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Abstract: Top tensioned risers (TTRs) and steel catenary risers (SCRs) have been widely used in the
field of marine engineering. They are commonly used to transport fluids from subsea wells to surface
platforms. Under the action of ocean currents, these risers are often subjected to vortex-induced
vibrations (VIVs), which might lead to serious fatigue damage. In this study, VIV around TTR and
SCR were numerically simulated using the computational fluid dynamics software FLUENT when the
Reynolds number was 4000. In the calculations, the full hexahedron grid and large eddy simulation
were used to ensure calculation accuracy from the boundary conditions, as well as solution control.
The shape, frequency, and amplitude of VIV produced by TTRs and SCRs at different times and
depths were simulated.

Keywords: vortex-induced vibration; top-tensioned riser (TTR); steel catenary riser (SCR); numerical
simulation

1. Introduction

With the development of the international offshore oil industry, vortex-induced vibra-
tions (VIVs) of offshore structures produced by risers has attracted increasing attention.
As an important piece of equipment in deep water oil and gas resource infrastructure,
a marine riser is connected between the platform or drilling barge and the underwater
system. Generally, high-pressure oil and gas passes through it, and the outside bears loads
imposed by waves, currents, and platform motion. Among the risers, the two most widely
used types of risers are top-tensioned risers (TTRs) and steel catenary risers (SCR) [1].

In shallow waters, TTRs are widely used. Appropriate pretension can effectively avoid
riser buckling and excessive bending stress caused by platform movement. One end of the
SCR is flexibly connected to the operation platform and the other end freely suspended out-
side the submarine platform. Under the combined action of buoyancy, gravity, and tension,
its structural form can self-adjust to the vertical movement of the platform.

When an ocean current flows through the riser at a certain velocity, alternating vortex
shedding forms on both sides. Due to the periodicity and asymmetry of vortex shedding,
the fluid exerts periodic alternating force on the structure in the direction of in-line (IL) and
cross-flow (CF), resulting in structural vibrations in two directions. This fluid–structure
interaction (FSI) is called VIV [2].

