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Abstract: The container ship stowage planning problem (CSPP) is a very complex and challenging
issue concerning the interests of shipping companies and ports. This article has developed a many-
objective CSPP solution that optimizes ship stability and reduces the number of shifts over the whole
route while at the same time considering realistic constraints such as the physical structure of the ship
and the layout of the container yard. Use the initial metacentric height (GM) along with the ship’s
heeling angle and trim to measure its stability. Meanwhile, use the total amount of relocation in the
container terminal yard, the voluntary shift in the container ship’s bay, and the necessary shift of the
future unloading port to measure the number of shifts on the whole route. This article proposes a
variant of the nondominated sorting genetic algorithm III (NSGA-III) combined with local search
components to solve this problem. The algorithm can produce a set of non-dominated solutions,
then decision-makers can choose the best practical implementation based on their experience and
preferences. After carrying out a large number of experiments on 48 examples, our calculation
results show that the algorithm is effective compared with NSGA-II and random weighted genetic
algorithms, especially when applied to solve many-objective CSPPs.

Keywords: container-ship stowage planning problem (CSPP); multi-objective evolutionary optimization;
nondominated sorting genetic algorithm (NSGA); memetic algorithms

1. Introduction

The container ship stowage planning problem (CSPP) determines the specific location
of a container on a ship. As an essential part of maritime container transportation, the CSPP
is one of the problems that container terminals and shipping companies must face and
solve every day [1,2]. The quality of stowage determines the safety and seaworthiness of a
ship, which directly affects the berthing time of vessels and indirectly affects transportation
efficiency. In addition, the quality of stowage is closely related to the shipping company’s
efficiency and the cargo owner’s vital interests. When making a container stowage plan,
the following aspects must be considered [3–5].

First, the seaworthiness and proper stability of the ship must be ensured. Because
there are many containers on the deck, and the number of containers on the deck may
even exceed the number of containers in the hold, container ships are different from other
ship types. Container ships are prone to the characteristics of a sizeable wind-receiving
area and a high center of gravity. During the whole process of loading and unloading
and the entire process of sailing, it is necessary to ensure a certain initial metacentric
height (GM), appropriate trim, and timely adjustments to the ship’s heeling, as well as
to consider the influence of the blind area of the bridge’s sight. The initial metacentric
height is significant for the navigation of ships, and at the same time represents a “sensitive”
constraint. If its value is too small, the ship is prone to capsizing. Especially as the ship
becomes larger and faster, the economic pressure of navigation in severe weather will tend
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to increase, thus increasing the risk of capsizing [6]. A too-large value will shorten the
rolling period, aggravate hull shaking, reduce crew comfort, and increase the lashing rope’s
risk of loosening. In [7], ship stability is regarded as a mandatory constraint. The ship’s
operator can use ballast water to adjust non-critical stability issues [8]; however, a good
stowage plan needs to optimize the use of ballast water to reduce the ship’s trim in order
to improve fuel efficiency.

Second, the limitations imposed by the physical structure of the containers must be
met. Both the loading and unloading of containers follow the LIFO (last in, first out)
policy [9]. Special containers such as reefer containers, dangerous goods containers, and
oversized containers have specific storage requirements. Due to corn fittings at the bottom,
two 20-ft containers cannot stack on a 40-ft container.

Third, the container ship’s hull must have sufficient strength. Measures of the strength
of a container ship’s hull includes shear force, transverse strength, torsional strength, local
strength, and longitudinal strength. In loading, unloading, and transportation, stowage
planning must meet the hull’s strength and safety requirements and extend the ship’s
service life.

Fourth, the number of container shifts should be minimized. There are many ports
of call and the loading and unloading of midway ports are more frequent, especially for
transoceanic and global container liners. For this reason, when planning stowage an overall
view of the whole route should be taken that carefully considers the order in which ships
call and the information provided by each port of call. Earlier ports must be considered
when planning for later ports. The starting port should lay the foundation for the entire
route to avoid the situation of containers meant for earlier ports being blocked by those
meant for later ports. Otherwise, container shifting will reduce the efficiency of loading
and unloading, extend the turnaround time, and increase the cost. In addition, relocation
will incur expensive additional loading and unloading costs (usually, a single loading and
unloading costs tens to hundreds of US dollars) [10,11].

Finally, excessive concentration of containers in the same port of discharge is to be
avoided. The makespan of quay cranes directly affects a ship’s turnaround time and port
costs. Usually, two or more cranes simultaneously speed up the discharge process for large
container ships [12]. However, the quay crane cannot simultaneously lift the containers in
two adjacent spaces on the container ship. In the case of the above situation, containers
intended for the same discharge port should not be arranged in adjacent holds.

Based on the above discussion, the following two goals are crucial in container stowage.

(a) Ensure proper stability and trim of the ship;
(b) Minimize the amount of container relocation on the whole route.

Goal (a) relates to the safety of ships, while goal (b) relates to the profit and efficiency of
shipping companies and port terminals. While each has its own merits, in actual operation
there are often conflicts. For example, reducing the number of container shifts may come at
the cost of reducing the ship’s stability. In engineering applications, this type of combinato-
rial optimization problem is called a multi-objective CSPP (MO-CSPP). In our research, the
number of objectives exceeds three (i.e., six); thus, it is a many-objective CSPP (MaO-CSPP).
As a remarkably realistic engineering problem in container transportation, MaO-CSPP has
attracted the attention of more and more scholars. Multi-objective optimization is a com-
mon type of optimization decision-making problem which has been applied in many fields.
The optimal solution is usually based on the trade-off between two or more conflicting
objectives. To solve an MaO-CSPP according to different decision-making methods, two
methods are typically used, namely, the a priori and a posteriori techniques [13].

The a priori technique represents the basic idea behind solving multi-objective opti-
mization problems in traditional mathematical programming. Before searching, the deci-
sion information is input and one solution is run to the decision-maker. The main methods
include lexicographical, linear fitness, and nonlinear fitness methods. The objective func-
tions of the MaO-CSSP are aggregated to obtain a single-objective optimization problem.
Then, the single-objective optimization method is used to obtain a single Pareto-optimal
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solution. While the idea of this method is simple, in practical engineering applications it is
difficult to determine the weighting preferences between the objectives. In MaO-CSPP, the
stability and strength of the ship must be guaranteed within a specific range. However, it is
difficult to determine the respective weights of the amount of container relocation and the
ship’s stability and strength from the perspective of economic profit. Therefore, the priori
technique is sometimes not suitable for solving MaO-CSPPs in this context.

In contrast, running the a posteriori technique generates solutions for decision-makers
to choose from. This technique generates a representative subset of the global or local
Pareto-optimal solutions. If at least one of its goals is not inferior to other solutions in
the solution space, the solution is Pareto optimal. If it is not dominated by any other
solutions in the solution space, it is Pareto optimal [14]. Domination-based multi-objective
optimization has been proven to be suitable for MaO-CSPPs.

A set of Pareto-optimal solutions can be obtained in a single run without prior in-
formation by using the a posteriori technique. Decision-makers can then weigh different
goals and choose an ideal solution for actual implementation. The above studies on CSPPs
seldom consider the principles of ship stability, strength, draught, etc., as they are con-
ducted from a purely mathematical point of view and the yard optimization problem is not
included. At the same time, most of the literature does not incorporate the characteristics
of the full-route ports of call, instead using only a single port to design the stowage plan.
On this basis, the present paper proposes a many-objective method that weighs safety
and economic benefits from the perspective of both ship and port, and thereby enriches
the research content regarding CSPPs. The rest of this article is organized as follows. In
Part Two, a literature review is provided summarizing the latest progress on CSPPs and
multi-objective evolutionary optimization algorithms; in Part Three, we introduce the CSPP;
in Part Four, we present an algorithm that combines local search and genetic operators, and
provide specific details to solve the problems raised in Part Three; in Part Five describes the
many examples and experiments we conducted; finally, Part Six contains our conclusions
along with prospects for future research.

2. Literature Review

CSPP is occasionally referred to as the master bay plan problem (MBPP) or ship
stowage planning problem (SSPP) [15]. In 1970, Webster and Van Dyke first studied
CSPP [16]. As their research only discussed simple issues, and did not conduct many
experimental data tests, it is impossible to demonstrate the practical significance of their
methods. Subsequently, in the 1980s Shields proposed the CAPS system (computer-aided
pre-planning system) and applied it to the American President Line (APL) [17]; this system
uses Monte Carlo stochastic simulation technology to generate different stowage plans.
Avriel et al., proved that the CSSP is an NP-hard problem and demonstrated its relationship
with the graph coloring problem [15], then established a 0–1 mathematical programming
model and designed a “Suspensory Heuristic Procedure” in which the optimal solution for
the small-scale stowage plan is automatically generated [18]. Ambrosino et al., attempted to
derive rules that determine a good stowage plan [19]. The authors define and characterize
the feasible solution space by satisfying certain constraints. The 0–1 linear programming
model was then established to solve this combined optimization problem [20,21] using rules
to develop a heuristic algorithm in which containers that have the same attribute should
be placed in the same hold. However, the paper does not explicitly consider the issue of
relocation related to the loading process. The authors expanded the original basic model by
considering the influence of different container types (i.e., 20-ft and 40-ft containers) [22,23].
Imai et al., established an integer programming model intended to minimize the shift
volume of the yard and the ship’s stability. However, the model did not consider the
impact of hatch covers on stowage [8]. It is difficult to estimate the number of shifts when
the information left by the container truck is uncertain as to storage space. Therefore,
Imai proposed an estimate of the expected number of shifts [24]. Li et al., established a
0–1 mathematical programming model [25] by maximizing container ship hold utilization
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while minimizing operating costs over the whole route. Cruz-Reyes et al., developed 0/1 IP
and employed a constructive heuristic to find the solution [26]. Petering et al., introduced
a new mathematical formula for the block relocation problem by establishing an integer
programming model. This method has been proven to produce fewer decision variables
and better performance [27]. N. Wang et al., established an integer programming model
and solved it with a CPLEX solver [28]. Fan et al., designed an effective algorithm to solve
the optimization problem of the container stowage plan while considering many practical
and operational constraints. However, no specific mathematical model has been set up to
describe the optimization of container stowage plans [29].

