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Abstract: This paper is concerned with the coordinated formation control problem of multiple
autonomous underwater vehicles (AUVs) under alterable communication topology and time-varying
delay in discrete time domain. Firstly, the multi-AUV system is divided into one leader and multiple
followers, and the communication topology is divided into two parts. The coupled nonlinear AUV
model is linearized into a second-order integral model using state feedback. Secondly, two types of
coordinated controllers in discrete time are proposed: the controller for multi-AUV system without
delay, the controller for multi-AUV system with time-varying delay. Then, the formation control
issue for multiple AUVs with alterable topology is treated as the asymptotic stability of an error
system. The stability analysis of the error system consisting of the state errors between each follower
and the leader is performed, to obtain some novel sufficient conditions for achieving the formation
control objective. Finally, some simulation results are presented to demonstrate the effectiveness of
the theoretical results, and the comparisons describe the effects of communication topology and delay
on the performance of the control system.

Keywords: coordinated formation control; autonomous underwater vehicles (AUVs); discrete-time;
alterable communication topology; time-varying delay

1. Introduction

With the exploration and utilization of marine resources, the coordinated control of
autonomous underwater vehicles (AUVs) has been paid more and more attention [1,2].
Compared with a single AUV, multi-AUV formation equipped with more sensors can
complete more complex and larger ocean missions through information exchange between
AUVs [3]. However, affected by the complicated sea conditions or vehicle accidents, the
transmission of information between AUVs may be interrupted, resulting in the inability
to communicate information within the multi-AUV system, so coordination of the system
should be guaranteed in the case of emergencies [4].

In recent years, many scholars have made significant progress in the motion control
of AUV monomers. In a complex operating environment, some tracking or searching
tasks can be accomplished through such control methods as adaptive control [5,6], robust
control [7,8], and fuzzy control [9,10], etc. In Ref. [5], an adaptive control strategy is
developed to handle the region tracking control problem of AUVs based on prescribed
performance theory and backstepping mechanism. A robust model predictive control
is presented for underactuated AUV subject to multiple state constraints and external
uncertainties in [7]. In consideration of the uncertain parameters of the AUV model, one
adaptive fuzzy control law which is based on Gaussian function is formulated to ensure the
stability of the tracking control system in [10]. These approaches can accomplish excellent
motion control tasks for a single AUV, but coordinated control techniques for multiple
AUVs also require intense development. To solve the problem of formation control of
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the AUV, some traditional nonlinear control methods have been used in the previous
literature. Cui proposed a backstepping controller for leader-following formation control
of underactuated AUV in [11], the controller can control the formation members to track
the reference trajectory according to the position of the leader and the desired formation
without velocity. In [12], Qi designed an adaptive distributed controller for AUV, which
can finally make each AUV form the desired formation on the preset path. Ref. [13]
solved the formation–containment control problem of AUVs by employing a two-layer
control framework consisting of the leader layer and the follower layer. To enable multiple
AUVs suffering from external perturbations to track the reference trajectory and maintain
appropriate formation, Ref. [14] proposed a distributed Lyapunov-based model predictive
controller. The aforementioned literatures primarily focus on the control algorithms for
formation systems, they do not concern the influence of communication between AUVs on
the control system.

Meanwhile, consensus theory is one of the most momentous approaches of the coordi-
nated formation control of a multi-agent system. In multi-agent system, the consensus is de-
fined as that all agents maintain the common state in positions, velocities and attitudes [15].
More development process of the consensus algorithm is described in [16,17]. The early
consensus algorithm was applied to the first-order multi-agent system under the condition
of random communication topology and communication disturbance [18,19], which also
laid the foundation for the consensus research of second-order multi-agent [20–22]. Illumi-
nated by the coordinated control of multi-UAV [23–25], some consensus algorithms have
been applied to multi-AUV system [26,27]. In [28], Yan proposes a control protocol with
additional functions to solve the formation control problem when considering environ-
mental disturbances. Ref. [29] addresses a leader-following consensus control protocol for
multi-AUV recovery system with time-varying delay. The AUV formation trajectory track-
ing control problem in a class of weak communication environment is investigated in [30].
Different from the communication on the land, the communication of the multi-AUV sys-
tem in the ocean will be affected by various factors, which include the time delay due to
the slow transmission rate of sound waves and the information transmitter or receiver
of some vehicles cannot work properly. Moreover, some coordinated control provided
by using a consensus algorithm may ignore the nonlinear and coupling parameters in
the vehicle dynamics. Therefore, accurate models suitable for consensus algorithms and
complex communication conditions are serious challenges in the application of combining
of consensus and coordinated control problem of multi-AUV formation.