In recent years, many scholars have studied VIVs of marine risers through experimen-
tal and numerical simulation methods. Experimental research is generally carried out in
natural waters or laboratory flumes, and the data obtained relatively accuracy. However,
due to limitations of the natural environment and experimental equipment, the data ranges
are small and not conducive for comparison, and the cost is expensive. Using a numerical
simulation method, a series of comparable data can be obtained by changing the parameters
of the riser model, including fluid properties, boundary conditions, and initial conditions,
so as to study the VIV characteristics of a riser under different conditions.
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In 1995, Duggal et al. [3] carried out experimental research on SCRs using a wave pool.
Their experimental results showed that, under wave loading, the riser VIV is very apparent
and the riser produces clear displacements. In 2005, Chaplin et al. [4] studied the VIV
characteristics of a riser model under stepped flow through experiments and obtained a
large amount of more accurate data. These data are often used by semi-empirical modeling
of riser VIV numerical simulation software. Their experiment also observed the multimodal
vibration of a marine riser, which deepened people’s understanding of VIVs. Baarholm et al.
[5] studied the VIV characteristics of a double-riser model through experiments, which
showed that risers installed side by side in front and back can affect each other during
VIVs. As a result, the riser VIV from the incoming flow direction is weakened, thus
providing a certain idea for vibration reduction research of risers. Trim et al. [6] focused on
the VIV characteristics of risers with high slenderness ratios. Their research showed that
the characteristics of riser VIVs with high slenderness ratios are different along its length,
which indicates that risers with high slenderness ratios are more prone to multimodal
VIVs. In 2009, Zhang et al. [7] further studied the effects of internal flow and top tension
on the VIV characteristics of risers through experiments, using riser models of different
materials for comparison. Their experimental results showed that, when the top tension
is small, the internal flow can reduce the vibration frequency of the riser to a certain
extent, such that, with increasing top tension, the influence of internal flow on VIVs
gradually decreases. In 2011, Gao et al. [8] established a three-dimensional model of
a SCR attached to the Deepwater Spar platform, evaluated fatigue damage caused by
VIVs, and obtained the following conclusions. Fatigue damage caused by VIVs is closely
related to the current velocity distribution; the larger the velocity is, the higher the number
of modes involved in the riser vibration; fatigue damage caused by VIVs is the largest
in the end boundary area. The study of VIVs can be considered as an FSI problem in
which the vibration is created based on fluid dynamics. The modeling and solution of
the FSI problem requires rigorous numerical development to combine the FE model of
solid structures with the numerical model of fluid and how to correctly define the coupling
boundary of fluid structure, which describes many mechanical and physical properties.
In the past few years, several numerical studies on FSI have been carried out. In 2016,
Wang et al. [9] conducted numerical research on VIVs of a vertical riser under uniform and
linear shear flow. The calculated results were in good agreement with the experimental
data. The results showed that the dominant mode numbers, maximum root-mean-squared
amplitude, dominant frequency, and fatigue damage index increased with increased flow
velocity. In 2017, Duanmu et al. [10] conducted numerical simulation of VIVs for long
flexible vertical risers with different aspect ratios in uniform and shear flows. Three
aspect ratios were simulated, including length/diameters (L/D) at 500, 750, and 1000, and
the results showed that, under the same parameters, the L/D ratio has a significant effect
on the VIVs of a long flexible vertical riser. An increased L/D ratio has a great influence
on the downstream equilibrium position of the riser, while the curvature of the riser has
a small influence. As the aspect ratio increases from 500 to 1000, the maximum in-line
average displacement increases from 3- to 8-times the diameter. In 2019, Lin et al. [11]
proposed a grid-independent numerical methodology that couples the strip-theory-based
discrete vortex method (SDVM) with the finite element method (FEM) to simulate the VIVs
of a long flexible vertical riser. Based on the strip theory, the three-dimensional flow field
was approximately simulated by a series of calculations of “flow strip”. The unsteady
vorticity transport equation of each “flow strip” is solved numerically by the Lagrange
discrete vortex method. The flexible riser is modeled as a tensioned Bernoulli–Euler beam
and the dynamic equation solved by the time-domain finite element method. Through a
detailed comparison of predicted existing values and experimental data, good consistency
was obtained, including IL and CF VIV response modes, root-mean-squared amplitude,
and dominant frequency of the structure. In 2021, Ben et al. [12] proposed a numerical
simulation implementing the FEM of a mixed convection of a CNT–water nanofluid in a
micro-channel equipped with two thin fins made of elastic material. By changing the CNT
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volume fraction and inlet fluid velocity, they proved that the use of elastic fins leads to
a better cooling effect under stronger flow. Besides, the vibration of fins will reduce the
lift and drag forces. The variation of the volume fraction of CNT nanoparticles has no
important effect on the lift and drag forces. In 2021, Badhurshah et al. [13] used a solver
based on the immersed boundary method (IBM) to simulate free transverse vibrations
of a cylinder attached to bistable springs and linear springs in the presence of uniform
fluid flow. They performed simulations of VIVs with a linear spring and bistable springs
with two different inter-well separations, over a wide range of reduced velocity. They
proved that the range of reduced velocities over which the structure oscillates increases
significantly for cases with bistable springs, as compared to linear springs, which suggests
a direction to design nonlinear elastic supports for bluff bodies, with the goal of providing
an optimal lock-in range during VIVs of the structure. In 2021, Xie et al. [14] established
a nonlinear dynamic model of TTR conveying variable density flow while carrying out
VIVs and solved it numerically. Comparing calculated results with the experimental and
CFD simulation results showed that riser vibration is strongly affected when the internal
fluid density fluctuates at a small circumferential frequency. Fatigue damage of the riser
increases as the amplitude of the fluctuation of the average fluid density or internal variable
fluid density increases.

In this study, the computational fluid dynamics software FLUENT was used to simu-
late the VIVs around TTRs and SCRs using the calculation method of large eddy simulation
(LES). The shape, frequency, and amplitude of VIVs produced by TTRs and SCRs at differ-
ent times and depths were simulated. The corresponding characteristics of VIVs generated
by TTRs and SCRs under the same IL Reynolds number (Re, 4000) [15] were comparatively
studied using a large eddy simulation method, which provided a basis for rational selection
of risers in practical engineering.