All of the above-mentioned literature relies on traditional mathematical programming
methods to deal with the problem of container stowage; this is only suitable for small-
scale situations, and most applications are single-bay container stowage problems [30],
which do not have practical engineering significance. Therefore, scholars often adopt a
multi-stage method when facing actual scale problems, i.e., the CSPP is decomposed into
sub-problems that are easier to handle. The corresponding sub-problems are then dealt
with separately, and the solutions of the sub-problems are spliced to obtain a solution. In
addition, Monaco introduced a systematic classification scheme for CSPP [31]. Wilson et al.,
designed a two-stage process for a container stowage plan in which the first stage is a
global stowage strategy and the second stage is a partial stowage strategy [32]. Kang
and Kim decomposed the container stowage problem into two sub-problems. The first
sub-problem allocates containers to different countermeasure holds, and the second sub-
problem determines the specific placement of containers in each hold [33]. Ambrosino
et al., described the problem as an optimization problem [22]. They defined the problem
as a master bay plan problem (MBPP). In response to this problem, the author proposed
a three-stage heuristic model to deal with the sub-problems of each stage separately and
developed a basic 0–1 linear programming model to minimize the total loading time.
The subsequent literature [23] expanded the work of [22] and achieved specific results.
Based on their consideration of structural and operational constraints, Ambrosino et al.,
proposed a multi-port MBPP heuristic algorithm based on MIP to minimize ship berthing
time [34]. Later, they offered an MIP model to minimize the number of reprocessing and
crane makespan which took into account such realistic constraints as six ports of call and
both standard containers and reefer containers [35]. In a recent study, the authors used a
specific stowage principle to solve the CSPP in the presence of dangerous containers [36].
Delgado et al., decomposed the ship stowage plan into two sub-problems, the main stowage
plan and the location plan, using the calculation result of the main stowage plan as the
input data of the location plan [30]. Pacino et al., proposed a two-stage method for large
container ships; the first stage deals with the multi-port main bay stowage plan and the
second stage uses the constraint programming (CP) method and slot planning to allocate
specific slots for each container [37]. Iris Ç et al., presented a flexible container ship loading
problem for seaport container terminals. They integrated the assignment and scheduling of
transfer vehicles and container load sequencing with the assignment of specific containers
to specific vessel positions [38]. Gumus et al., developed a multi-stage heuristic of the
CSPP by decomposing the problem into four stages, explaining many complex and realistic
CSPPs [39]. Zhang et al., deteriorated the full-route container stowage problem into a
bay selection sub-problem and a slot plan sub-problem. The second sub-problem was
then further subdivided into single destination port and a multi-destination port bay
position optimization problem [40]. Azevedo et al., studied the optimization of container
stowage plans considering the operation of quay cranes, taking additional practical and
operational constraints into account, and designed a new solution method to solve the
problem. However, the related characteristics of the container crane and the container
were simplified without considering different container weights and sizes or the additional
productivity of the quay crane [41]. Christensen et al., extended the liner shipping cargo mix
problem by including the concepts of block stowage and draft restrictions and restricting
the number of containers able to be selected, with the aim of determining the optimal cargo
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mix, not of creating a fully feasible stowage plan. Instead of assigning specific containers
to specific slots on the vessel, containers are grouped by container type and assigned to
blocks. Each container type represents several containers with the same properties [42].
Yaagoubi et al., studied 3D container loading planning of inland navigation barges. They
proposed a heuristic method based on the first fitting algorithm of the packing problem,
which is able to deal with actual structural and operational constraints [43]. According to
inland container liner transportation characteristics, Li et al., decomposed the current port
stowage planning problem into two sub-problems and proposed two heuristic algorithms
for them [44]. Iris et al., systematically reviewed the literature related to stowage planning,
loading sequencing, and scheduling. From the perspective of the ship loading problem
(SLP), the authors pointed out that the literature on integration efforts for the SLP was
rather limited, that is, most literature focuses on optimizing partial SLP issues. These
studies have contributed to solving the SLP by proposing new models or algorithms to find
improved solutions to various aspects of the SLP [45].

To enhance the practicality of the algorithm, scholars have gradually begun to apply
heuristic or meta-heuristic methods to the field of ship stowage. Avriel et al., developed a
Suspensory Heuristic Procedure to process CSPP that minimizes the number of container
shifts without considering stability or strength [18]. Based on [18], Ding extended and
enriched the Suspensory Heuristic Procedure [46]. Dubrovsky et al., proposed compact
coding technology to design a genetic algorithm (GA) suitable for the CSPP. The significant
feature of this method is that it reduces the number of iterations [47]. Jin et al., established an
MIP model based on reality constraints, proposed an interactive hybrid algorithm consisting
of a combination of a heuristic algorithm and a GA based on a pre-allocation strategy,
and realized the visualization of stowage plans using the VB program [48]. Sciomachen
and Tanfani considered this model’s structural and operational constraints as they relate
to containers and ships. They proposed a heuristic method that uses the relationship
between MBPP and the three-dimensional packing problem to solve the MBPP problem [49].
Parreño proposed a greedy randomized adaptive search procedure (GRASP) to solve the
problem of container stowage slot planning [3]. Similarly, they studied multi-port CSPP
and proposed an IP model and a GRASP algorithm, generating a stowage plan with the
smallest number of container shifts for large-scale problems [50]. Araújo et al., proposed
a Pareto clustering search algorithm to solve the double objective optimization model of
container stowage (with the objectives of the number of movements necessary to load
and unload the container ship and the stability of the ship in each port), designed a
heuristic algorithm, grouped clustering through local search, and found the Pareto frontier
to obtain the effective solution of the problem [51]. Zhang studied a multi-objective
CSPP, seeking to optimize the stability of the ship and the number of containers to be
reprocessed at the same time. The author developed multiple heuristic algorithms to
deal with both containers in the yard and containers in the bay of ships, then integrated
these heuristic algorithms into a non-dominated sorting GA [52]. Wilson and Roach used
Tabu Search (TS) to generate CSPP solutions, and found that TS can gradually improve
the location of containers [53]. Yurtseven implemented two meta-heuristic algorithms,
namely, GA and simulated annealing (SA), to solve the CSPP. Their results show that SA
can reach near-optimal results faster than GA [54]. Ambrosino et al., tested the performance
of three methods to solve the MBBP, i.e., TS, a simple heuristic algorithm, and an ant-
colony optimization (ACO) algorithm. Their results show that ACO is the best for large-
scale instances, while TS is ideal for medium-sized cases [23]. Bilican et al., proposed
a two-stage heuristic solution method using IP and a swapping heuristic (SH), which
effectively increases the scale of solvable problems [6]. Junqueira et al., proposed an
optimization model that combines the multi-port stowage planning problem with the
container relocation problem. The author presented two heuristic methods to quickly
generate feasible solutions [55]. Ji et al., established a mixed-integer nonlinear programming
model based on small feeder container ships’ “sensitive” characteristics to ensure navigation



J. Mar. Sci. Eng. 2022, 10, 517 6 of 35

safety. The authors designed a heuristic algorithm to update branch routes through variable
neighborhood search and GA in order to obtain the stowage plan [56].

Although the literature mentioned above discusses several objectives of CSPP, most
studies treat the CSPP as a single-objective optimization problem; there are few studies
on the MO-CSPP or MaO-CSPP. Imai et al., considered two criteria with respect to the
MO-CSSP, namely, ship stability and the number of rehandlings [8]. However, they used
a weighted sum method and designed a GA to handle single-objective CSSPs. Liu et al.,
considered five objectives, i.e., the number of container shifts, the quay cranes’ makespan,
the number of stacks exceeding the weight limit, the number of stacks without contain-
ers, longitudinal stability, and transverse stability, then developed a random algorithm
incorporating TS to find a set of Pareto-optimal solutions [57].

In 1989, David Goldberg proposed using evolutionary algorithms (EA) to achieve
multi-objective optimization technology. Multi-objective evolutionary algorithms (MOEA)
have subsequently attracted widespread attention from many researchers, and many
research results have emerged. When solving MO-CSSPs, to the best of our knowledge only
Zhang et al., have used the MOEA [52]. This paper proposes to use the concept of Pareto
optimality according to the idea of non-dominated sorting to produce a set of solutions for
decision-makers.

3. Problem Description
3.1. Arrangement and Layout of the Slot

Three longitudinal, horizontal, and vertical parameters are required to define a slot.
The internationally unified slot code numbering method formulated by ISO is adopted.
It is based on the premise that the containers are distributed longitudinally on the ship.
Six digits represent the coordinates of each slot. The first two digits are ”Bay No.”, the
middle two digits are “Row No.”, and the last two digits are ”Tier No.” From bow to stern,
the cargo hold of a container ship is longitudinally divided into several 20-foot-long areas.
Usually, two adjacent 20-foot container slots form a 40-foot container slot. Certain holds
are equipped with detachable cell guides. The hold can only be used as a 20-foot container
when the cell guides are installed, and can only be used as a 40-foot container when the cell
guides are removed.

Container ships are complex structures, and each voyage has a different bay layout.
To simplify the problem, we put forward the following assumptions.

1. The information on the containers to be loaded in each port of call of this voyage is
known before stowage, including the port of loading, the port of discharge, and the
cargo type, quantity, weight, etc.

2. We only consider standard containers. Reefers, dangerous containers, or other non-
standard container types have a particular hold on a ship, and this article does not
study them.

3. Our research only focuses on 20-foot containers and does not consider the mixed
loading of 20-foot and 40-foot containers.

4. We abstract the bay position of the ship as a similar rectangular shape, i.e., the number
of rows of each bay position is equal, denoted by rS. The number of bays on the
ship is represented by bS, and it is assumed that the maximum height of each bay is
tS. Irregular forms can be expressed by adding constraints. Our current study does
not consider the influence of hatch covers, i.e., it does not distinguish between hold
and deck.

5. The structure of the yard bay is similar to the design of the ship hold. Similarly, the
yard bays, the number of rows of each bay, and the number of layers of each row are
represented by rY, bY, and tY, respectively.

3.2. Stability Check

Stability can be divided into transverse stability and longitudinal stability, according
to the inclination direction. The leading indicators of the former are initial transverse
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metacentric height (GM) and heel (θ) [58]; the trim mainly measures the latter. As shown in
Figure 1 [59], from the respective relative positions the GM can be expressed as

GM = KM− KG (1)

where KM denotes the height from the metacenter point M to the baseline and KG denotes
the height from center of gravity G to baseline.
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After loading and unloading the container, the GM of the ship will change. For
displacement of the ship after loading and unloading the container, the calculation process
is as follows:

∆1 = ∆ + ∑ Pi (2)

where ∆ denotes the ship’s displacement before loading and unloading, ∆1 denotes the ship’s
displacement after loading and unloading, and Pi means the weight of the i-th container.