Based on the above discussion, the coordinated formation control issue of multi-
AUV system with alterable communication topology and time-varying delay in discrete
time domain will be discussed in this paper. In order to ensure the accuracy of AUVs
control system and simplify the nonlinear coordinated control problem, the state feedback
technique is employed to derive the discrete-time AUV model. The main contributions are
as follows.

(1) Depending on the presence or absence of communication delay, two feasible coordi-
nated controllers are designed to guarantee that multiple AUVs can achieve formation
in the discrete time domain.

(2) The error system between the leader and the followers is constructed and new suffi-
cient conditions to keep it asymptotically stable are derived. Based on these conditions,
practicable controller gains can be deduced, as well as constraints on the alterable
communication topology.

(3) In order to validate the feasibility of the main theoretical results, two-dimensional
and three-dimensional multiple AUVs simulations are carried out, respectively. The
results are compared to show the power of different communication conditions on
the control system.
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2. Preliminaries
2.1. Notations

In this paper, ⊗ represents the Kronecker product, and det(�) is the determinant
of a matrix. R indicates the real number set, Rm denotes the m× 1 column vector, and
Rn×m is n × m matrix. In represents the identity matrix with n dimensions, AT is the
transpose of matrix A, ‖�‖ stands for the Euclidean norm, and |�| denotes the modulus of
complex number.

2.2. Graph Theory

The communication topology between AUVs can be described by a directed graph,
which is an important basis for analyzing the communication relationship and commu-
nication quality in a multi-AUV system. Assume that there are n vehicles in a system,
the directed graph G = (υ, ε, A) consists of a node set υ = {1, 2, . . . , n}, an edge set
ε = {(i, j)|i, j ∈ υ} ⊆ υ× υ, and the adjacency matrix A = [aij] ∈ Rn×n. In the communi-
cation graph of this system, it is defined that the communication weights between AUVs
are the same. In A, aij = 1 means that AUVi can receive the information from AUVj if and
only if (i, j) ∈ ε, aij = 0 otherwise. The graph G is called strongly connected if AUVi can
receive information from AUVj and AUVj can receive information from AUVi ∀(i, j) ∈ ε.
Define the neighbor set of nodes i as Ni = {j ∈ υ|(i, j) ∈ ε}. The in-degree matrix is a
diagonal matrix D = diag(din

1 , din
2 , . . . , din

n ), where din
i = ∑n

j=1 aij represents the number of
vehicles whose information can be received by AUVi. The Laplacian matrix is defined as
L = [lij] = D− A. More information about graph theory can be obtained in [31].

The communication topology in this paper is divided into two parts. One is the
communication topology GB between the leader AUV0 and each follower AUVi, and
the other is the communication topology G between all the followers AUVi. The matrix
related to GB is defined as B = diag(b10, b20, . . . , bn0), where bi0 = 1 if AUVi can receive
information from AUV0, and bi0 = 0 indicates that AUV0 does not send information to
AUVi.

2.3. Feedback Linearization of AUV Model

The dynamic model of AUV can usually be described by six degrees of freedom (DOF)
model according to the body-fixed {B} and earth-fixed {E} coordinate systems as shown in
Figure 1. In most cases, the impact of roll on the AUV motion is very weak, so the nonlinear
coupled kinematics and dynamics motion model with 5-DOF of the AUV that ignores the
roll speed can be expressed as{

η̇ = J(η)v

Mv̇ + C(v)v + D(v)v + g(η) = τ
(1)

where η = [xe, ye, ze, θ, ψ]T ∈ R5 represents the states of position and Euler angles for AUV,
J(η) is the rotational transformation matrix from body-fixed frame to earth-fixed frame,
v = [ub, vb, wb, q, r]T ∈ R5 is the velocity vector of AUV, M is the inertia matrix, C(v) is the
Coriolis and centripetal matrix, D(v) is the damping matrix, g(η) is a vector of generalized
gravitational and buoyancy forces and moments, and τ is the control inputs. More detailed
parameters of the components of (1) are available in [32,33].