2. Numerical Method
2.1. Governing Equation

In this study, the turbulence calculation method of large eddy simulation [16,17] was
used to set the incoming flow and far rear boundary conditions at a distance far enough
from the riser. Turbulence contains a series of large and small eddies, and the eddy scale
range is large. We hope that the scale of the computational grid can be small enough to
distinguish the motion of the minimum eddy, but the minimum scale computational grid
currently used is still much larger than the minimum eddy. The large eddy structure is
greatly affected by the flow field, and the small eddy can be considered as isotropic, so the
large eddy and small eddy calculation can be treated separately. The small eddy can be
calculated with a unified model. Therefore, the basic idea of large eddy simulation was to
directly calculate large-scale eddies and simulate small eddies through subgrid modeling.
Unlike time averaging, the large eddy simulation method divides eddies into large and
small eddies through spatial filtering operations. Therefore, the governing equation of large
eddy simulation was obtained by filtering the transient Navier–Stokes equation in Fourier
space or geometric space. The filtering process effectively filtered out those small-scale
vortices whose scale was less than the wave width or the scale was less than the grid scale
used in the calculation. The filtered equation was the main governing equation controlling
the motion of a large eddy.

The filter variable was defined as φ(x), expressed as [18]

φ(x) =
∫

D
φ
(
x′
)
G
(
x, x′

)
dx′ (1)

where D is the fluid domain and G the filtration equation, which determines the scale of
the solved vortex.

After discretization, there was

φ(x) =
1
V

∫
ν

φ
(

x′
)
dx′, x′∈ν (2)
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where V refers to the volume of the calculation grid unit and the filtering equation G
(

x, x′
)

written as

G
(
x, x′

)
=

{
1/V, x′∈ν
0, otherwise

}
(3)

Large eddy simulation was applied to compressible and incompressible fluids. Here,
the incompressible fluid was solved, so the following was the LES governing equation of
an incompressible fluid.

By filtering the N-S equation [19], two expressions were obtained, as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (4)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂

∂xj

(
µ

∂σij

∂xj

)
− ∂p

∂xi
−

∂τij

∂xj
(5)

where ui is the filtered velocity component along the xi direction of a Cartesian coordinate
system, t the time, p the pressure, ρ the fluid density, and σij the stress tensor defined
according to molecular viscosity, expressed as

σij ≡
[

µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
− 2

3
µ

∂ul
∂xl

δij (6)

Here, τij is the sub-grid stress, defined as

τij ≡ ρuiuj − ρuiuj (7)

As the filtration equation of the subgrid scale was unknown, the calculation model
needed to be used to solve the subgrid stress. The turbulent stress of the subgrid scale was
calculated using the Boussinesq hypothesis [20] in the RANS model, expressed as

τij −
1
3

τkkδij = −2µtSij (8)

where µt is the turbulent viscosity coefficient of the subgrid, in which the homogeneous
term τkk in the subgrid stress is not described by the model, but the filtered static pressure
term Sij is added and Sij the change rate of the stress tensor. The solution equation was

Sij ≡
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(9)

For compressible flow, it was convenient to deduce the filtration equation of density
average (Favre), expressed as

φ =
ρφ

ρ
(10)

The N-S equation filtered by Favre [21] has the same form as Equation (5). The com-
pressible term of sub-grid stress was defined as

Tij = −ρuiuj − ρuiuj (11)

This term was decomposed into a deviation part and a uniform part, indicated as

Tij = Tij −
1
3

Tllδij︸ ︷︷ ︸
Deviation term

+
1
3

Tllδij︸ ︷︷ ︸
Uni f orm term

(12)
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The deviation part of the subgrid stress tensor adopted the compressible part in the
Smagorinsky model [22], expressed as

Tij −
1
3

Tuδij = 2µt

(
δij −

1
3

Tuδiiδij

)
(13)

For incompressible flow, the term involving Tu was ignored or written as Tu = γM2
sgs p,

with Msgs the subgrid Mach number. When the turbulent Mach number was very small,
the subgrid Mach number was also a small quantity.