According to the theorem of resultant moments, find the coordinates of the ship’s
center of gravity after loading and unloading the containers.

xg1 =
∆·xg+∑ Pizi

∆1

yg1 =
∆·yg+∑ Piyi

∆1

xg1 =
∆·xg+∑ Pixi

∆1

(3)

where (xg,yg,zg) denotes the coordinates of the ship’s center of gravity before loading and
unloading, (xi,yi,zi) means the coordinate of the center of gravity of the i-th container, and
(xg1,yg1,zg1) denotes the coordinates of the ship’s center of gravity after loading and unloading.

According to the displacement of the ship after loading and unloading a container
∆1, query hydrostatic data to obtain the mean draft (d1), height of the ship’s metacenter
from baseline (KM1), moment to change trim 1 cm (MTC1), longitudinal distance of the
center of floatation (xf), longitudinal distance of the center of buoyancy (xb) above, and any
other parameters.

If there are free surfaces, perform a free surface correction. The GM of the ship after
loading and unloading is as follows:

G1M1 = KM1 − xg1 −∑
ρiix

∆1
(4)

where G1M1 denotes the GM of the ship after loading and unloading, ρi denotes the density
of the i-th free surface liquid, and ix indicates the inertial moment of the free surface on the
inclined axis.

If yg1 6= 0, the ship has a heel angle; the tangent value of the heel angle is expressed
as follows:

tan θ =
∑ Pi·yg1

∆1·G1M1
(5)
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If xg1 6= xb1, the trim of the ship is as follows:

δt =
∆1·
(
xg1 − xb1

)
100MTC1

(6)

In the actual stowage work, the G1M1 should be within an advisable range in order to
maintain sufficient stability and obtain an appropriate roll period. Generally speaking, for
a container ship with twelve rows of containers the G1M1 is about 1.0 m and the roll period
is about 25 s. The heel angle, θ, should be minimized in order to obtain a better floating
condition for the heel angle. When constraining the trim, the target should not be set as the
minimum trim; rather, it should be set to a specific value, t0, the calculation of which can
be found in [60]. The paper “Trimming Optimization” shows that the optimum trim angle
varies with ship speed and draft. In the actual operation process, because the relevant port
usage fees of many ports are related to the maximum draft of ships arriving at the port all
ships should try their best to keep an even keel when entering and leaving the port in order
to reduce expenses.

3.3. Container Stowage Process

A container ship stowage plan for a whole route refers to the operation of a certain
route, taking into consideration the loading and unloading ports of all containers to be
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A container ship first unloads import containers at the current port, then loads that
port’s export containers. Here, we assume that the loading and unloading processes are
separate and that import containers are unloaded first, then export containers are loaded.
Although there are situations where loading and unloading are carried out simultaneously
at certain ports, the above assumption is in line with current yard operation realities.

The unloading operation of imported containers mainly involves the optimization
of container stacking in the terminal yard, of the path of the straddle carrier, and of quay
crane dispatching. As this research focuses on the impact of export container loading on
ship stability and subsequent container shifts, the main focus of this article is on the export
container loading process. After a container ship arrives at the port of call, the containers
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are unloaded at the port. The loading operation is based on the layout of the unloaded
containers on the ship.

For the three types of full-route container ship stowage plans mentioned above (i.e.,
metro loop, cycloid, and hybrid type routes), when a ship arrives at a port of call and
unloads its import containers there will be containers intended for subsequent ports on
board the vessel. At this time, there the following three scenarios for shifting are in play.
The first occurs in the export container yard. Due to the different times at which export
containers arrive at the terminal yard and the other subsequent ports of call of the export
containers, under the premise of a given loading sequence the containers will be relocated
when the yard containers are retrieved. Extensive research has been carried out on the
optimization problem of container relocation within the yard. Pre-marshaling [62] can
effectively reduce the amount of container relocation when retrieving containers from the
yard. In the second scenario, container relocation may occur on container ships in the
current port. To reduce the amount of container relocation required at subsequent calls,
the stacking order of containers on the ship will be reorganized in the current port; such
relocations are called ‘voluntary shifts’. In the third scenario, if a container is considered a
blocking container, it must be relocated in order to retrieve the container below it in the
next port; these relocations are called ‘necessary shifts’.

The number of shifts corresponding to a given container loading plan is composed of
the following three parts.

1. As shown in Figure 2, given the loading sequence, the amount of relocation due to
stacking yard turnover can be found in [63].
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Figure 2. Example of container relocation in the yard.

2. As shown in Figure 3, the container is temporarily unloaded on the dock and then
added to the subsequent loading sequence, that is, voluntary shifts. The literature on
voluntary shifts mainly expands on and synthesizes [18,46].
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Figure 3. Example of voluntary container shifts.

3. As shown in Figure 4, the amount of container relocation in subsequent ports are
necessary shifts.
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3.4. MaO-CSPP

To completely express the MaO-CSPP, it is necessary to clarify the optimization ob-
jective of the problem and the feasible solution under various constraints. As previously
mentioned, the objectives for the MaO-CSPP can be divided into two categories, i.e., f 1 and
f 2, where f 1 relates to stability and f2 relates to the number of shifts; X is a feasible solu-
tion to the MaO-CSPP where X = (x1, x2 · · · , xn) is a stowage plan that satisfies various
constraints. The objective function of the MaO-CSPP with six optimization objectives, as
studied in this paper, can be expressed as

f (X) =
(

f11(X), f12(X), f13(X), f21(X), f22(X), f23(X)
)

(7)

where { f11, f12, f13} ∈ f1, { f21, f22, f23} ∈ f2. The specific meanings of the above six
objective functions are shown in Table 2.

Table 2. The specific meaning of the six objective functions of the MaO-CSPP.

Category Objective Range Target

Stability ( f1)
Initial metacenter height ( f11) [0, +∞) max f11(X)

Heel angle ( f12) (−∞, +∞) min| f12(X)|
Trim value ( f13) (−∞, +∞) min| f13(X)|

Shifting ( f2)
relocation in the yard by yard cranes ( f21) [0, +∞) min f21(X)

container voluntary shifts by quay cranes ( f22) [0, +∞) min f22(X)
container necessary shifts at future ports ( f23) [0, +∞) min f23(X)

The MaO-CSPP can be described as

min
{
− f11(X), | f12(X)|, | f13(X)|, f21(X), f22(X), f23(X)

}
(8)

s.t. X ∈ X (9)

Equation (8) is called the objective function. For multi-objective functions, the a priori
technique can be adopted. In the case of a given weight preference, the goals of the original
multi-objective problem are aggregated in a linear or non-linear manner to obtain a single-
objective optimization problem. Then, the single-objective optimization method is used to
find a single Pareto-optimal solution, e.g., Equation (10):

min gws(X|λ) = λ1(− f11(X)) + λ2| f12(X)|+ λ3| f13(X)|+ λ4 f21(X) + λ5 f22(X) + λ6 f23(X) (10)

which satisfies λi ≥ 0, i = 1, · · · , 6 and ∑
i

λi = 1.

In Equation (9), X is the feasible solution space. There are usually two ways of ex-
pressing the feasible solution of x, one of which uses MIP, which can accurately provide the
specific value of the feasible solution. Moreover, it generates a large number of constraints
on decision variables. For example, in [55], the sub-problem that solves the CSPP (i.e., the
block relocation problem) is solved using the mathematical model and the MIP method.
The binary variable designed by the model exceeds r2

Yh2
Y NT, where N is the number of
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containers in each bay and T is the upper bound of the number of containers shifting. The
article pointed out that the MIP solver can only solve small-scale instances, such as no more
than rYhY < 4× 5 per bay. Unlike the above, a compact coding method can be adopted
to represent feasible solutions. Here, we use rigorous methods to describe the feasible
solution space and solve the problem through practical heuristic algorithms.

4. Multi-Objective Optimization Method

In this part, we describe the design of a variant based on the non-dominated sorting
genetic algorithm III (NSGA-III) to solve the MaO-CSPP. The basic framework and overview
of the algorithm is introduced in Section 4.1. In Section 4.2, a compact coding method
is used to represent feasible solutions. The heuristic methods for the relocation problem
of containers in the yard and for voluntary shifting are delivered in Sections 4.3 and 4.4,
respectively. The method of generating the initial solution is provided in Section 4.5. The
crossover and mutation of genetic operators is introduced in Section 4.6. In Section 4.7,
local search is added to the designed algorithm. Finally, the neighborhood operators for
local search and mutation are presented in Section 4.8.

4.1. Framework of Optimization Method

The NSGA-III was proposed by Deb et al., in 2013; based on NSGA-II, it aimed to
solve problems for which NSG-II was not competent due to increased objective dimen-
sionality [64]. Deb et al., proposed NSGA-II in 2000. NSGA-II can handle multi-objective
optimization problems well [65]. However, NSGA-II only shows good performance for
low-dimensional optimization problems in which objective dimensionality is less than or
equal to 3. The basic framework of NSGA-III is similar to that of NSGA-II. The significant
change lies in the selection mechanism of the critical layer. In NSGA-II, the solution with
a more substantial crowding distance in the essential layer, i.e., a solution with a smaller
crowding density, will be selected first. However, the crowded distance metric is unsuit-
able for solving high-dimensional multi-objective optimization problems. Therefore, the
crowding distance is no longer used in NSGA-III; instead, the reference point method is
used to select individuals. In addition, in order to realize the individual’s self-learning in
the life cycle a local search strategy known as memetic algorithms is introduced into the
iterative process of NSGA-III, [66].

The framework process of NSGA-III is provided in Algorithm 1.

Algorithm 1. NSGA-III framework with local search

Input: H structured reference points Zs or supplied aspiration points Za, parent population Pt,
population size N.
Output: Pt+1

1: P0 ← InitializePopulation ()
2: t← 0
3: while termination criteria not reached do
4: Qt ← Recombination + Mutation (Pt)
5: Q’

t ← LocalSearch (Qt)
6: Rt ← Pt ∪ Qt ∪ Q’

t
7: Rt ← EliminateDuplicates (Rt)
8: {F1, F2, . . . }← FastNonDominatedSort (Rt)
9: Pt+1 ← Ø
10: i← 1
11: while |Pt+1| + |Fi| < N do
12: Pt+1 ← Pt+1 ∪ Fi
13: i← i + 1
14: end while
15: Choose K members to form the last front Fi: K = N − |Pt+1|
16: Pt + 1 ← Pt+1 ∪ Selection (Pt+1, Fi, K)
17: t← t + 1
18: end while
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First, the algorithm generates an initial population P0 of size N. For the specific details
of the initial population P0, please refer to Section 4.5. Steps 4–18 are looped and iterated
until the termination condition is met. In each generation of the algorithm, the current
population Pt, known as the parent population, generates a population of offspring Qt of
the same scale through recombination and mutation. Then, the local search strategy is used
to perform a fine search of the progeny population Qt to obtain an improved population,
Q’

t; see Section 4.8 for a specific introduction to the local search strategy. In Step 6, the
populations Pt, Qt, and Q’

t are merged into a population Rt; in addition, the size of Rt is
2N. Because Rt may contain individuals with the same objective value, and this affects the
search quality, in Step 7 further mutation operations are performed on repeated individuals.
In Step 8, the fast nondominated sorting method is used to divide Rt into different non-
dominated layers {F1, F2, . . . }. Then, the non-dominated set with the highest priority is
retained in the next generation. When |F1 ∪ F2, . . . , ∪Fi-1| and |F1 ∪ F2, . . . , ∪Fi−1| > N,
Fi is defined as the critical layer and the critical layer selection method is used to select K
individuals into the next generation until the size of the offspring population is equal to N.
The critical layer selection method in Step 16 includes the determination of reference points,
adaptive normalization, an association operation, and a niche-preservation operation. For
additional details on NSGA-III, please refer to [64].