In this paper, the shape of the AUV is like the torpedo, and it is highly symmetrical in
both the horizontal and vertical planes, which means that some complex parameters in the
model can be simplified or even ignored, while g(η) is equal to zero. Both the body-rigid
part and hydrodynamic part for added mass are contained in matrix M and C(v), which
have been described more specifically in [34].
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Figure 1. AUV model in 6-DOF.

The motion model of AUV can be derived as[
η̇
v̇

]
=

[
I 0
0 −M−1

][
J(η)v
K(v)v

]
+

[
0

M−1γ(σ)

]
ũ (2)

where ũ = [Tu, Tv, Tw, δs, δr]
T represents propulsion forces of the AUV in three velocity

directions and rudder angles on horizontal and vertical, γ is the hydrodynamic coefficient
matrix with respect to the rudder angles, and K(v) = −

(
C(v) + D(v) + g(η)ṽT), where

ṽTv = 1.
Based on (2), the standard nonlinear function of AUV model can be obtained as{

σ̇ = f̃ (σ) + g̃(σ)ũ

µ = h̃(σ)
(3)

where σ = [ηT , vT ]
T , f̃ (σ) = [ f̃i(σ)]

T
=

[
I 0
0 −M−1

][
J(η)v
K(v)v

]
, i = 1, 2, . . . , 10,

g̃(σ) = [g̃ij(σ)] =

[
0

M−1γ(σ)

]
, i, j = 1, 2, . . . , 10, h̃(σ) = [h̃i(σ)]

T
= η, i = 1, 2, . . . , 5.

For the output h̃(σ) in system (3), the Lie derivative of h̃i(σ) with respect to f̃ (σ)
is expressed as L f̃ h̃i(σ) = f̃i(σ), i = 1, 2, . . . , 5 , then we can get the second-order Lie

derivative of h̃i(σ) with respect to f̃ (σ): L2
f̃
h̃i(σ), i = 1, 2, . . . , 5.

Two new vectors for AUVi are defined as{
xi = [h̃1(σ), h̃2(σ), h̃3(σ), h̃4(σ), h̃5(σ)]

T

vi = [L f̃ h̃1(σ), L f̃ h̃2(σ), L f̃ h̃3(σ), L f̃ h̃4(σ), L f̃ h̃5(σ)]
T (4)

Based on the above contents, the control input of the new linearization system is
defined as

ui = B(σ) + Γ(σ)ũ (5)

where B(σ) = [L2
f̃
h̃1(σ), L2

f̃
h̃2(σ), L2

f̃
h̃3(σ), L2

f̃
h̃4(σ), L2

f̃
h̃5(σ)]

T , Γ(σ) = [Lg̃jL f̃ h̃i(σ)] ∈
R5×5. The actual AUV control input can be calculated as ũ = Γ(σ)−1(u− B(σ)).

By combining (4) and (5), the standard second-order integrator dynamic of after
feedback linearization can be obtained as{

ẋi = vi

v̇i = ui
(6)

where xi ∈ R5, vi ∈ R5, ui ∈ R5, i = 1, 2, . . . , n.
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2.4. Lemmas and Definitions

Lemma 1 ([35]). The Kronecker product is an operation between two matrices represented by
symbol ⊗ , with the following properties:

(1) (kA)⊗ B = A⊗ (kB);
(2) (A + B)⊗ C = A⊗ C + B⊗ C;
(3) (A⊗ B)(C⊗ D) = (AC)⊗ (BD).

Lemma 2 ([36]). Let M =

[
A11 A12
A21 A22

]
and A11, A12, A21, A22 ∈ Rn×n. Then det(M) =

det(A11 A22 − A12 A21), if A11, A12, A21 and A22 commute pairwise.

Lemma 3 ([37]). Polynomial Q(z) (of degree d) is Schur stable if and only if polynomial R(z) is
Hurwitz stable, where R(z) = (z− 1)dQ( z+1

z−1 ). For a complex polynomial R(z), let
R(iω) = m(ω) + in(ω), where m(ω), n(ω) ∈ R, and i is the imaginary unit.

Definition 1 ([38]). The polynomial m(ω), n(ω) is interlaced, if the following two statements
are satisfied.

(1) m(ω) = 0, n(ω) = 0 only have distinct real roots, respectively, m1 < m2 < · · · < ml ,
n1 < n2 < · · · < nl′ ;

(2) |l − l′| ≤ 1 and the roots of m(ω) = 0, n(ω) = 0 satisfy one of the following four cases:

(a) m1 < n1 < m2 < n2 < · · · < n′l < ml , l = l′ + 1;
(b) n1 < m1 < n2 < m2 < · · · < m′l < nl , l′ = l + 1;
(c) m1 < n1 < m2 < n2 < · · · < n′l < ml , l = l′;
(d) n1 < m1 < n2 < m2 < · · · < m′l < nl , l = l′.