For µt, there were
µt = ρL2

s |S| and (14)

Ls = min
(

κd, CsV1/3
)

(15)

where Ls is the mixing length of the subgrid, |S| ≡
√

2SijSij, κ the von Karman constant, d
the minimum distance to the wall, Cs the Smagorinsky constant, and V the volume of the
calculation grid unit.

For the isotropic inertial region, Cs = 0.17 provided transient flow close to the solid
surface, as well as excessive attenuation of large-scale fluctuations. At the same time, Cs
was not a universal constant, such that the biggest disadvantage of this model was the
value of Cs. Here, Cs = 0.1 was an ideal number for most flows.

2.2. Geometric Model and Mesh Generation

Both TTR and SCR models have the same size. The calculation adopted the model
scale, with the length of the pool 8 m, width 1 m, depth 3.59 m, and riser diameter 0.008 m.

The computational domain of the two models are shown in Figure 1.

(a) (b)

Figure 1. The calculation model diagrams of (a) TTR and (b) SCR. (a) TTR calculation model; (b) SCR
calculation model.

In order to determine the mesh number of the simulation model, reduce the calculation
steps, and improve the mesh accuracy, under the condition that the Reynolds number Re
is 4000, the influence of the mesh number on the lift and drag coefficients produced by
VIVs was compared for the TTR model. Table 1 shows the grid independence verification
results. It can be seen from Table 1 that when the number of grids is 1.4× 106, the lift
coefficient does not change, and the drag coefficient is also very close, which indicates
that the calculation results will not change with the refinement of grids. Therefore, in the
following research, the grid number of the TTR model is controlled at about 1.4× 106.

Similarly, the influence of the mesh number on the lift and drag coefficients produced
by VIVs was compared for the SCR model. Table 2 shows the grid independence verification
results of the SCR. It can be seen from Table 2 that when the number of grids is 4.2× 106,
the lift and drag coefficients no longer change. Consequently, the grid number of the SCR
model is controlled at about 4.2× 106.
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Table 1. Grid independence verification of TTR.

Grid Number Lift Coefficient Lift Coefficient

0.8× 106 0.388 0.783
1.0× 106 0.385 0.782
1.2× 106 0.382 0.782
1.4× 106 0.382 0.782
1.6× 106 0.382 0.782

Table 2. Grid independence verification of SCR.

Grid Number Lift Coefficient Lift Coefficient

2.3× 106 1.336 1.403
3.0× 106 1.334 1.402
3.6× 106 1.333 1.401
4.2× 106 1.332 1.401
4.8× 106 1.332 1.401

Hexahedral grids were used in the two calculation models and the total number of
cells in TTR 1,404,000 and SCR 4,231,800.

The calculation grid in the TTR model was consistent in all depths (Figure 2). The forms
of the calculation grid in the SCR model were different in all directions (Figure 3).

(a) (b)

(c) (d)

Figure 2. Schematic diagram of TTR calculation grid: (a) schematic diagram of the grid perpendicular
to the depth direction (Y); (b) partial schematic diagram of the grid perpendicular to the depth
direction (Y); (c) schematic diagram of the depth direction (Z) grid; (d) partial schematic diagram of
the grid perpendicular to the inline flow direction (X).
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(a) (b)

(c) (d)

Figure 3. Schematic diagram of SCR calculation grid: (a) schematic diagram of the grid perpendicular
to the depth direction (Y); (b) partial schematic diagram of different depth (Y) grids; (c) schematic
diagram of the depth direction (Z) grid; (d) partial schematic diagram of the grid perpendicular to
the inline flow direction (X).