4.2. Chromosome Encode

For the MaO-CSPP, each feasible solution S corresponds to a complete loading plan Lp
which can determine the loading sequence Ls of the container and the specific location of
the container on the ship. The loading sequence Ls of containers includes the set CY of all
containers to be loaded in the container yard and part of the set CS (V) of containers on
board. CS (V) refers to a container undergoing voluntary shift. Once the loading sequence
Ls is determined, the container yard’s container relocation (f 21) can be calculated according
to the method provided in [63]. Simultaneously, voluntary shifts by quay cranes (f 22) can be
made out. As the loading plan includes the specific location of the container on the ship, the
container stowage map when the ship leaves the port can be obtained based on this; then,
the ship stability-related results (f 11, f 12, and f 13) can be calculated based on the stowage
map and necessary shifts at future ports (f 23) can be calculated at the same time. Therefore,
a complete loading plan Lp is regarded as a feasible solution, that is, a chromosome.

As mentioned above, a loading plan Lp needs to include the loading sequence Ls
and specific location of a container on the ship. Then, each gene in the chromosome can
be represented by a triplet (IDi, Bi, Ri) where I = 1,2, . . . ,n (with n being the number of
containers in a loading sequence Ls, i.e., n = |CY| + |CS (V)|) and 1 ≤ Bi ≤ bS, 1 ≤ Ri ≤ rS.
A feasible solution is one in which a chromosome can be expressed, as shown in Figure 5.
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Figure 5 shows a legal chromosome code through which a complete loading plan can
be obtained: Lp = 〈(7,1,1), (4,1,1), (12,1,2), (1,2,1), . . . 〉. The first triplet (7,1,1) represents that
container_7 was first loaded on the ship and its location on the ship was (bay1, row1), then
container_4 was loaded onto the ship, and its position is (bay1, row1) as well. Container_12
is the “voluntary shift” container, i.e., the container on the ship. It needs to be temporarily
moved to the side of the dock for container relocation at a future port, and then is loaded
onto the ship according to the “new” loading sequence. Then, the container will be loaded
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in position (bay1, row2) after container_4 is loaded. A schematic diagram of the loading
process is shown in Figure 6. The number in the figure represents the container number.
The complete loading sequence is Ls = 〈7,4,12,1, . . . 〉 and the loading sequence for the yard
container is LY

s = 〈7,4,1, . . . 〉 (LY
s ⊆ Ls). This information is found in the loading plan;

Lp = 〈(7,1,1), (4,1,1), (12,1,2), (1,2,1), . . . 〉 can be used to find the number of container shifts
and the stowage plan, and the stability of the ship can then be calculated from the stowage
plan. However, because container relocation is an NP-hard problem, the true value of the
number of container shifts in the yard cannot be obtained in polynomial time when the
loading plan Lp is given. Based on the literature [67], here we replace the optimal plan with
a near-optimal plan based on a greedy heuristic. We have reason to adopt this approach,
and it is in line with the actual production situation.
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1. Containers arrive at the terminal yard before they are loaded. The advance time is
usually more than ten hours or a few days. Therefore, there is sufficient time for
processing of the yard containers, such as pre-marshalling, to meet the requirements
of loading containers in order of loading sequence. In addition, the cost of container
shifts in a container yard is lower than shifts on ships.

2. Different loading plans under the solution space many times must be verified and
evaluated, and thus a fast and efficient heuristic is urgently needed.

4.3. Heuristic Rules for Relocation of Yard Containers

It is assumed that before the loading operation begins the storage status in the yard
of the containers to be loaded and the loading sequence LY

s of the containers on the ship
are both known. The shifting operation takes place in the same bay, and there are enough
slots for relocation. Figure 7 shows a schematic diagram of a yard bay layout. We define
(i, j) as the position corresponding to the row and tier in the container yard. Ri

N is defined
as the total number of containers in stack i; thus, the total number in all bay stacks can
be expressed as BN = ∑rY

i=1 RN
i . We define the priority, pi,j, according to the order of the

destination port of container (i, j); pi,j = D represents the destination port of container (i, j)
as D. The later the destination port, i.e., the larger the value of D, the earlier a container
should be loaded on the ship. In other words, at the front end of the loading sequence the
priority of a given container is higher. Di

max is the maximum value of the destination port
in the i-th stack and Di

min is the minimum value of the destination port in the i-th stack,
i.e., Di

max = max{pi,j | 1 ≤ j ≤ Ri
N} and Di

min = min{pi,j | 1 ≤ j ≤ Ri
N}.

The idea of a greedy heuristic algorithm is proposed in [67]. According to a given LY
s

in the container loading sequence, a container (i, j) is the target container to be retrieved; the
following operation strategy is then implemented until all containers are loaded on board.
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STRATEGY:

1. j = Ri
N: a container (i, j) is located at the top of the i-th stack and is retrieved directly.

2. j 6= Ri
N: there is a blocking container (i, b) (b = j + 1, . . . Ri

N) when the container
(i, j) is retrieved, and the blocking container needs to be temporarily relocated to
stack k (k 6= i). There may be only one blocking container, i.e., the top container (i,
Ri

N) (b = Ri
N) in the i-th stack, or several, i.e., (b = j + 1, . . . Ri

N). According to the
following rules, each blocking container is relocated to k (k 6= i). The selection of stack
k (k 6= i) follows the following rules.

RULE:

1. Rk
N < tY and pi,b ≥ Dk

max: Rk
N < tY means that stack k has space to accommodate

blocking containers, and relocation will not block the containers in stack k. If there are
multiple stacks to choose from, choose the smallest Dk

max. If there is a tie, select the
nearest one.

2. Rk
N < tY and pi,b < Dk

max means that relocation will block the container in stack k.
At this time, the smallest Dk

max should be selected. If there are multiple columns to
choose from, choose the shortest column.

A feasible solution can be produced according to the above strategies and rules
whenever there is a feasible solution.

4.4. Heuristic Rules for Container Voluntary Shifting

In Section 3.3 above, we defined voluntary shifts as shifts that occurs when to reorder
the sequence of containers on the ship in order to prevent container relocation in the future.
This is called the Myopic Voluntary Shifting Rule in [18,46], and the specific details of these
heuristic rules can be found in these two works.

4.5. Generating Initial Population

Drawing lessons from the actual production experience of the container stowage plan,
when generating the initial population P0 of NSGA-III a two-stage method is used to
generate the initial population of scale N.

Section 4.3 defines the priority, pi,j, in the terminal yard. The farther away the des-
tination port of container (i, j) is, the earlier the container will be loaded on the ship. At
the same time, the larger the corresponding D (pi,j = D) value, the higher the container’s
priority. The concept of container priority is used in this section.

Stage 1: Randomly adopt the following two mechanisms to generate a loading sequence
Ls for the feasible solution; pay attention to Ls = LY

s at this time.

1. Retrieve the top container with the highest priority among all the columns of
the yard containers each time, i.e., retrieve {C_Topmost | Di

max, i ∈ all rows in
the yard}. If there are more choices, choose the one with the highest quality.
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2. Retrieve the container with the highest priority in the current yard each time,
i.e., retrieve {C_Di

max, i ∈ all rows in the yard}. If there are more choices,
choose the one with the fewest blocking containers. If there is a tie, retrieve
the heaviest one.

Stage 2: In Stage 1, we obtain a complete loading sequence. Each container C in this
given loading sequence must now be assigned to a specific ship stack. Due to the
particular physical structure of container ships, their stacked containers follow
the LIFO policy. Now, operating according to the following mechanism, we can
finally obtain a feasible solution. In the above two stages, the strategy of voluntary
shifts is not used. Therefore, there are no container shifts in the initial population.

1. Suppose a stack k satisfies Rk
N < tS and a container C does not block other

containers in stack k, i.e., the priority of container C satisfies pC ≤ Dk
min; then,

select this stack. If there are multiple choices, choose the one with the smallest
Dk

min value.
2. If a stack with the properties mentioned above does not exist and container C

blocks other containers in stack k, i.e., pC > Dk
min, choose the one that satisfies

Rk
N < tS and has the largest Dk

min value in stack k.

4.6. Genetic Operations

Genetic manipulation is used to generate individual offspring, including by crossover
and mutation. Crossover operates on a pair of chromosomes, while mutation operates only
on a single individual.

First, consider one chromosome of only the yard containers CHY. Assuming that the
chromosome contains only seven genes, that is, only seven yard containers (i.e., containers
1–7), set one parent chromosome as P1:〈(3,1,1), (2,2,1), (5,2,3), (1,1,2), (4,1,1), (7,2,2), (6,1,1)〉
and the other parent chromosome as P2:〈(4,2,1), (1,1,1), (6,1,2), (3,1,2), (5,2,2), (2,1,1), (7,1,1)〉.
In this example, the size of the container is set to bS = 2, rS = 3, tS = 3. The crossover
operation uses a double cut point crossover. In this example, the cut point positions are set
to 2 and 5; the specific process of generating the two offspring chromosomes C1 and C2 is
shown in Figure 8.
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Two problems arise after the cross-recombination operation process. One is that the
chromosome encoding of the offspring is illegal, and the other is that a certain row of
containers exceeds its containment range, causing a stack overflow. In response to the
above problems, we provide the following two renovations.
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RENOVATION:

1. A partially mapped crossover (PMX) uses a unique repair program to solve the
illegality caused by a simple double-point intersection. The specific steps are shown
in Figure 9.