Lemma 4 ([38,39]). The complex polynomial R(z) is Hurwitz stable if and only if the related pair
m(ω) and n(ω) is interlaced, and m(0)n′(0)−m′(0)n(0) > 0.

3. Main Results

In actual engineering applications, continuous information exchange between AUVs is
difficult to achieve, so we consider the discrete-time coordinated control of the multi-AUV
system. By using the forward difference method for (6), the discrete-time dynamics of
AUVi can be obtained as {

xi(k + 1) = xi(k) + Tvi(k)

vi(k + 1) = vi(k) + Tui(k)
(7)

where k represents the discrete-time index and T is the sampling period. xi(k) ∈ R5,
vi(k) ∈ R5 are the linearization position and velocity states of AUVi at t = kT.

According to Equation (7), the dynamics of leader AUV0 and follower AUVi can be
described as the following two forms (see Equations (7) and (8)):

x0(k + 1) = x0(k) + Tv0(k) (8)

where xi ∈ R and vi ∈ R are the corresponding individual elements in xi ∈ R5 and vi ∈ R5,
respectively. ui ∈ R is the element in ui ∈ R5 that corresponds to xi.

Definition 2. The coordinated formation of multi-AUV system is achieved if the following two
equations are satisfied: 

lim
k→∞
‖xi(k)− x0(k)‖ = 0, i ∈ υ

lim
k→∞
‖vi(k)− v0(k)‖ = 0, i ∈ υ
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Remark 1. Suppose the position difference between AUV0 and AUVi in the desired formation is
∆i = xd

i − x0, let xi = xd
i − ∆i, so xi = x0, i.e., the position and velocity states of AUV0 and

AUVi achieve consensus, so are the states of all followers. Therefore, the multi-AUV system achieves
consensus. In addition, by setting ∆i to be time-varying, time-varying formation control can be
performed.

3.1. Coordinated Formation Control without Communication Delay

To solve the dynamic consensus problem for multi-AUV system with sampled infor-
mation, the coordinated controller can be designed as

ui(k) =αbi0(k)(x0(k)− xi(k)) + βbi0(k)(v0(k)− vi(k))

+ α ∑
j∈Ni

aij(k)(xj(k)− xi(k)) + β ∑
j∈Ni

aij(k)(vj(k)− vi(k)) (9)

where α and β represent the position and velocity control gains, bi0(k) and aij(k) are the
elements in the matrices B and A related to communication topologies GBand G.

Define the position error and velocity error between AUV0 and AUVi at t = kT as
ei(k) = xi(k)− x0(k), fi(k) = vi(k)− v0(k), respectively. The multiple errors vectors can
be expressed as {

E(k) = [e1(k), e2(k), e3(k), · · · , en(k)]
T

F(k) = [ f1(k), f2(k), f3(k), · · · , fn(k)]
T

where E(k) ∈ Rn, F(k) ∈ Rn.
By combining (7)–(9), we can build a discrete-time error system as[

E(k + 1)
F(k + 1)

]
= P

[
E(k)
F(k)

]
(10)

with

P =

[
In TIn

−αT(Bk + Lk) In − βT(Bk + Lk)

]
where Bk, Lk respectively represent B and L at t = kT.

Remark 2. By using the Kronecker product ⊗ and Lemma 1, the error system for all states in the
multi-AUV system can be derived on the basis of (10), and the stability analysis is the same as that
of (10).

Lemma 5. The multi-AUV system under controller (9) achieves consensus asymptotically if and
only if ρ(P) < 1.

Remark 3. It can be observed from the definitions of ei(k) and fi(k) that the multi-AUV system
under coordinated controller (9) can achieve consensus asymptotically if and only if the discrete-time
error system (10) is globally asymptotically stable.