2.3. Boundary Condition

Four boundary conditions were involved in these calculations (Figure 4):

a. Velocity inlet boundary condition;
b. Pressure outlet boundary condition;
c. Symmetric boundary condition;
d. Wall boundary condition.

a. Velocity inlet boundary condition:
The random composition at the inlet was set in a mainstream way, such that, at the
inlet, there were

Ux = U∞ = 0.5 m/s (16)

Uy = Uz = 0 m/s (17)

Ux = Uy = Uz = 0 m/s2 (18)

b. Pressure outlet boundary condition:
The outlet position was set as the pressure outlet and the boundary condition at the
pressure outlet position set as static pressure changing with depth, such that there was

P = −ρwater × g× depth (19)

where depth is the water depth, ρwater is the density, and g is the acceleration of gravity.
As the coordinate origin was taken at the position of the water surface, the water
depth was a negative value. Similarly, the random composition at the outlet was set in
a mainstream way.

c. Symmetry condition:
∂P
∂n

= 0 (20)

d. Wall boundary condition:
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In the calculations, the walls were all nonslip wall boundary conditions, the influence
caused by the roughness of the riser outer surface ignored, and the riser considered to
be a hydraulically smooth pipe, such that there was

Ui = 0 m/s (21)

Figure 4. Schematic diagram of boundary condition types.

2.4. Other Control Parameters

In this study, the computational fluid dynamics software Fluent was used for calcula-
tions. Thus, some parameters needed to be set in the calculation process:

• The calculation used an implicit solution method based on pressure.
• At the same time, a second-order implicit transient calculation model (unsteady)

was used.
• Coupling of pressure and velocity adopted the calculation method of pressure-implicit

with splitting of operators.
• For discretization of the pressure term, the discrete scheme dominated by the volume

force was adopted.
• For discretization of the momentum equation, the discrete scheme of boundary posi-

tion central difference was adopted [23].
• The calculated time step was 0.0001 s.
• In the calculations, when extracting the lift and drag coefficients, the reference area used

was the projected one-time area of diameter and height, expressed as Sre f = 6.4× 10−5 m2.

3. Calculation Results and Analysis
3.1. TTR Calculation Results

Variation curves of the lift and drag coefficients of the TTR with time at different
underwater depths are shown in Figures 5 and 6.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Variation curves of the lift coefficient of the TTR with time at different underwater depths:
(a) lift coefficient curve at 1 m underwater; (b) lift coefficient curve at 2 m underwater; (c) lift
coefficient curve at 3 m underwater; (d) lift coefficient curve of the entire riser.

(a) (b)

(c) (d)

Figure 6. Variation curves of the drag coefficient of the TTR with time at different underwater depths:
(a) drag coefficient curve at 1 m underwater; (b) drag coefficient curve at 2 m underwater; (c) drag
coefficient curve at 3 m underwater; (d) drag coefficient curve of the entire riser.

From the above calculation results, the lift and drag coefficients in TTR were seen to
change little with changes in depth, with the lift coefficient amplitude between 0.32 and
0.42 and drag coefficient amplitude between 0.774 and 0.794. The lift and drag coefficients
changed periodically with time. The vibration period of the lift and drag coefficients was at
0.528 and 0.264 s, respectively.
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Comparing the lift and drag coefficients of the TTR at different depths, it was con-
cluded that, under different depths, the lift and drag coefficients produced by VIVs had the
same cycle size, a different amplitude, and a different phase, and the amplitude near the
middle position (2 m underwater) was the largest (Figure 7).

(a) (b)

Figure 7. Contrast curves of TTR lift and drag coefficients at different underwater depths: (a) contrast
curve of TTR lift coefficient at different water depths; (b) contrast curve of TTR drag coefficient at
different water depths.

The comparison of the vibration periods of the lift and drag coefficients’ curves was
facilitated by normalizing the lift and drag coefficients’ curves of different depths (Figure 8).

The drag period generated by the VIVs of the TTR at different depths was concluded
to be 1/2 of the lift period (Figure 8) and a phenomenon that existed at different depths and
in the entire riser. The vibration frequency of the drag was double the vibration frequency
of lift.

(a) (b)

(c) (d)

Figure 8. Contrast curves of the vibration periods of the lift and drag coefficients at different
underwater depths in TTR: (a) contrast curve of lift and drag coefficients at 1 m underwater; (b)
contrast curve of lift and drag coefficients at 2 m underwater; (c) contrast curve of lift and drag
coefficients at 3 m underwater; (d) contrast curve of lift and drag coefficients of the entire riser.