2. A greedy heuristic strategy is used to solve certain stack overflow problems, as follows.
Load the container into the row with the least number of stacked containers in the
same bay. If there are more choices, select the closest column. A schematic diagram of
the stack overflow resolution strategy is shown in Figure 10.
A complete loading plan includes both yard containers and ship containers that
are voluntarily shifted. Consider the chromosome CH of both the yard container
and the shipping container. This chromosome is added to five shipping containers
(i.e., 8–12) based on the above CHY; thus, chromosome CH contains twelve genes. Due
to voluntary shifts, the length of the chromosomes of the two parents will be different,
i.e., the CY is the same and CS (V) is not, which in turn leads to different positions of
the cut points when addressing them. We provide a third repair strategy, called the
addressing strategy, in response to this problem.
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RENOVATION:

3. The addressing strategy is as follows. Mark the voluntary shifted containers in the
loading sequence and record their relative positions. Ignore these containers; then,
when determining the location of the tangent point, the chromosome gene will only
contain the yard containers and will record the location of the tangent point at this
time. The containers undergoing voluntary shifts can now be restored according to
their previously-registered relative positions.

To obtain a complete chromosome, first determine the position of the tangent point
of the double-point crossing according to the addressing strategy, then perform partial
mapping and stack overflow repair, respectively, according to repair strategies 1 and 2 to
obtain two legitimate offspring chromosomes.

After the crossover operation is performed, several offspring individuals in the pop-
ulation will be selected according to the mutation probability, Pm, to perform mutation
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operations in order to increase the diversity of the population and avoid falling into the
local optimum. We have designed three types of operators to introduce a small amount of
perturbation into the offspring genes and expand the search space to find more promising
neighborhoods for exploration. A detailed introduction to specific operation operators is
provided in Section 4.8.

4.7. Local Search

The local search we propose here is a kind of memetic algorithm that uses a selection
mechanism similar to that in [68] to select certain individuals for local search. Local search
is added to the framework of NSGA-III, that is, we introduce local search strategies into
the iterative process of NSGA-III to realize the self-learning of individuals in the life cycle.
After adding local search, NSGA-III uses local search to locally improve certain individuals,
which can better balance the relationship between exploration and development in order to
obtain a better solution with a higher probability.

First, we define the following aggregate function:

g(X|λ) = λ1(− f11(X)) + λ2| f12(X)|+ λ3| f13(X)|+ λ4 f21(X) + λ5 f22(X) + λ6 f23(X) (11)

where λ = [λ1,λ2,. . . λ6] is a weight vector, then the method of generating reference points in
NSGA-III is used to generate a set of weight vectors that meet the constraints (as shown in
Equation 12 and are uniformly distributed in the objective space. Therefore, the number of
weight vectors is C6

ζ+5. If we set ζ in the equation to be 5, 252 weight vectors are generated
for six-objective optimization problems.

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = ζ, λi ∈ {0, 1, · · · , ζ}, i = 1, 2, · · · 6 (12)

When selecting an individual for local search, we first randomly choose one from
these weight vectors using the aggregate function (12) as the comparison index and choose
an elite solution through the tournament selection method without replacement. Then,
a local search is performed on the solution to obtain one or a set of improved solutions.
Algorithm 2 shows the local search process.

Algorithm 2. Framework of local_search (Qt)

1: Q’
t ← Ø

2: for i = 1 to bN × Plsc do
3: The weight vector λ is randomly selected from the set of weight vectors
4: S← Tournament Selection with Replacement (Q’

t, λ)
5: Ei ← Local Search for Individual (S, λ, l_ier)
6: Q’

t ← Q’
t ∪Ei

7: end for
8: return Q’

t

Here, bN × Plsc represents the number of offspring populations selected to perform a
local search and/is the probability of a local search. In other words, the selection operation
of “select the elite solution and apply the local search” is repeated/times. As is well-
known, local search requires a great deal of calculation time; thus, only a portion of
offspring individuals can be selected for local search. If a partial improvement is made to
an individual offspring, three types of neighborhood operations that are similar to mutation
operations are randomly selected and applied to each selected offspring. This operation is
performed l_ier times.

4.8. Neighborhood Operator

There is one last key issue in the algorithm that needs to be explained, namely, the
neighborhood operator applied to the mutation operator and how to search locally. In the
variant of NSGA-III presented here, the proposed neighborhood calculation is directed at
the loading plan, Lp, rather than the solution S, which helps to introduce knowledge related
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to the optimization problem of container stowage. Therefore, each generated neighborhood
must be calculated.

In Section 4.2., we defined a complete loading plan as consisting of a loading sequence
Ls and the specific location group of a given container on the ship, i.e., Lp = 〈(ID1, B1, R1),
(ID2, B2, R2), . . . , (IDn, Bn, Rn)〉. According to the scope and effect of the neighborhood
operator, the neighborhood operator is divided into the following three categories.

1. Operators applied to the loading sequence Ls: this type only acts on the loading
sequence, including three operators.

(1) Forward shift operator: two indexes x and y (1 ≤ x < y ≤ n) are randomly
generated, then the triplet (IDy,By,Ry) is shifted forward to the position of x−1.
At this time, the loading plan is Lp = 〈(ID1,B1,R1), . . . , (IDy,By,Ry), (IDx,Bx,Rx),
. . . , (IDn,Bn,Rn)〉.

(2) Backward shift operator: two indexes x and y (1 ≤ x < y ≤ n) are randomly
generated, then the triplet (IDx,Bx,Rx) is shifted back to the position of y + 1.
At this time, the loading plan is Lp = 〈(ID1,B1,R1), . . . , (IDy,By,Ry), (IDx,Bx,Rx),
. . . , (IDn,Bn,Rn)〉.

(3) ID_swap operator: two indexes x and y (x 6= y) are randomly generated, then
the sequential positions of the two triplets of (IDx, Bx, Rx) and (IDy, By, Ry)
are swapped. The loading plan obtained after applying this type of operation
operator remains feasible.

2. Operators applied to the stack of the container ship: this operator will change the
container stack information in the loading plan, mainly including the following
two operators.

(1) Reassign operator: one index x (1 ≤ x ≤ n) and a container ship slot A are
randomly generated; slot A satisfies tA ≤ tS and is not in the same position as
a slot (Bx, Rx) corresponding to (IDx, Bx, Rx), i.e., (BA, RA) 6= (Bx, Rx). Then,
replace (IDx, Bx, Rx) with (IDx, BA, RA) in the former loading plan Lp to obtain
a new neighbor loading plan.

(2) Container slot swap operator: two indexes x and y (1≤ x < y≤ n) are randomly
generated, then their slot position information is exchanged. At this time, the
loading plan is Lp = 〈(ID1,B1,R1), . . . , (IDx,By,Ry), . . . , (IDy,Bx,Rx) . . . ,
(IDn,Bn,Rn)〉.

3. Operators applied to voluntary shifts: As mentioned earlier, in order to reduce the
number of container shifts in future ports certain containers CS (V) will be temporarily
placed on the quay shore and on the containers in the yard before being loaded back
onto the ship. Two operators are proposed to add or reduce containers for the set
CS (V).

To better explain the following operating procedures, we first define the concept of
the “demarcation line”. The “demarcation line” is a vertical partition that divides the final
ship container layout into two parts. The upper part of the demarcation line consists of the
yard container CY and the voluntary shift container CS (V), i.e., CY ∪ CS (V); the lower part
is the container on the ship, i.e., CS\CS (V), except for the part undergoing the voluntary
shift. Figure 11 shows an example of the “demarcation line”.

(1) To add a voluntary relocation container, randomly select a container below the de-
marcation line and activate it as a voluntary shift container, IDs. The original position
of the selected container should have two or more containers in the stack, and it
should be at the uppermost position f of the lower part of the demarcation line. Then,
randomly insert the container into the loading plan and randomly assign a position
to it to obtain a neighborhood loading plan, i.e., 〈(ID1,B1,R1), . . . , (IDi-1,Bi-1,Ri-1),
(IDs,Bs,Rs), (IDi,Bi,Ri) . . . , (IDn,Bn,Rn)〉.

(2) To remove a voluntary relocation container, randomly select a voluntary relocation
container in the upper part of the dividing line and remove it from the loading plan.
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5. Experiment and Analysis

In this section, we describe a series of numerical experiments used to test the effec-
tiveness of the algorithm proposed in this paper and the design a comparative experiment
involving other optimization methods. The experimental results are analyzed and dis-
cussed in the following sections. The test data are explained in Section 5.1; a comprehensive
evaluation index of the experimental results is provided in Section 5.2; the parameter
settings used in the experiment and the comparison experiment with other algorithms
are provided in Section 5.3; and Section 5.4 lists the results of the test and the analysis of
the results. The algorithm proposed in this paper was implemented in MATLAB R2019b
(win64). All experiments were performed on a Windows server with 16.0 GB RAM and an
Intel (R) Core (TM) i7 processor clocked at 3.0 GHz. The times used in the text are the CPU
seconds of this machine.

5.1. Setting Data

To verify the effectiveness and practicability of our proposed algorithm, we set up 48
sets of calculation examples for the experiment according to the ship structure and stacking
methods. The examples are summarized in Table 3. All containers are 20 ft in size, the
weight in group A is set to unit 1, and the weight of containers in group B ranges from
unit 10 to unit 20. bY, rY, tY, and NY represent the number of bays, the number of stacks,
the height of the layer, and the number of yard containers, respectively, in each group of
calculation examples. Similar to the yard containers, the relevant values concerning the
ship are set to bS, rS, tS, and NS. The value set indicates the different bay position structures,
which ensures enough places to accommodate the containers.

Table 3. Experimental example.

Instance
YARD SHIP

bY rY tY NY bS rS tS NS

1A 1B 2 4 5 21 4 4 5 20
2A 2B 4 4 5 46 8 4 5 33
3A 3B 2 4 8 36 4 4 8 38
4A 4B 4 4 8 79 8 4 8 66
5A 5B 2 8 5 46 4 8 5 41
6A 6B 4 8 5 109 8 8 5 73
7A 7B 2 8 8 70 4 8 8 73
8A 8B 4 8 8 182 8 8 8 130
9A 9B 2 4 5 23 4 4 5 24
10A 10B 4 4 5 41 8 4 5 34
11A 11B 2 4 8 35 4 4 8 29
12A 12B 4 4 8 101 8 4 8 60
13A 13B 2 8 5 60 4 8 5 47
14A 14B 4 8 5 99 8 8 5 65
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Table 3. Cont.

