE-treated hepatic and
splenic macrophages at 24 and 12 h, respectively. Hepatic and splenic macrophages
showed the highest phagocytic activities after incubation with 10 µg/mL ABSSE (Figure 2).
Therefore, we tested whether the treatment of 10 µg/mL ABSSE would also promote
phagocytic activity in THK cells. Indeed, after 24 h incubation with 10 µg/mL ABSSE, the
phagocytic activity was significantly elevated in THK cells (Figure 3).

3.5. Priming THK Cells with ABSSE Enhances the Expression of Proinflammatory Cytokines
When Bacterial Ligands Are Encountered

Since treating THK cells with ABSSE could promote their proliferation and phagocytic
activity, we then tested whether this treatment could also modulate the expression of
proinflammatory cytokines in THK cells. As shown in Figure 4, incubating THK cells with
10 µg/mL ABSSE for 24 h did not induce the transcription of proinflammatory cytokines
(see control and ABSSE-only groups). Interestingly, stimulating ABSSE-primed THK cells
with LPS resulted in higher expression of interleukins (IL)-1β, IL-12b (p40), IL-8, and tumor
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necrosis factor (TNF)-α (Figure 4). Similarly, incubating ABSSE-primed THK cells with
PGN increased the expression of TNF-α (Figure 5).
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Figure 3. Phagocytic activity in stimulated macrophages. The THK cell line was treated with 0
(control) or 10 µg/mL of Agaricus blazei spent substrate extract (ABSSE) in L-15 for 12 and 24 h
prior to the addition of a bioparticle solution. The relative fluorescence units (RFU) were measured
and values are shown as means + standard errors of the mean. A significant difference between
experimental and the control group (p < 0.05, paired-sample t test) is indicated by an asterisk.
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Figure 4. Gene expression analysis of Agaricus blazei spent substrate extract (ABSSE)-primed THK
cells after stimulation with lipopolysaccharides (LPS). The THK cell line was primed with 0 (control)
or 10 µg/mL of Agaricus blazei spent substrate extract (group ABSSE only) for 24 h and subjected to
gene expression analysis. Additionally, THK cells were pre-treated with L-15 medium or medium
containing ABSSE and then stimulated with 50 µg/mL LPS for 24 h. The former group was named
“control + LPS” and the later “ABSSE + LPS”. Transcript levels of (A) IL-1β, (B) IL-12b, (C) IL-8, and
(D) TNF-α were analyzed by quantitative real-time PCR. The expression values are shown as means +
standard errors of the mean fold change relative to the control group. Significant differences (p < 0.05,
one-way ANOVA, and Tukey’s post hoc test) from the control group are indicated by different letters.
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Figure 5. Gene expression analysis of Agaricus blazei spent substrate extract (ABSSE)-primed THK
cells after stimulation with peptidoglycan (PGN). The THK cell line was primed with 0 (control) or
10 µg/mL of Agaricus blazei spent substrate extract (group ABSSE only) for 24 h and subjected to
gene expression analysis. Additionally, THK cells were pre-treated with L-15 medium or medium
containing ABSSE and then stimulated with 50 µg/mL PGN for 24 h. The former group was named
“control + PGN” and the later “ABSSE + PGN”. Transcript levels of (A) IL-1β, (B) IL-12b, (C) IL-8, and
(D) TNF-α were analyzed by quantitative real-time PCR. The expression values are shown as means +
standard errors of the mean fold change relative to the control group. Significant differences (p < 0.05,
one-way ANOVA, and Tukey’s post hoc test) from the control group are indicated by different letters.

3.6. ABSSE Inhibits the Growth of S. agalactiae

As shown in Figure 6, an obvious inhibition zone (approximately 2 cm in diameter)
was seen for the well that was inoculated with ABSSE on an agar swabbed with S. agalactiae
(Figure 6A). The equivalent mushroom growth substrate without fermentation was used
to make crude extract using the same method as for ABSSE, and there was no inhibition
zone for the well that was inoculated with extract from the unfermented growth substrate
(Figure 6A). We then cultured S. agalactiae in TSB in the presence or absence of ABSSE and
found a significant reduction in the bacterial colony count when S. agalactiae was incubated
with ABSSE (Figure 6B).