At a certain time, vorticity was generated by the TTR at different depths (Figure 9). At a
certain moment, the shape of the vortices generated by the TTR did not change with depth.

With the passage of time, the vorticity cloud diagram at the same depth at different
times showed that the mode of vorticity remained unchanged at different times (Figure 10).
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(a) (b)

(c) (d)

Figure 9. Cloud map of vorticity contour behind the TTR at different underwater depths: (a) cloud
map of vorticity contour behind the TTR at 1 m underwater; (b) cloud map of vorticity contour behind
the TTR at 2 m underwater; (c) cloud map of vorticity contour behind the TTR at 3 m underwater;
(d) contour map of vorticity behind the TTR at different depths.

(a) (b)

Figure 10. Cloud map of vorticity at 2 m underwater depth at different times: (a) at the moment of
60 s, the vorticity cloud map of 2 m water depth; (b) at the moment of 66 s, the vorticity cloud map of
2 m water depth.

3.2. SCR Calculation Results

In the SCR, the lift coefficient curves at different depths are shown in Figure 11. The
drag coefficient curves of the SCR at different depths are shown in Figure 12.

From the above calculation results in the SCR, the lift and drag coefficients were seen
to change greatly with changes in depth and the lift coefficient amplitude between 0.9
and 1.5 and drag coefficient amplitude between 0.75 and 1.3. The lift and drag coefficients
changed periodically with time, and with changes in depth, the lift and drag coefficients
changed correspondingly. The specific values are shown in Table 3.

Table 3. Period of lift and drag coefficients generated by VIVs at different depths of SCR.

Position 1 m 2 m 3 m Entire Riser

Lift coefficient period/(s) 0.2544 0.3028 0.3223 0.2618
Drag coefficient period/(s) 0.1273 0.1522 0.1564 0.1377
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(a) (b)

(c) (d)
Figure 11. Variation curves of the lift coefficient of the SCR with time at different underwater depths:
(a) lift coefficient curve at 1 m underwater; (b) lift coefficient curve at 2 m underwater; (c) lift
coefficient curve at 3 m underwater; (d) lift coefficient curve of the entire riser.

(a) (b)

(c) (d)
Figure 12. Variation curves of the drag coefficient of the SCR with time at different underwater
depths: (a) drag coefficient curve at 1 m underwater; (b) drag coefficient curve at 2 m underwater;
(c) drag coefficient curve at 3 m underwater; (d) drag coefficient curve of the entire riser.
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Comparing the lift and drag coefficients of the SCR at different depths, the following
conclusions were drawn (Figure 13). The lift and drag coefficients generated by VIVs at
different depths had different periods, different amplitudes, and different phases. The drag
coefficient near the water surface was the largest, while the amplitude of the lift coefficient
was also the largest. The closer to the bottom of the water, the smaller the lift and resistance
generated by vibration were.

(a) (b)

Figure 13. Contrast curves of SCR lift and drag coefficients at different underwater depths: (a) contrast
curve of SCR lift coefficient at different water depths; (b) contrast curve of SCR drag coefficient at
different water depths.

Comparison of the vibration period of the lift and drag coefficients’ curves were facili-
tated by normalizing the lift and drag coefficients’ curves of different depths, respectively
(Figure 14).

(a) (b)

(c) (d)

Figure 14. Contrast curves of the vibration periods of lift and drag coefficient at different underwater
depths in SCR: (a) contrast curve of lift and drag coefficients at 1 m underwater; (b) contrast curve
of lift and drag coefficients at 2 m underwater; (c) contrast curve of lift and drag coefficients at 3 m
underwater; (d) contrast curve of lift and drag coefficients of the entire riser.

When an eddy is generated on one side of the riser, this will reduce the pressure on
the side where the fluid velocity increases and increase the pressure on the other side.
Under the action of the pressure difference, the riser moves from the side, generating an
eddy to the other side. When the next eddy is generated, the riser will be subjected to the
opposite pressure difference and then move in the opposite direction, and so on. When
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an eddy falls off, the fluid velocity in the wake area of the riser will change once, and the
direction of the drag applied to the riser will not change. Therefore, every time an eddy
is generated, the drag of the riser changes by one period; the lift of the riser changes only
once for each pair of eddies. Consequently, the period of lift change is generally twice that
of drag change.