Instance
YARD SHIP

bY rY tY NY bS rS tS NS

15A 15B 2 8 8 75 4 8 8 69
16A 16B 4 8 8 188 8 8 8 130
17A 17B 2 4 5 28 4 4 5 16
18A 18B 4 4 5 40 8 4 5 48
19A 19B 2 4 8 46 4 4 8 37
20A 20B 4 4 8 100 8 4 8 69
21A 21B 2 8 5 56 4 8 5 41
22A 22B 4 8 5 97 8 8 5 75
23A 23B 2 8 8 65 4 8 8 62
24A 24B 4 8 8 168 8 8 8 103

A rectangular structure is adopted for the ship or yard bay structure and different
layers and numbers of columns are set. Each type of bay structure has a different bay layout
randomly generated according to certain principles. The principle of generating the bay
position layout is as follows: the containers in the yard bay are 50~80% of the total amount
of the bay capacity and the shipping container occupancy rate is 20~30%; according to
different destinations, different priorities are generated according to which more distant
destinations have higher priority. We set six different priorities in this article.

The establishment of the ship coordinate system is intended to accurately express the
spatial position of any point on the ship, which is convenient for positional determinations
and ship performance calculations. According to our assumptions the ship is considered as
a box structure, and we use the O-xyz rectangular coordinate system fixed on the ship, as
shown in Figure 12.
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Assuming that the center of gravity of the container is at the geometric center, this is
true in practice as well. As the container is a cube with a side length of 1, the coordinates
of the center of gravity of each container can be obtained according to the coordinate
system we have established. The ship in the example consists of four bays (bay1~bay4),
each bay has four stacks (row1~row4), and each stack has five layers (tier1~tier5); thus,
the coordinates of the center of gravity of each container in this example are as shown in
Table 4.
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Table 4. Container ship slot location index.

Slot No. (bS,rS,tS) Center of Gravity (x,y,z)

(1, 1, 1) (1.5, 0.5, 0.5)
(1, 2, 1) (1.5, −0.5, 0.5)
(1, 3, 1) (1.5, 1.0, 0.5)

...
...

(4, 4, 5) (−1.5, −1.5, 4.5)

The essence of the stability calculation for different loading plans (i.e., different so-
lutions) is the problem of “variation of weight in the ship”, which conforms to the at-
tributes of the ship displacement and metacenter position (i.e., KM) invariants. Accord-
ing to the above settings, the three objective functions in the category of ship stability
(i.e., the ship’s initial transverse metacentric height, heel angle, and trim) can be ex-
pressed as (1) f11 = min

{
∑ pizi
∑ pi

∣∣∣i ∈ CY ∪ CS(V)
}

; (2) f12 = min
{
|∑ piyi |

∑ pi

∣∣∣i ∈ CY ∪ CS(V)
}

;

(3) f13 = min
{
|∑ pixi |

∑ pi

∣∣∣i ∈ CY ∪ CS(V)
}

.
where ρi represents the weight of the i-container.

5.2. Performance Indicators

Researchers have proposed many methods for evaluating the performance of objective
evolutionary algorithms, which can be summarized into three categories. The first type is
used to assess the tightness between the computed set and the true Pareto-optimal surface,
and is mainly used to evaluate the convergence of the algorithm. Here, we use the index
of coverage between two solution sets (CS). The second category is used to assess the
distribution of the solution set; here we use the maximum spread (MS). The third category
allows for comprehensive consideration of the convergence and distribution of the solution
set in order to evaluate the comprehensive performance of the solution. Here, we use the
inverse generation distance (IGD).

In 2000, Zitzler proposed an evaluation method to compare the relative coverage of
the two solution sets in the algorithm [69]. Assuming that P′ ⊆ P and P′ ′ ⊆ P are two
solution sets in the objective space (with P being the objective space solution set) and the
coverage ratio is between P′ and P′ ′ (two set coverage, CS), the equation is as follows:

CS
(

P′, P′′
)
,
|{a′′ ∈ P′′|∃a′ ∈ P′, a′′ < a′′}|

|P′′| (13)

If all points in P′ dominate or are equal to all points in P′ ′, then CS = 1 can be defined;
otherwise, CS = 0. Suppose CS (P′, P′ ′) > CS (P′ ′, P′); in that case, the dominance relationship
of P′ is considered to be better than that of P′ ′. Generally speaking, the intersection of the
two solution sets P′ and P′ ′ is not empty CS (P′, P′ ′), and therefore CS (P′ ′, P′) must be
considered together when evaluating an algorithm.

The Maximum Spread (MS) evaluation method (known as the D method) is used to
measure the spreading performance of the solution set distribution of the algorithm. The
larger the MS value, the better the extension performance of a solution set. In particular,
when the MS is 1, the solution set completely covers the entire real Pareto front. Assuming
that P′⊆ P is a non-dominated solution set in the objective space, the for the MS value is
calculated as follows:

MS
(

P′
)
=

√√√√ M

∑
i=1

(
max
a′∈P′

fi(a′)− f min
i

f max
i − f min

i
− min

a′∈P′

fi(a′)− f min
i

f max
i − f min

i

)2

(14)

where fimin and fimax represent the minimum and maximum values of the i-th goal (total
M) in the objective space solution.



J. Mar. Sci. Eng. 2022, 10, 517 22 of 35

Inverted Generational Distance (IDG) is the inverse mapping of Generational Distance.
It uses the average distance from the individual in the Pareto-optimal solution set, P*, to
the non-dominated solution set P′ obtained by the algorithm. Therefore, it is calculated
as follows:

IGD(P′, P∗) =
1
|P∗| ∑

a′∈P′
min
a∗∈P∗

d(a′, a∗) (15)

where d (a’, a*) represents the Euclidean distance between solutions a’ and a* in the objective
space solution. The calculation expression is as follows:

d(a′, a∗) =

√
M
∑
i

(
fi(a′)− f min

i
f max
i − f min

i
− fi(a∗)− f min

i
f max
i − f min

i

)2

=

√
M
∑
i

(
fi(a′)− fi(a∗)
f max
i − f min

i

)2
(16)

If |P*| can represent the Pareto front fully, then IGD (P′, P*) can, in a certain sense,
comprehensively measure the convergence and diversity of the solution set. Because the
solution set P′ must be close enough to the Pareto front surface in the objective space in
order to obtain a smaller value of IGD (P′, P*), that is, the smaller the value of IGD, the better,
and any part of P* has a corresponding solution to represent in P′, in an ideal situation
solving the algorithm is a process of continuously approaching the optimal boundary P*
and finally reaching the optimal boundary. However, in practical applications it is often
difficult to find the true Pareto optimal surface. Here, P* is the Pareto front of all solutions
obtained in all comparison algorithms in our experiment.

5.3. Parameter Setting and Comparison Algorithm

The parameter settings of the numerical calculation are shown in Table 5. Because the
result of the calculation provides a set of Pareto optimal solutions, allowing the decision-
maker to compromise the choice, we therefore set the population size to 100 based on
experience. The algorithm uses the systematic method proposed by Das and Dennis to
generate structured reference points. The number of reference points generated by this
method depends on the number of objective functions M and another positive integer p,
where p represents the goal of evenly dividing each dimension into p parts; the equation is
H = CM−1

p+M−1 [70]. According to [64], the number of reference points should be equivalent
to the population size. Therefore, we set the value of p to be equal to 4 and the number of
reference points to 126.

Table 5. Parameter setting for algorithms.

Parameters Value Foundation

Population size N 100 Rule of thumb
Reference point number H 126 Equivalent to population size
Crossover probability Pc 100% Experimentally obtained
Mutation probability Pm 5% Experimentally obtained

Local search probability Pls 20% Experimentally obtained
Local search iterations ls_ier 100 Rule of thumb

Tournament size τ 10 Rule of thumb
Termination principle Limit time is 3 min Experimentally obtained

We used calculation examples 1A and 1B to find the optimal Pc and Pm by adjusting
different crossover probabilities and recombination probabilities while keeping the other
parameters unchanged. For each set of calculation examples, we performed 30 independent
calculations and used average result as the final output value. P* is the set of non-dominated
solutions for all operations. The average IGD of 30 operations is provided in Table 6, and
the best result (i.e., the smallest value 0.0106) is marked in bold. It can be seen from Table 6
that the crossover probability, Pc, has a more significant impact on the comprehensive
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performance of the algorithm. Therefore, we set the crossover probability to 100% and the
mutation probability to 5%.

Table 6. Parameter optimization of crossover probability and mutation probability.

Pc

Pm 0 5 10 20

0 0.0276 0.0273 0.0308 0.0503
50 0.0249 0.0230 0.0296 0.0479
80 0.0207 0.0189 0.0307 0.0512

100 0.0198 0.0106 0.0284 0.0551

As described in Section 4.8, we designed three kinds of neighborhood operators
for local search and mutation. To verify the influence of neighborhood operators on
the algorithm’s performance, we set up comparative experiments. The results of this
comparative experiment are shown in Table 7. The comprehensive version of the algorithm
under each combination (i.e., average IGD) is provided as well.

Table 7. The influence of different neighborhood operators on the NSGA-III.

N1 N2 N3 N1 + N2 N1 + N3 N2 + N3 N1 + N2 +
N3

0.0348 0.0305 0.0328 0.0279 0.0273 0.0246 0.0209

From Table 7, it can be seen that the operator acting on the container stack (i.e., N2)
has the most significant impact on the algorithm, the operator working on the loading
sequence (i.e., N1) has the second-most, and the operator (i.e., N3) acting on the voluntary
shifts has the least impact on the algorithm. When all operation operators are included, the
algorithm’s overall performance is the best; thus, the neighborhood operator we proposed
has a positive impact on the algorithm’s performance.

In our experiment, we designed six different algorithms; the related explanations of
these algorithms are provided in Table 8. As previously mentioned, in order to compre-
hensively evaluate the performance of the proposed algorithm it is necessary to obtain the
true Pareto front. However, due to the complexity of the MaO-CSPP, the true Pareto front
cannot be obtained in polynomial time. Therefore, the best possible approximate solution
must be found. We compared the other five algorithms to obtain the best approximate
solution P*. In Table 8, RWGA is a random weighted genetic algorithm, a better algorithm
in the priori technology. Specific details regarding the algorithm can be found in [54].

Table 8. Algorithms used in the comparative experiment.

Abbreviation Algorithm Decision-Making Methods Parameter Setting

NSGA-III-L NSGA-III with local search Posterior Same as Table 5.

NSGA-III-NL NSGA-III without local search Posterior Same as Table 5, but it does not
include local search parameters.

NSGA-II-L NSGA-III with local search Posterior Same as Table 5, but it does not
include reference point parameters.

NSGA-II-NL NSGA-II without local search Posterior
Same as Table 5, but it does not

include reference points and local
search parameters.