3.7. Protection of Nile Tilapia against Bacterial Infection

We evaluated whether oral ingestion of ABSS could provide Nile tilapia protection
from S. agalactiae. Three experimental feeds supplemented with 0%, 1%, and 5% ABSS
with similar compositions (Table 4) were made for the first feeding trial. Fish were fed
experimental feeds continuously for 7 and 14 days prior to bacterial challenge. On day 7,
the highest survival rate was recorded for the group that received feed containing 1% ABSS
(40%), followed by the group with 5% ABSS (30%). The control diet group had the lowest
survival rate (10%) (Figure 7A). The survival rates did not differ between the control and
1% ABSS diet groups (30%) on day 14, and the 5% ABSS group had the lowest survival rate
(20%) (Figure 7B).



J. Mar. Sci. Eng. 2022, 10, 100 10 of 17J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. Agaricus blazei spent substrate extract (ABSSE) inhibits the growth of Streptococcus 
agalactiae. (A) The left and right wells of tryptone soy agar (TSA) that spread with Streptococcus 
agalactiae were inoculated with 100 μL of ABSSE (left, 50 mg/mL) or water extract of unfermented 
growth substrate (right, control) followed by a 24 h incubation at 28 °C. (B) Here, 100 μL of 
Streptococcus agalactiae (106 C.F.U./mL) in tryptone soy broth (TSB) was mixed with 900 μL of TSB 
with or without 50 mg/mL of ABSSE followed by a 2 h incubation at 28 °C. Then, 100 μL of mixture 
was spread on TSA and incubated 16 h at 28 °C. Colony counts from triplicate plates were recorded 
and data are shown as the means ± standard errors of the mean. Significant differences from the 
control group are denoted by asterisks (p < 0.05, paired-sample t-test). C.F.U. = colony forming unit. 

3.7. Protection of Nile Tilapia against Bacterial Infection 
We evaluated whether oral ingestion of ABSS could provide Nile tilapia protection 

from S. agalactiae. Three experimental feeds supplemented with 0%, 1%, and 5% ABSS 
with similar compositions (Table 4) were made for the first feeding trial. Fish were fed 
experimental feeds continuously for 7 and 14 days prior to bacterial challenge. On day 7, 
the highest survival rate was recorded for the group that received feed containing 1% 
ABSS (40%), followed by the group with 5% ABSS (30%). The control diet group had the 
lowest survival rate (10%) (Figure 7A). The survival rates did not differ between the 
control and 1% ABSS diet groups (30%) on day 14, and the 5% ABSS group had the 
lowest survival rate (20%) (Figure 7B). 

 
Figure 7. Fish were fed with feed containing 0 (control), 1%, or 5% Agaricus blazei spent substrate 
(ABSS) for (A) 7 and (B) 14 days and subjected to Streptococcus agalactiae infection. A control group 
that injected with phosphate-buffered saline (Con-PBS) was included. Survival percentages were 
recorded for 21 days. N = 10 per group. 

  

Figure 6. Agaricus blazei spent substrate extract (ABSSE) inhibits the growth of Streptococcus agalactiae.
(A) The left and right wells of tryptone soy agar (TSA) that spread with Streptococcus agalactiae
were inoculated with 100 µL of ABSSE (left, 50 mg/mL) or water extract of unfermented growth
substrate (right, control) followed by a 24 h incubation at 28 ◦C. (B) Here, 100 µL of Streptococcus
agalactiae (106 C.F.U./mL) in tryptone soy broth (TSB) was mixed with 900 µL of TSB with or without
50 mg/mL of ABSSE followed by a 2 h incubation at 28 ◦C. Then, 100 µL of mixture was spread on
TSA and incubated 16 h at 28 ◦C. Colony counts from triplicate plates were recorded and data are
shown as the means ± standard errors of the mean. Significant differences from the control group are
denoted by asterisks (p < 0.05, paired-sample t-test). C.F.U. = colony forming unit.

Table 4. Proximate composition of the experimental diets.