Theorem 1. For communication topology GB and G, controller gains α and β, and sampling period
T, the consensus of the multi-AUV system can be achieved, i.e., the problem of coordinated formation
control of multiple AUVs can be solved, if and only if the follows projects are satisfied:

Θ1 > 0 (11)

Θ1(Θ2)
2Θ3 + Θ4 > 0 (12)

Θ2 > 0 (13)

where Θ1 = T(αT − 2β)|λi|2 + 4 Re(λi), Θ2 = β− αT, Θ3 = |λi|2, Θ4 = −4αIm2(λi), and
λi, i = 1, 2, 3, . . . , n is the eigenvalue of matrix (Bk + Lk).
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Proof. According to Lemma 2, we can get

det(sI2n − P) = det
[

(s− 1)In
αT(Bk + Lk)

−TIn
(s− 1)In + βT(Bk + Lk)

]
=

n

∏
i=1

[
s2 + (βTλi − 2)s + αT2λi − βTλi + 1

]
Let Qi(s) = s2 + (βTλi − 2)s + αT2λi − βTλi + 1, i = 1, 2, . . . , n. If Qi(s) are Schur

stable, for i = 1, 2, . . . , n, λi cannot be zero.
Then let

Ri(ξ) = (ξ − 1)2Qi

(
ξ + 1
ξ − 1

)
= αT2λiξ

2 + 2
(

βTλi − αT2λi

)
λiξ + αT2λi − 2βTλi + 4

and

R̂i(ξ) =
Ri(ξ)

αT2λi

= ξ2 + 2
(

β

αT
− 1
)

ξ + 1− 2β

αT
+

4
αT2λi

The same stability characteristics of Ri(ξ) and R̂i(ξ) can be recognized without difficulty.
According to Lemma 3, polynomials Qi(s), for i = 1, 2, 3, . . . , n, are Schur stable if and

only if polynomials R̂i(ξ), for i = 1, 2, 3, . . . , n, are Hurwitz stable.
For complex polynomial R̂i(ξ), let ξ = iω, then we can obtain R̂i(iω) = −ω2 +

1 − 2β
αT + 4 Re(λi)

αT2|λi |2
+ i
[

2
(

β
αT − 1

)
ω− 4 Im(λi)

αT2|λi |2

]
, so mi(ω) = −ω2 + 1 − 2β

αT + 4 Re(λi)

αT2|λi |2
and

ni(ω) = 2
(

β
αT − 1

)
ω − 4 Im(λi)

αT2|λi |2
. Subsequently, according to Definition 1 and Lemma 4,

R̂i(ξ) is Hurwitz stable if and only if the following conditions hold:

(1) mi(ω) = 0 has two distinct real roots mi1 < mi2;
(2) mi1 < ni1 < mi2, where ni1 is the only root of ni(ω) = 0;
(3) mi(0)n′i(0)−m′i(0)ni(0) > 0.

Consider condition (1). mi(ω) = 0 has two distinct real roots when and only when

∆m = 1− 2β

αT
+

4 Re(λi)

αT2|λi|2
> 0⇔ T(αT − 2β)|λi|2 + 4 Re(λi) > 0 (14)

And we can get the two distinct real roots as: mi1 = −
√

∆m, mi2 =
√

∆m.
Consider condition (2). The root of ni(ω) = 0 can be obtained as ni1 = 2 Im(λi)

T(β−αT)|λi |2

Then we can get

mi1 < ni1 < mi2 ⇔ −
√

∆m <
2 Im(λi)

T(β− αT)|λi|2
<
√

∆m

⇔
[

T(αT − 2β)|λi|2 + 4 Re(λi)
]
(β− αT)2|λi|2 − 4αIm2(λi) > 0

(15)

Consider condition (3). The components in the inequality can be obtained as : mi(0) =
1− 2β

αT + 4 Re(λi)

αT2|λi |2
, n′ i(0) = 2

(
β

αT − 1
)

, m′ i(0) = 0, ni(0) = − 4 Im(λi)

αT2|λi |2
.

Then we can get

mi(0)n′ i(0)−m′ i(0)ni(0) > 0

⇔
[

T(αT − 2β)|λi|2 + 4 Re(λi)
]
(β− αT) > 0

(16)
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Finally, the three inequalities (11)–(13) in the Theorem 1 can be obtained from (14)–(16)
respectively, and the proof is thus completed.

Remark 4. In order to ensure highly efficient coordinated control during the operation of multiple
AUVs, the related matrix of communication topology GB should be B = diag(1, 1, . . . , 1) ∈ Rn×n,
and communication topology G should be strongly connected, i.e., all followers can receive messages
from the leader and all followers can send and receive messages to and from each other. However,
this ideal communication topology is difficult to achieve if there are a large number of AUVs in
the formation and if the communication equipment of vehicles is accidentally damaged. Therefore,
according to Theorem 1, a suitable and alterable communication topology can be obtained to solve
the above problems, and the appropriate range of control gains and sampling period can be obtained.