RWGA-L RWGA with local search Prior Same as Table 5, but it does not
include reference point parameters.

RWGA-NL RWGA without local search Prior
Same as Table 5, but it does not

include reference points and local
search parameters.



J. Mar. Sci. Eng. 2022, 10, 517 24 of 35

5.4. Results and Discussion

According to the parameter settings in Section 5.3, we conducted experiments on
each algorithm. Each algorithm was applied to the 48 instances generated in Section 5.1,
and each instance of examples of each algorithm was independently run 30 times. Then,
according to the performance indicators set in Section 5.2, the average value of each instance
indicator was obtained. The average values of the indicators are summarized in Tables 9–11,
with the best results for each group in bold.

It can be seen from the results in Table 9 that among the 48 examples, 31 instances of
NSGA-III-L achieved the best results (i.e., the smallest IGD), and 17 instances of NSGA-
III-NL achieved the best results. This shows that the proposed local search significantly
improves the performance of NSGA-III, making it more pertinent when solving MaO-
CSPPs. It can be seen from the average value of IGD in the 48 examples that the performance
of NSGA-III is better than that of NSGA-II, and that of NSGA-II is better than RWGA.
Although the performance of NSGA-III-NL is slightly worse than that of NSGA-III-L,
it is generally better than the other four algorithms. The results show that NSGA-III is
more suitable for handling MaO-CSPPs. For each type of algorithm, whether it is NSGA-
III, NSGA-II, or RWGA, the performance of the algorithm itself improved after adding
local search, making IGD_ave (NSGA-III-L) < IGD_ave (NSGA-III-NL), IGD_ave (NSGA-II-
L) < IGD_ave (NSGA-II-NL), and IGD_ave (RWGA-L) < IGD_ave (RWGA-NL).

When calculating CS, we considered only the pairwise comparison under the optimal
performance of each algorithm, i.e., only the algorithm with local search. The experimental
results for CS are shown in Table 10.

From the results in Table 10, it can be seen that the solution produced by NSGA-III-L
dominates most of the solutions produced by NSGA-II-L, i.e., in 47 out of 48 examples, and
dominates approximately 92% (44 out of 48) solutions produced by RWGA-L; thus, the
above calculation holds. From Table 9, we can conclude that the overall performance of
NSGA-II-L is better than that of RWGA-L. However, when comparing the CS, the solutions
produced by RWGA-L dominate most of the solutions produced by NSGA-II-L (44 out of
48 examples). This is because the solution space of each calculation example is vast. RWGA-
L can generate solutions with the help of the previously-set weights. When comparing
the coverage of the two algorithms, RWGA-L performs better than NSGA-II-L. This result
reflects the limitations of NSGA-II-L in solving multi-objective optimization problems,
that is, when the number of objective functions is greater than three its searchability for
non-dominated solution sets decreases sharply.

Table 9. Experimental results of IGD.

Instance NSGA-III-L NSGA-III-NL NSGA-II-L NSGA-II-NL RWGA-L RWGA-NL

1A 0.0287 0.0170 0.0531 0.0666 0.1074 0.1293
2A 0.0158 0.0534 0.0422 0.0502 0.1413 0.1341
3A 0.0998 0.0592 0.1259 0.1394 0.2465 0.2827
4A 0.1071 0.1044 0.1329 0.1417 0.2478 0.3082
5A 0.0467 0.0520 0.0752 0.1215 0.1783 0.1895
6A 0.0630 0.0615 0.1119 0.1608 0.1842 0.2643
7A 0.0856 0.0576 0.1152 0.1830 0.1955 0.2368
8A 0.0810 0.0729 0.1017 0.1601 0.2049 0.2588
9A 0.0606 0.0868 0.0749 0.1214 0.1582 0.1736

10A 0.0579 0.0733 0.0866 0.1284 0.2471 0.2711
11A 0.1051 0.1222 0.1494 0.2009 0.2566 0.3077
12A 0.1067 0.1352 0.1771 0.1699 0.2433 0.2941
13A 0.0349 0.0626 0.1529 0.2138 0.2489 0.3691
14A 0.0725 0.0851 0.1414 0.1891 0.2595 0.3060
15A 0.1508 0.1098 0.2546 0.3136 0.3712 0.4004
16A 0.1688 0.1450 0.2516 0.3070 0.3362 0.3910
17A 0.0899 0.0997 0.1463 0.2094 0.2687 0.3085
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Table 9. Cont.

Instance NSGA-III-L NSGA-III-NL NSGA-II-L NSGA-II-NL RWGA-L RWGA-NL

18A 0.0952 0.1300 0.1919 0.2310 0.2635 0.3261
19A 0.1190 0.1254 0.2116 0.2701 0.3103 0.3718
20A 0.1407 0.1640 0.2691 0.3409 0.3770 0.4419
21A 0.0716 0.0683 0.1653 0.2093 0.2522 0.3165
22A 0.0607 0.0651 0.2002 0.2393 0.3031 0.3453
23A 0.0935 0.0640 0.1487 0.1897 0.2366 0.3165
24A 0.1015 0.0784 0.1890 0.2228 0.2698 0.3886

Average 0.0857 0.0872 0.1487 0.1908 0.2462 0.2972
1B 0.0306 0.0195 0.0503 0.0576 0.2452 0.2858
2B 0.0092 0.0122 0.0535 0.0666 0.1777 0.2320
3B 0.1565 0.1658 0.2242 0.2829 0.3731 0.4177
4B 0.1078 0.1171 0.1887 0.2484 0.3057 0.3390
5B 0.0414 0.0329 0.1071 0.1460 0.2585 0.3535
6B 0.0720 0.0647 0.1069 0.1700 0.2555 0.3285
7B 0.0809 0.0916 0.1313 0.1443 0.2718 0.3618
8B 0.0968 0.1072 0.1561 0.2092 0.3119 0.4070
9B 0.0546 0.0461 0.1129 0.1673 0.2780 0.3665
10B 0.0846 0.0842 0.1398 0.1795 0.2720 0.3322
11B 0.1067 0.0889 0.1690 0.2134 0.3179 0.4394
12B 0.1195 0.1112 0.1797 0.2138 0.3514 0.4213
13B 0.0612 0.0814 0.1808 0.2499 0.3708 0.4430
14B 0.0640 0.0768 0.2162 0.2590 0.3682 0.4277
15B 0.1697 0.1866 0.2368 0.2912 0.3667 0.4250
16B 0.1536 0.1751 0.2289 0.2879 0.3820 0.4315
17B 0.0990 0.1160 0.1893 0.2372 0.3208 0.4764
18B 0.1096 0.1292 0.1978 0.2361 0.3549 0.4847
19B 0.1720 0.1922 0.2684 0.3154 0.4065 0.5108
20B 0.1483 0.1734 0.1802 0.2200 0.3278 0.4397
21B 0.0999 0.1119 0.1511 0.2110 0.2510 0.3519
22B 0.0872 0.1102 0.1898 0.2375 0.2952 0.3921
23B 0.1397 0.1646 0.1845 0.2312 0.2726 0.3772
24B 0.1482 0.1851 0.2165 0.2540 0.3053 0.4671

Average 0.1005 0.1102 0.1692 0.2137 0.3100 0.3963

Table 10. Experimental results of CS.

Instance
NSGA-III-L/NSGA-II-L NSGA-III-L/RWGA-L NSGA-II-L/RWGA-L

CS(P
′
,P
′′
) CS(P

′′
,P
′
) CS(P

′
,P
′′
) CS(P

′′
,P
′
) CS(P

′
,P
′′
) CS(P

′′
,P
′
)

1A 0.0055 0.0086 0.2024 0.0168 0.0129 0.3528
2A 0.1184 0.0806 0.1953 0.0106 0.0053 0.6876
3A 0.8457 0.0014 0.5421 0.0353 0.3693 0.1820
4A 0.7454 0.0009 0.3636 0.0351 0.1898 0.3810
5A 0.4447 0.0005 0.3398 0.0855 0.1706 0.0114
6A 0.4410 0.0002 0.1971 0.2970 0.1814 0.0162
7A 0.9285 0.0000 0.2961 0.0243 0.0066 0.7916
8A 0.9354 0.0002 0.3037 0.0054 0.0081 0.5881
9A 0.9453 0.0004 0.2513 0.0161 0.0080 0.6791

10A 0.9557 0.0006 0.4725 0.0148 0.0012 0.5036
11A 0.9510 0.0007 0.3775 0.0063 0.0040 0.4112
12A 0.9547 0.0003 0.4662 0.0336 0.0221 0.4146
13A 0.9008 0.0007 0.3022 0.0125 0.0132 0.7542
14A 0.8950 0.0016 0.3401 0.0239 0.1297 0.0307
15A 0.9187 0.0015 0.3597 0.0202 0.0030 0.4894
16A 0.9369 0.0010 0.3912 0.0405 0.0087 0.4266
17A 0.9703 0.0002 0.2515 0.3400 0.0025 0.9035
18A 0.9516 0.0010 0.1415 0.2504 0.0037 0.8372
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Table 10. Cont.

Instance
NSGA-III-L/NSGA-II-L NSGA-III-L/RWGA-L NSGA-II-L/RWGA-L

CS(P
′
,P
′′
) CS(P

′′
,P
′
) CS(P

′
,P
′′
) CS(P

′′
,P
′
) CS(P

′
,P
′′
) CS(P

′′
,P
′
)

19A 0.9115 0.0004 0.2013 0.0215 0.0022 0.6931
20A 0.9328 0.0011 0.1506 0.0091 0.0019 0.5981
21A 0.9289 0.0004 0.3145 0.0205 0.0057 0.3948
22A 0.9175 0.0021 0.3217 0.0063 0.0019 0.7926
23A 0.9143 0.0018 0.4593 0.0459 0.0012 0.4867
24A 0.9379 0.0011 0.2452 0.0203 0.0118 0.5894

Average 0.8078 0.0045 0.3119 0.0580 0.0485 0.5006
1B 0.9315 0.0009 0.0203 0.1635 0.0010 0.4136
2B 0.9067 0.0012 0.0949 0.0089 0.0014 0.7476
3B 0.8207 0.0011 0.8871 0.0142 0.0000 0.3765
4B 0.7234 0.0006 0.6692 0.2117 0.0011 0.4380
5B 0.6217 0.0005 0.5345 0.0176 0.0009 0.9457
6B 0.7543 0.0002 0.1546 0.2471 0.0001 0.4231
7B 0.8840 0.0000 0.1927 0.2851 0.0005 0.7905
8B 0.9610 0.0003 0.1997 0.0116 0.0006 0.5886
9B 0.9445 0.0004 0.2063 0.0020 0.0000 0.7278
10B 0.9755 0.0004 0.0452 0.1909 0.0000 0.5441
11B 0.9529 0.0005 0.1816 0.0867 0.0003 0.4537
12B 0.9474 0.0004 0.1726 0.0208 0.0000 0.5152
13B 0.9038 0.0006 0.1998 0.3011 0.0000 0.7571
14B 0.9344 0.0009 0.0733 0.1682 0.0000 0.6884
15B 0.9123 0.0012 0.0290 0.1271 0.0020 0.4891
16B 0.9405 0.0007 0.0297 0.1298 0.0001 0.4713
17B 0.9709 0.0002 0.0253 0.1239 0.0008 0.9040
18B 0.9614 0.0004 0.2094 0.0145 0.0005 0.8446
19B 0.9045 0.0004 0.1648 0.0114 0.0000 0.6908
20B 0.9573 0.0005 0.1735 0.0117 0.0000 0.6064
21B 0.9268 0.0005 0.2704 0.0254 0.0004 0.4498
22B 0.9337 0.0012 0.2041 0.0061 0.0002 0.8011
23B 0.9484 0.0012 0.2698 0.0185 0.0000 0.5480
24B 0.9781 0.0007 0.0241 0.1645 0.0000 0.6497

Average 0.9040 0.0006 0.2097 0.0984 0.0004 0.6194

Table 11. Experimental results of MS.