Proximate Analysis
(%) Control ABSS * 1% ABSS * 5%

Crude protein 28.0 27.8 26.8
Crude lipid 9.7 9.8 9.3

Carbohydrate 49.6 49.8 51.0
Moisture 6.4 6.3 6.6

Ash 6.3 6.3 6.3
Calorie (kcal/100 g) 398 399 395

* ABSS = Agaricus blazei spent substrate.
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Figure 7. Fish were fed with feed containing 0 (control), 1%, or 5% Agaricus blazei spent substrate
(ABSS) for (A) 7 and (B) 14 days and subjected to Streptococcus agalactiae infection. A control group
that injected with phosphate-buffered saline (Con-PBS) was included. Survival percentages were
recorded for 21 days. N = 10 per group.
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3.8. ABSS Provides Sustained Protection against S. agalactiae Infection

We conducted the second feeding trial to investigate the duration of the protective
effect provided by ABSS. In this trial, fish were given feed supplemented with 0% (control)
and 1% ABSS for 7 days (which provided the best protection as determined in the first
trial). The feed for the experimental group was then switched to the control feed, and
fish were fed for 1, 7, and 14 days prior to challenge with S. agalactiae. One day after the
feed was switched, the 1% ABSS group had a higher survival rate (46.15%) after challenge
compared to the control group (21.43%) (Figure 8A). This protective effect was sustained
after 7 days, as the experimental group had more survivors (survival rate maintained at
46.15%) post-bacterial challenge than the control group (survival rate of 21.43%) (Figure 8B).
Survivability was similar between the 1% ABSS (27%) and control (20%) groups after they
were given the control feed for 14 days (Figure 8C).
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Figure 8. Fish were fed with feed containing 0 (control) and 1% Agaricus blazei spent substrate (ABSS)
for 7 days, and the feed for the experimental group was then switched to the control feed and then
fish were feed for (A) 1, (B) 7, and (C) 14 days prior to challenge with Streptococcus agalactiae. A control
group that was injected with phosphate-buffered saline (PBS) was included (Con-PBS). Survival rates
were recorded and calculated after 21 days of observation (N = 10 per group).

4. Discussion

Compounds with bioactive properties can be extracted from the fruiting bodies of
fungi or mycelial cultures [46]. A proximate analysis of the composition of the carbohydrate
of ABSS indicated that polysaccharides made up 34.6% of the total carbohydrate content,
and of the total carbohydrate, 1.08% was β-glucan and 6.3% was sulfated carbohydrate
(Table 3). Sulphated polysaccharides extracted from A. blazei mycelia were shown to exhibit
promising inhibitory effects against the attachment, penetration, and cell-to-cell spread
of herpes virus types 1 and 2 [47]. Additionally, polysaccharides obtained from A. blazei
mycelia showed great free radical scavenging capability [48]. With such physicochemical
and biological properties, we then evaluated the potential of ABSS to induce immune
responses in Nile tilapia. ABSSE was applied to the in vitro models to verify its effects
on cell viability, phagocytic activity, and immune gene expression in primary hepatic
and splenic macrophages and the THK cell line. The results showed that ABSSE was
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not toxic and could promote the cell viability of macrophages isolated from the liver and
spleen and THK cells at concentrations of 10 and 100 µg/mL (Figure 1). Similar results
were obtained for RAW264.7 macrophages that were treated with polysaccharides purified
from A. blazei (up to 1000 µg/mL) [49]. These results suggest that ABSS has low (if any)
cytotoxicity and is safe for Nile tilapia. ABSSE was extracted from ABSS, containing A.
blazei mycelium (LBP) and exopolysaccharides (EPS). It is worth noting that in this study
the cell proliferation effect was not seen in the cells treated with the highest dose examined
(1000 µg/mL). Navegantes et al. observed opposite effects of the extract LBP and EPS on the
proliferation of murine splenocytes. In this previous study, the authors revealed that LBP
had antiproliferative action, while the EPS showed an stimulatory effect on the splenocyte
proliferation [50]. Therefore, we speculate that the unchanged or lower proliferative effects
in macrophages treated with 1000 µg/mL ABSSE may be attributed to the presence of a
certain level of LBP that antagonizes the proliferative effects mediated by EPS.