Combining Figure 14 and Table 3, the period between the lift force and drag force
of the VIVs were concluded to be generated by the SCR close to 2/1, but it was not like
the rigorous 2/1 relationship in the TTR. This shows that one period of eddy shedding
produces one lift change cycle and two drag change cycles, which is consistent with the
actual theory [24].

Vorticity maps were generated by the SCR at different depths (Figure 15). It was
observed that, at a certain time, the shape of the vortex generated by the SCR did not
change with depth.

(a) (b)

(c) (d)

Figure 15. Cloud map of vorticity contour behind the SCR at different underwater depths: (a) cloud
map of vorticity contour behind the SCR at 1 m underwater; (b) cloud map of vorticity contour behind
the SCR at 2 m underwater; (c) cloud map of vorticity contour behind the SCR at 3 m underwater; (d)
contour map of vorticity behind the SCR at different depths.

With the passage of time, the vorticity cloud diagram at the same depth at different
times showed that the mode of vorticity remained unchanged at different times (Figure 16).

(a) (b)
Figure 16. Cloud map of vorticity at 1 m underwater depth at different times: (a) at the moment of
14 s, the vorticity cloud map of 1 m water depth; (b) at the moment of 16 s, the vorticity cloud map of
1 m water depth.
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3.3. Results Analysis

Through the calculations, the VIVs were found to be generated by the TTR and SCR
under the same Reynolds number (Re, 4000) having the following characteristics:

Similarities:

• With the passage of depth and time, the vortex mode of the VIVs generated by the
riser remained unchanged;

• The period of the lift coefficient of the VIVs was about twice that of the drag coefficient;
• With changes in depth, the amplitude of the lift and drag coefficients changed;
• With changes in depth, the vibration phase of the lift and drag coefficients changed.

Differences:

• With changes in depth, the vibration period of the drag and lift coefficients of the SCR
changed and the value of the TTR remained unchanged. This was due to the lift and
drag coefficients being respectively proportional to the lift and drag and inversely
proportional to the frontal area of the riser section. The frontal area of the SCR section
changes with depth, so the vibration period of the drag and lift coefficients of the SCR
changed and the value of the TTR remained unchanged with depth;

• The vibration period of the lift coefficient of the SCR was close to twice the vibration
period of the drag coefficient, but there was a deviation. However, the vibration
period of the TTR lift coefficient was twice the vibration period of the drag coefficient.
Similarly, the change of the frontal area of the riser section resulted in the difference
between the TTR and SCR;

• With changes in depth, the drag and lift coefficients of the part near the water surface
in the SCR were the largest and the lift and drag coefficients of the middle section in
the TTR the largest. Since the frontal area of the SCR near the water surface was the
smallest, the drag and lift coefficients here were the largest. After the deformation
of the TTR, the frontal area of the middle section was the smallest, so the drag and
lift coefficients were the largest here. This observation has practical significance for
effectively controlling the VIVs of riser. Dampers can be installed in the middle section
of the TTR and the part of the SCR close to the water surface, so as to usefully reduce
the intensity of the VIVs.

4. Conclusions

In this paper, through the numerical analysis of the VIVs generated by the TTR
and SCR in the state of IL and Reynolds number(Re, 4000), the following conclusions
were drawn:

• Under the same water depth, the vibration period of the lift and drag coefficients of
the TTR was about twice that of the SCR;

• The lift coefficient vibration period of the SCR was close to twice that of the drag
coefficient vibration period and the lift coefficient vibration period of the TTR twice
that of the drag coefficient vibration period;

• With increased water depth, the lift and drag coefficients of the SCR decreased;
• The lift and drag coefficients of the TTR changed little with water depth, and the lift

and drag coefficients were the largest in the middle section;
• The modes of vortices generated by the SCR and TTR at this Reynolds number (Re,

4000) did not change with depth and time.
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