3.2. Coordinated Formation Control with Time-Varying Communication Delay

Consider the time-varying communication delay ∂ between AUVs, the coordinated
controller can be designed as

ui(k) =αbi0(k− d)(x0(k− d)− xi(k)) + βbi0(k− d)(v0(k− d)− vi(k))

+ α ∑
j∈Ni

aij(k− d)(xj(k− d)− xi(k)) + β ∑
j∈Ni

aij(k− d)(vj(k− d)− vi(k))

+ αdT(bi0(k− d) + ∑
j∈Ni

aij(k− d))vi(k− d)

(17)

where d is a time-varying positive integer and (d− 1)T < ∂ ≤ dT.
By combining (7), (8) and (17), we can get a new discrete-time error system as[

E(k + 1)
F(k + 1)

]
= S

[
E(k− d)
F(k− d)

]
(18)

with

S =

[
In d̂TIn

−αT(Bk−d + Lk−d) In − βT(Bk−d + Lk−d)

]
where d̂ = d + 1 , Bk−d and Lk−d respectively represent B and L at time t = (k− d)T.

Remark 5. In (17), there exist communication delays ∂, and we assume it is bounded (dm ≤ d ≤ dM),
so each follower AUVi actually receives the information from the leader AUV0 or other follower
AUVi from time t = (k− d)T. In (19), since d is dynamically varying, matrix S is an interval
matrix and can be expressed as S ∈ [Sm, SM]. And [Sm, SM] = {S = [sij] : sm

ij ≤ sij ≤ sM
ij , i, j =

1, 2, . . . , n}.

Lemma 6. The multi-AUV system under controller (17) achieves consensus asymptotically if and
only if ρ(S) < 1.

Lemma 7. For all S ∈ [Sm, SM], if S is Schur stable, we say that [Sm, SM] is Schur stable, i.e., the
system (18) asymptotically stable.

Theorem 2. For multi-AUV system with time-varying communication delay (d− 1)T < ∂ ≤ dT,
the problem of coordinated formation control of multiple AUVs can be solved if and only if the
follows projects are satisfied:

Θd
1 > 0 (19)

Θd
1

(
Θd

2

)2
Θd

3 + Θd
4 > 0 (20)

Θd
2 > 0 (21)
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where Θd
1 = T

(
d̂αT − 2β

)
|λi|2 + 4 Re(λi), Θd

2 = β− d̂αT, Θd
3 = |λi|2, Θd

4 = −4d̂αIm2(λi),

λi, i = 1, 2, 3, . . . , n is the eigenvalue of matrix (Bk−d + Lk−d).

Proof. Similar to the proof in Theorem 1, there is

det(sI2n − S) = det
[

(s− 1)In
αT(Bk + Lk)

−d̂TIn
(s− 1)In + βT(Bk + Lk)

]
= ∏n

i=1

[
s2 + (βTλi − 2)s + d̂αT2λi − βTλi + 1

]
Let Qi(s) = s2 + (βTλi − 2)s + d̂αT2λi − βTλi + 1, i = 1, 2, . . . , n, and λi 6= 0.
Then, let

Ri(ξ) = (ξ − 1)2Qi

(
ξ + 1
ξ − 1

)
= d̂αT2λiξ

2 + 2
(

βTλi − d̂αT2λi

)
λiξ + d̂αT2λi − 2βTλi + 4

and

R̂i(ξ) =
Ri(ξ)

d̂αT2λi

= ξ2 + 2
(

β

d̂αT
− 1
)

ξ + 1− 2β

d̂αT
+

4
d̂αT2λi

So the complex polynomial R̂i(ξ) can be expressed as

R̂i(ξ) = R̂i(iω) = mi(ω) + ini(ω)

= −ω2 + 1− 2β

d̂αT
+

4 Re(λi)

d̂αT2|λi|2
+ i

[
2
(

β

d̂αT
− 1
)

ω− 4 Im(λi)

d̂αT2|λi|2

]

According to Lemmas 3 and 4, polynomials Qi(s), for i = 1, 2, 3, . . . , n, are Schur stable
if and only if the following conditions hold:

(1) mi(ω) = 0 has two distinct real roots mi1 < mi2;
(2) mi1 < ni1 < mi2;
(3) mi(0)n′i(0)−m′i(0)ni(0) > 0.