Immunomodulators can activate the immune system of aquatic animals and provide
protective effects against pathogens. A phagocytosis assay has been proposed as an
indicator for assessing protective mechanisms [51]. In guinea pigs, Miyagawa et al. reported
that significantly higher phagocytic activity was seen in neutrophils treated with hot water
extract from fruiting bodies of A. blazei compared with control [52]. Additionally, the hot
water extract of the A. blazei mycelium significantly increased the activation of dendritic
cells [53]. Likewise, the exopolysaccharides of A. blazei promoted the proliferation of
murine splenocytes and NO production from macrophages after stimulation with Candida
albicans [50]. Similarly, in the in vitro trial, ABSSE treatment increased phagocytic activity in
hepatic and splenic macrophages and THK cells at 10 µg/mL (Figures 2 and 3), indicating
that ABSS contains immunostimulatory substances.

Since 10 µg/mL of ABSSE could promote the phagocytic activity of macrophages from
Nile tilapia, this dose was used to analyze gene expression in THK cells. The expression of
proinflammatory cytokines was not induced when THK cells were directly treated with
ABSSE. Notably, the expression levels of IL-1β, IL-12b, IL-8, and TNF-α were all significantly
elevated when THK cells were pretreated with ABSSE followed by LPS treatment (Figure 4).
Similarly, the transcript level of TNF-α was also higher when ABSSE-primed THK cells
were stimulated with PGN (Figure 5), suggesting that ABSSE can prime THK cells (possibly
via inducing M1 polarization of THK cells) and allow them to respond more strongly when
they encounter invasive microbes. Although the underlying mechanisms of ABSSE priming
of THK cells require further investigations, a similar phenomenon was reported by Cleary
et al., whereby intraperitoneal injection of yeast glucan resulted in altered morphology of
peritoneal macrophages, increased intracellular acid phosphatase, and increased LPS- and
PMA-stimulated nitrogen oxide and superoxide production, respectively [54]. Likewise,
Vetvika et al. reported that priming of the leukocyte β2-integrin complement receptor type
3 (CR3) with soluble β-glucan did not stimulate neutrophils to express proinflammatory
features, but induced a primed state of CR3 that targets cell-bound iC3b and mediates the
cytotoxicity of iC3b-target cells [55].

A previous study showed that direct treatment of A. blazei water extract could boost
the transcript level of IL-1β and facilitate NLRP3 inflammasome-mediated IL-1β secretion
in human THP-1 macrophages [56]. Similarly, the water extract of A. blazei can induce
the production of IL-1β and IL-6 in human monocytes and umbilical vein endothelial
cells in a dose-dependent manner [57]. TNF-α secretion and nitric oxide (NO) production
were not induced when macrophages derived from rat bone marrow were stimulated
with water extracts of the mycelium of A. blazei at doses lower than 100 µg/mL [16].
The responses of the primed bone-marrow-derived macrophages after bacterial ligand
treatments were of interest in the present study. The increased antimicrobial responses from
A. blazei extracts may be due to the nature of the stimulatory effects of β-glucans through
the activation of toll-like receptor (TLR) 2 [58] and dectin-1 [59], as well as the initiation
of cytokine synthesis and secretion by mammalian macrophages [16]. However, direct
evidence on the recognition of β-glucan by these pattern recognition receptors in fish is still



J. Mar. Sci. Eng. 2022, 10, 100 13 of 17

lacking. In the present study, the β-glucan content accounted for only 1% of the ABSSE,
which means there was only 100 ng/mL of β-glucan (1% of 10 µg/mL) in the conditioned
medium for cell treatment. This dose of β-glucan is much lower than that used in previous
studies (e.g., 25 µg/mL) to stimulate macrophages in fish such as common carp (Cyprinus
carpio L.) [60], suggesting that β-glucan may not be the major substance responsible for
those changes. Similarly, other studies have shown that galactomannan polysaccharide
from Morchella esculenta can increase NF-κB-driven luciferase expression in human THP-1
monocytic cells [61], and a fucose-containing polysaccharide fraction (F3) fractionated from
the water-soluble Ganoderma lucidum extracts was able to enhance cell differentiation of
THP-1 cells [62]. Hence, β-glucan may not be the only substance responsible for the effects
observed in the present study.