Instance NSGA-III-L NSGA-III-NL NSGA-II-L NSGA-II-NL RWGA-L RWGA-NL

1A 0.5408 0.5238 0.9984 1.0123 0.7480 0.7299
2A 0.4742 0.4226 0.7818 1.0621 0.8436 0.7917
3A 0.8573 0.9051 1.0156 1.2058 0.3746 0.3264
4A 0.9093 0.9513 1.0573 1.2056 0.4412 0.3902
5A 0.7898 0.8895 1.0662 1.1014 0.2685 0.2143
6A 0.6890 0.8275 0.9759 0.5785 0.4288 0.3746
7A 0.8951 0.8490 1.0505 0.7112 0.3989 0.3486
8A 0.8991 0.8536 1.0206 0.6997 0.2850 0.2444
9A 0.9310 0.9493 1.0973 1.1554 0.2237 0.1794

10A 0.9503 1.0157 1.1194 1.1509 0.2475 0.2493
11A 0.9936 1.0590 1.1480 1.2002 0.6978 0.6164
12A 0.9645 0.9926 1.1490 1.2914 0.3995 0.3419
13A 0.8530 0.8943 1.1382 1.3826 0.1348 0.1251
14A 0.8760 0.9053 1.1299 1.3278 0.1299 0.1208
15A 1.1138 1.0450 1.1086 1.3941 0.3323 0.2949
16A 1.0403 1.0832 1.1671 1.4472 0.4738 0.4126
17A 0.9007 0.9573 1.1777 1.5991 0.5096 0.4484
18A 0.8911 0.9646 1.1471 1.6920 0.5116 0.4607
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Table 11. Cont.

Instance NSGA-III-L NSGA-III-NL NSGA-II-L NSGA-II-NL RWGA-L RWGA-NL

19A 0.9476 0.9992 1.1509 1.5409 0.3640 0.3161
20A 0.8489 0.9080 1.1211 1.3402 0.3709 0.3145
21A 1.1569 1.2078 1.2953 1.6115 0.5024 0.4486
22A 1.0683 1.2139 1.3144 1.6829 0.3636 0.3153
23A 1.4845 1.5418 1.5842 1.9961 0.1732 0.1245
24A 1.1072 1.1343 1.2337 1.6254 0.3596 0.2968

Average 0.9243 0.9622 1.1270 1.2923 0.3993 0.3536

1B 0.6005 0.5568 1.0564 1.2016 0.6780 0.6481
2B 0.5297 0.5425 1.0733 1.1803 0.7900 0.7923
3B 0.9067 0.8225 1.0046 1.1376 0.3072 0.2252
4B 0.9674 0.9101 1.1196 1.3278 0.3920 0.3405
5B 0.8888 0.8320 1.1515 1.3434 0.2358 0.1614
6B 0.7847 0.8949 1.1422 1.3895 0.3778 0.3305
7B 0.9839 1.0291 1.1514 1.3808 0.3664 0.3028
8B 1.0717 1.0962 1.1500 1.4220 0.2286 0.1704
9B 1.0331 1.0844 1.0845 1.1981 0.1747 0.1229
10B 1.0376 1.0788 1.1274 1.2048 0.2932 0.3050
11B 1.1412 1.1571 1.2041 1.2215 0.7463 0.6895
12B 0.9355 0.6192 1.2441 1.4333 0.4497 0.4001
13B 0.9316 0.9799 1.1821 1.8439 0.1715 0.1371
14B 0.9223 0.9746 1.2122 1.8481 0.1855 0.1302
15B 1.2515 1.2636 1.2517 1.9533 0.3880 0.3421
16B 1.0652 1.1936 1.2728 1.9506 0.5108 0.5118
17B 1.0013 1.1634 1.3005 1.9485 0.5603 0.5124
18B 0.9959 1.1195 1.1945 1.8603 0.4810 0.4206
19B 0.9573 1.1059 1.2602 1.8462 0.3000 0.2687
20B 0.9575 1.0383 1.2564 1.7652 0.4068 0.3602
21B 1.2443 1.3256 1.6127 2.0604 0.5901 0.4937
22B 1.1927 1.2818 1.6619 1.9849 0.3990 0.3647
23B 1.6197 1.6225 1.7049 2.1514 0.2312 0.1833
24B 1.2180 1.2698 1.6075 2.1139 0.4452 0.4070

Average 1.0099 1.0401 1.2511 1.6153 0.4045 0.3592

Table 11 shows that we can obtain the MS calculation results of each algorithm. These
results show that NSGA-II-NL performs the best in terms of the extent of the target spatial
distribution of solution sets, and NSGA-II-NL performs second. However, RWGA-L and
RWGA-NL show poor results. Although NSGA-III is superior to RWGA, it is not as good
as NSGA-II. The above results show that NSGA-II-NL and NSGA-II-L can better obtain the
wide distribution of the entire solution set in the target space, and therefore can provide
decision-makers with a more complete and extensive solution space.

To better display the discrete distribution of the calculation results of each algorithm,
we use the form of box plots for display. We selected twelve representative calculation
instances (1A, 3A, 5A, 7A, 9A, 11A, 1B, 3B, 5B, 7B, 9B, 11B); each calculation example was
independently run thirty times under each algorithm, and the data from those thirty runs
are displayed in the form of box plots, as shown in Figure 13.

The upper line of the box is the upper 1/4 median Q1, the middle line of the box is the
median Q2, the lower line of the box is the lower 1/4 median Q3, and the top and bottom
short lines represent the largest observations. For the observation of the box plot, first, the
value of the box must be within the convergence range to indicate that the individual has
converged. Second, smaller box lengths are better, and mean that the individuals are more
concentrated, leading to relatively more stable algorithm performance. In addition, the
distribution of individuals can be seen from the position of the median line. Finally, the
number of extremely discrete individuals is as small as possible.
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It can be seen from Figure 13 that NSGA-III can produce the most promising non-
dominated solution. The individuals in the solution are relatively concentrated, the algo-
rithm’s performance is stable, the convergence is good, and the robustness is strong.

In order to more intuitively describe the distribution of the solution in the high-
dimensional objective space, Figures 14 and 15 use parallel coordinates to plot the non-
dominated solutions generated by the different algorithms used in the two calculation
examples (1A and 24B). For each algorithm and instance, we collected the non-dominated
solutions (30 × 100 = 3000 solutions in total) generated by thirty independent runs and
removed the dominated solutions. As the value of each objective function is not in the
same dimension, the value of each dimension of the solution space is normalized, and the
value in the figure is the normalized result. Figure 14 is the result of calculation example
1A, and Figure 15 is the result of calculation example 24B. It can be seen from the results
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that NSGA-III-L and NSGA-III-NL show the most vital convergence, especially in the
face of complex situations (instance 24B), and result in better non-dominated solution sets.
Although NSGA-II is not as convergent as NSGA-III when dealing with many-objective
problems, it can provide a clear compromise solution. When RWGA deals with multi-
objective problems, finding a convergent compromise solution is difficult. The results
in Figures 14 and 15 are consistent with the results in Tables 9–11. When dealing with
many-objective problems, the NSGA-III and NSGA-II methods can cover the objective
space more completely and consistently than RWGA, and provide clearer compromise
solutions for decision-makers to choose from.
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In summary, considering the different evaluation indexes of the algorithm’s distri-
bution, convergence, and versatility, it is impossible to find an algorithm that performs
perfectly under every index. Although the comprehensive performance of NSGA-III is
more outstanding in multiple calculation examples, it is not the only perfect algorithm. The
results show that our proposed variant based on NSGA-III can provide decision-makers
with excellent and satisfying diverse non-dominated solutions, especially when dealing
with high-dimensional multi-objective container stowage planning problems. This algo-
rithm can achieve a better compromise between convergence and diversity. In practice,
therefore, we recommend using NSGA-III-L.

6. Conclusions

As the container stowage plan often represents the major bottleneck in container
transportation, effective methods to solve the problem of container stowage planning can
ensure safety and improve economic benefits. Our study simultaneously considers ship
stability and the number of container shifts and proposes an MaO-CSPP with six objective
dimensions. This study mainly involves two categories, namely, ship stability and the
number of shifts, and contains six specific objectives. To solve this problem, we added local
search and neighborhood operators based on NSGA-III and designed a variant of NSGA-
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III. These variants can provide decision-makers with better non-dominated solutions. To
evaluate the performance and effectiveness of the algorithm, we generated 48 calculation
examples based on the EDI files of actual production and operation. We carried out
extensive experiments on each algorithm. The experimental results verify the effectiveness
of the algorithm. Compared with other algorithms, we found that the comprehensive
performance of the algorithm is more prominent and that good results can be achieved
in more calculation examples. Therefore, this algorithm is the most suitable for handling
MaO-CSPPs.

The research in the present study mainly involves the coordinated optimization of ship
bay stowage and container yard retrieval. In further research combining the coordinated
optimization of yard pre-marshalling and crane schedules can allow more realistic problems
to be solved. In addition, this research on many-objective visualization provides decision-
makers with a more intuitive form in which to display result, allowing them to quickly
choose among many compromise solutions according to different needs and based on
different preferences.
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