Finally, we can obtain the three inequalities (19)–(21) in Theorem 2 by considering the
three conditions (1)–(3), respectively. The proof is completed.

Remark 6. In this paper, the communication delay is bounded, so we know the values of dm and
dM. Therefore, suitable controller parameters based on the delay variation interval can be obtained.

4. Simulation Results and Discussion

In this section, some numerical simulations are presented to illustrate the effectiveness
of the above results. In all examples, the multi-AUV system consists of one leader AUV0
and four followersAUVi, i = 1, 2, 3, 4, and there are two communication topologies GB and
G. The nonlinear parameters of AUV model are presented in Ref. [40].

4.1. Example-1

During the operation of multi-AUV system, if the distance between all the vehicles is
relatively close and the communication devices are all intact, each follower can receive the
state information of the leader, and the followers can transmit information to each other.
Then the system is under the ideal communication topology, which is shown in Figure 2.
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0AUV

1AUV 3AUV

2AUV
4AUV

Figure 2. Ideal communication topology.

Associated with GB and G in Figure 2, the matrix B and L can be given as

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

.

After calculation, the eigenvalues of matrix (B + L) can be derived as λ1 = 1, λ2 = 5,
λ3 = 5, λ4 = 5. The parameters in the coordinated controller (9) are selected as α = 0.25,
β = 0.92. And the sampling period T = 0.2 s. They can all make the three inequalities in
Theorem 1 hold.

Based on the above parameters, we first select the random state and verify the stability
of the error system (10). The errors of position state and velocity state between the leader
and followers are presented in Figures 3 and 4, in the multi-AUV second-order integrator
dynamics. Obviously, the errors will eventually converge asymptotically to zero, so the
error system (10) is globally asymptotically stable.

Then the two-dimensional coordinated formation simulation for multiple AUVs is
performed. The path of leader is expressed as

xe = 10 + t, ye(t) = 10, 0 6 t < 100

xe = 110 + 25 sin(π − t− 100
25

), ye = 35 + 25 cos(π − t− 100
25

), 100 6 t < 178.4

xe = 110 + 25 sin(π +
t− 178.4

25
), ye = 85 + 25 cos(π +

t− 178.4
25

), 178.4 6 t < 256.8

xe = 110 + t, ye = 110, 256.8 6 t < 358.8

Initial locations of followers are randomly distributed in the [0, 10]× [0, 10].The posi-
tion difference between the followers and the leader in the pre-defined formation is [8;−8],
[−8;−8], [8; 8], [−8; 8], respectively.

The simulation results of multiple AUVs formation are illustrated in Figures 5–7. The
updated information on the position and angle of AUVs, in the earth-fixed coordinate
system, are given in Figure 5. Figure 6 shows the velocities of the multi-AUV system
with some curves. The formation trajectory of multiple AUVs is depicted in Figure 7,
and the desired formation is developed. These indicates that the proposed coordinated
controller (9) and the parameters chosen according to Theorem 1 enable the followers to
track the leader reliably.
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Figure 3. Errors of position state under ideal communication topology without delay.
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Figure 4. Errors of velocity state under ideal communication topology without delay.
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Figure 5. Position states of multi-AUV under ideal communication topology without delay.
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Figure 7. Trajectory of multi-AUV under ideal communication topology without delay.

4.2. Example-2

When the vehicles are far apart or communication facilities are damaged in the multi-
AUV system, the communication between them will fail and only data can be exchanged
with other vehicles. In this case, the system is under alterable communication topology,
and we assume it as shown in Figure 8.

0AUV

1AUV 3AUV

2AUV
4AUV

Figure 8. Alterable communication topology.

The matrix B and L can be given as

B =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, L =


1 −1 0 0
−1 1 0 0
−1 0 1 0
0 0 −1 1

.

The eigenvalues of matrix (B + L) can be derived as λ1 = 1, λ2 = 1, λ3 = 0.382,
λ4 = 2.618. The parameters of the controller and sampling period we chose are the same as
in Section 4.1, and the inequalities in Theorem 1 also hold.