Although the mechanisms behind the immunomodulatory effects of ABSSE are un-
clear, bioactive compounds, including sulfated polysaccharides, protein–polysaccharide
complexes, phenolic compounds, and organic acids, from A. blazei mycelia may contribute
to the antimicrobial effects [14]. Researchers have found several phenolic compounds and
organic acids from A. blazei mycelia with antioxidant activity [63]. Cardozo et al. demon-
strated that a sulfated polysaccharide extracted from A. blazei mycelia showed promising
inhibitory activity against herpes simplex viruses 1 and 2 by inhibiting virus attachment,
penetration, and cell-to-cell spread, and by reducing the expression of viral genes [47].
Furthermore, strong inhibition of the cytopathic effects on Vero cells induced by western
equine encephalitis virus was observed in the cells treated with water extracts of cultured
A. blazei mycelia [64]. Mushrooms have been proposed as natural antibiotics, since they
contain compounds such as anthraquinone, steroids, terpenes, and sesquiterpenes, as well
as derivatives of benzoic acid, oxalic acid, quinolines, peptides, and proteins [65]. Few
studies have addressed the antimicrobial properties of A. blazei [66], and most studies
have used commercially available products (e.g., AndoSan™, Immunopharma AS) [67]
or the extracts from fruiting bodies [68–70]. The antimicrobial functions of A. blazei were
determined by in vitro tests [68,69,71], which indicated that the mushroom extract can
inhibit the growth of microorganisms such as S. pneumoniae [72]. However, to the best
of our knowledge, no studies have verified the antimicrobial activity of ABSS. Here, we
show for the first time that the water extract of ABSS can inhibit the growth of S. agalactiae
(Figure 6), indicating that ABSS contains water-soluble substances that induce the immune
responses of immune cells and that ABSS has antibacterial properties.

Bernardshaw and colleagues demonstrated that orally ingested water containing A.
blazei protected NIH/OlaHsd mice against systemic S. pneumoniae 6B infection [72]. In aqua-
culture, dietary administration of Cordyceps militaris spent mushroom substrate protects
Nile tilapia from S. agalactiae infection [34]. Since our in vitro experiments suggested that
ABSS contains prophylactic agents against infectious diseases, its protection efficacy was
examined in vivo. Dietary administration of feed with 1% ABSS for seven days enhanced
the survival rate of Nile tilapia compared to fish on the control diet, but a prolonged feeding
regime (feed for 14 days) did not improve the survival rate after challenge with S. agalactiae.
Importantly, the addition of feed additives would increase the cost of cultured seafood
production and may hinder the use of other products by farmers. Short-term use of feed
immunomodulators that can provide long-term protection for aquatic animals would be
more appealing. To this end, we tested whether the protective effects against S. agalactiae
would last after the feed is switched to the control diet after ingesting 1% ABSS for seven
days. Surprisingly, the survival rate was maintained for seven days after the feed was
changed (Figure 8). Therefore, ABSS is suggested as a novel and cost-effective functional
feed additive for Nile tilapia to provide protection against S. agalactiae. Of interest, it is
assumed that innate immune responses are generally short-lived, but we observed long-
lived effects on innate immunity after administering ABSS, suggesting a phenomenon
of trained innate immunity that is proposed to play a pronounced role in the immune
system of fish [73]. Similarly, feeding sea bass (Dicentrarchus labrax) for 2 weeks every
3 months with β-glucan-supplemented diets followed by 10 weeks of control diet resulted
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in elevated serum complement and lysozyme activities compared to those of fish in the
control group [74]. Likewise, orange-spotted grouper (Epinephelus coioides) fed with a diet
containing mushroom β-glucan mixture for 12 days showed higher survival rates after
challenge with Vibrio alginolyticus 15 days after changing the diets back to a control diet [75].
The present and previous studies suggest long-lived effects stimulated by β-glucans and
mushroom polysaccharides, possibly attributed to the key players, namely macrophages.
Fundamental knowledge of the mechanisms of induction of trained immunity via dietary
ingestion of immunoregulators is required and would benefit the use of immunoregulators
as feed additives for aquatic animals.

5. Conclusions

The spent substrate of A. blazei acts as an immunomodulator to enhance the phagocytic
activity and prime macrophages to induce the expression of proinflammatory cytokines
when encountering microbes. We suggest that the spent substrate of A. blazei is a cost-
effective feed additive for fish that protects Nile tilapia against S. agalactiae infection.
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