Figures 9 and 10 illustrate the errors of the position and velocity states in the discrete-
time AUV model, respectively. Undoubtedly, system (10) can be stable with alterable
communication topology showed in Figure 8. Then we perform the same formation
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simulation as in Example 1, and the simulation results are showed as Figures 11–13. In
comparison with Figures 3–7, Figures 9–13 also verify the effectiveness of the coordinated
controller (9) and the availability of the constraint on alterable topology in Theorem 1, but
the error convergence is slower, and the time required to form a preset formation is longer.
Therefore, the communication topology of a multi-AUV system affects the coordinated
control performance to a certain extent.

0 20 40 60 80 100
Time(s)

-10

-5

0

er
ro

r 
of

 x
1

0 20 40 60 80 100
Time(s)

-10

-5

0

er
ro

r 
of

 x
2

0 20 40 60 80 100
Time(s)

-5

0

5

er
ro

r 
of

 x
3

0 20 40 60 80 100
Time(s)

-4

-2

0

2

er
ro

r 
of

 x
4

0 20 40 60 80 100
Time(s)

0

5

10

er
ro

r 
of

 x
5 AUV1, AUV0

AUV2, AUV0

AUV3, AUV0

AUV4, AUV0

Figure 9. Errors of position state under alterable communication topology without delay.
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Figure 10. Errors of velocity state under alterable communication topology without delay.
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Figure 11. Position states of multi-AUV under alterable communication topology without delay.
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Figure 12. Velocity states of multi-AUV under alterable communication topology without delay.
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Figure 13. Trajectory of multi-AUV under alterable communication topology without delay.

4.3. Example-3

Due to the slower speed of acoustic transmission, the exchange of information between
vehicles suffers a time delay. Then we consider the communication topology with time-
varying communication delay of the multi-AUV system as shown in Figure 8. Matrixes
B and L have been given in Section 4.2. The parameters in the coordinated controller (17)
are selected as α = 0.068, β = 0.272, and T = 0.2s. The above parameters and all the
eigenvalues of matrix (B + L) allow the inequalities in Theorem 2 to hold. The boundaries
of d related to the time-varying delay ∂ are set as dm = 1, dM = 4.

Assume that the three-dimensional path of the leader is represented as

xe = 100 cos(
πt
500

), ye = 100 sin(
πt
500

), ze = 0.111t, 0 < t 6 1040.

And the initial locations of followers are randomly distributed in the [90, 100]× [0, 10]×
[0, 1]. The preset position differences between the leader and followers in designed forma-
tion are [0; 20; 0], [20; 0; 0], [0;−20; 0], [−20; 0; 0], respectively.

As in the previous two examples, we first demonstrate that the error system (18) is
asymptotically stable with random initial values. Figures 14 and 15 describe the state errors
of the second-order discrete-time model with time-varying time delay. It is clear that the
errors all converge asymptotically to zero, indicating that the error system is stable. The
three-dimensional formation simulation results with communication delay and alterable
topology are presented in Figures 16–18. As we can see from these figures, the followers
can still effectively track the trajectory of the leader and constitute the desired formation,
regardless of the communication delay. Therefore, once the time-varying delay and the
controller gains such that the inequalities in Theorem 2 hold, our control strategy can
resolve the coordinated formation control problem of multiple AUVs. Compared to the
simulation results in Example 2 without communication delay as described in Figures 9–13,
it is noticeable that the errors in Figures 14 and 15 take longer to converge asymptotically
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to zero. Furthermore, as illustrated in Figures 16–18 although the aforementioned control
framework enables multiple AUVs to maintain formation under time-varying delay, the
control results are notably worse than the case with no delay.
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Figure 14. Errors of position state under alterable communication topology with delay.
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Figure 15. Errors of velocity state under alterable communication topology with delay.
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Figure 16. Position states of multi-AUV under alterable communication topology with delay.
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5. Conclusions

In this paper, the coordinated formation control issue of discrete-time multi-AUV
system with alterable communication topology subject to time-varying bounded communi-
cation delay has been investigated. The AUV model has been simplified by state feedback
linearization and represented as a discrete-time form. Then we designed controllers to solve
the problem of coordinated formation under two communication conditions, and obtained
the sufficient conditions which assure the formation can be achieved through the stability
analysis of the error systems. Finally, numerical examples have been given to validate the
main results and show that both the communication topology and the communication
delay have obvious effects on coordinated control. As the complexity of ocean missions,
AUV motion control can be hampered by many factors, such as model uncertainty, external
disturbances, and ocean noise [41]. We will consider the coordinated formation control
subject to them for future work.
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