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Abstract: Coastal highways along narrow barrier islands are vulnerable to flooding due to ocean and
bay-side events, which create hazardous travel conditions and may restrict access to surrounding
communities. This study investigates the vulnerability of a segment of highway passing through
the Pea Island National Wildlife Refuge in the Outer Banks, North Carolina, USA. Publicly available
data, computational modeling, and field observations of shoreline change are synthesized to develop
fragility models for roadway flooding and marsh conditions. At 99% significance, peak daily water
levels and significant wave heights at nearby monitoring stations are determined as significant
predictors of roadway closure due to flooding. Computational investigations of bay-side storms
identify peak water levels and the buffer distance between the estuarine shoreline and the roadway
as significant predictors of roadway transect flooding. To assess the vulnerability of the marsh
in the buffer area, a classification scheme is proposed and used to evaluate marsh conditions due
to long-term and episodic (storm) stressors. Marsh vulnerability is found to be predicted by the
long-term erosion rate and distance from the shoreline to the 5 m depth contour of the nearby flood
tidal channel. The results indicate the importance of erosion mitigation and marsh conservation to
enhance the resilience of coastal transportation infrastructure.

Keywords: coastal transportation infrastructure; flood vulnerability; marsh erosion; rapid response;
computational modeling; shoreline assessment; fragility modeling

1. Introduction

Coastal highways and bridges are critical links in the transportation network for the
movement of goods and people on a daily basis and especially for access by emergency
services during post-disaster response. Along narrow barrier islands, this infrastructure
is typically low-lying and near the water, restricting connectivity and posing continuous
risks to operability, maintenance, and resilience. Recent studies predict that the flood-
ing of coastal highways and bridges will continue to increase with rising sea levels and
intensifying storm surges due to climate change [1].

Previous studies have analyzed the vulnerability of coastal transportation infrastruc-
ture, including bridges [2–9], near-coast roadways [10–15], and other infrastructure [16]
subject to coastal storms or multi-hazard environmental conditions. Vulnerabilities are
often presented in the form of probabilistic fragility functions relating the likelihood of
damage or failure to a hazard intensity measure. For example, Kameshwar and Padgett [3]
developed parameterized fragility functions assessing the probability of structural failure
of highway bridges subject to earthquake and hurricane events. Another study developed
a model for coastal bridges subject to sea level rise, landscape changes, and flooding;
structural failure was estimated based on storm surge, waves, and inundation duration [4].
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Beyond assessing bridge survival or failure, Padgett et al. [2] derived fragility curves
considering bridge parameters and environmental conditions, predicting the likelihood of
bridges exceeding a given damage state based on a four-point damage scale ranging from
minor to complete. Storm surge and the number of spans were significant predictors of
damage for the bridges considered in the study.

In addition to bridges, the effects of coastal flood hazards on highways and road
networks have also been analyzed [12,17]. In an assessment of the cascading effects of
hurricane waves and surges on physical (buildings and roadways) and social systems,
Fereshtehnejad et al. [12] assessed roadway failure in Galveston Island, TX, USA, using
a fragility model based on the distance to the roadway from the Gulf of Mexico and
inundation duration. Modes of roadway failure including surface layer loss, cracking and
potholes, and base failure were considered in the model. A failure model for roadways
subject to surface runoff-driven flooding events was developed by Wang et al. [10]; the
model distinguished between direct and indirect roadway failures based on the roadway’s
flooded condition and connectivity to other roadway segments.

Few coastal highway vulnerability studies have also considered local morphological
features that affect roadway fragility to flood impacts. For example, Nasrallah [11] used
remotely sensed data and a morphological numerical model to forecast the storm impacts on
coastal dunes that can lead to overwash and increased vulnerability of the North Carolina
(NC) Highway 12. Three vulnerability indicators for coastal roadways in barrier islands
based on island width, dune crest elevation above the roadway, and distance from the edge
of the pavement to the ocean shoreline were developed by Velásquez-Montoya et al. [14].
Another study examined the effectiveness of distinct morphological indicators in predicting
storm impacts on barrier island roadways, with the distance from the edge of the pavement
to the dune toe identified as the most effective indicator of highway vulnerability [18].
However, these studies have mainly focused on ocean-side events and features (i.e., dunes),
leading to a knowledge gap in the effects of bay-side storm events on coastal transportation
corridors based on the extent and condition of the bay-side shoreline. Similar to ocean-
side storms, bay-side storm events can cause significant issues for transportation facilities,
including flooding, shoreline erosion, the deposition of sediment and vegetation, and wave
damage in areas with a large fetch.

Previous studies have considered the vulnerability or response of barrier island and
marsh shorelines to anthropogenic stressors [19–21], sea level rise [22–24], and episodic
and long-term processes [25–27]. Many studies present marsh response parameters, such
as the conversion to open water, erosion or accretion, or the change in elevation or shore-
line position [22–25,27], based on aerial imagery [28], field observations [29,30], and/or
computational modeling [31]. However, few studies have synthesized remotely sensed,
field-based, and computationally modeled data to stochastically investigate the effects of
erosive stressors on the marsh condition as healthy or eroded in varying degrees of severity.

This paper presents a vulnerability assessment for a coastal highway in North Car-
olina’s Outer Banks that focuses on bay-side impacts by considering publicly available
roadway closure data and a synthesis of numerical model outputs and rapid-response
field observations following two storm events. We focus on the roadway vulnerability to
flooding, which disrupts access and exacerbates the degradation of transportation com-
ponents. We further consider the interconnected performance of natural elements and
transportation infrastructure by considering both the effect of the marsh buffer distance on
the likelihood of roadway flooding and the vulnerability of the marsh itself to long-term
and episodic erosion.

The remainder of this paper is structured as follows: Section 2 describes the study area,
which comprises the section of a state highway passing through the Pea Island National
Wildlife Refuge. This section of roadway is vulnerable to bay-side flooding due to the
absence of dunes on the estuarine side, leaving the road unprotected during elevated bay-
side water level conditions. Methods of (i) analysis of roadway closure based on publicly
available traffic information data, (ii) computational modeling of bay-side storm scenarios,
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(iii) observations of shoreline change through assessments of aerial imagery and shoreline
surveys conducted following two storm events, and (iv) fragility model development for
characterizing roadway and marsh vulnerability are detailed in Section 3. Section 4 presents
results of long-term and short-term shoreline change and significant predictors of roadway
or marsh failure, showing fragility curves derived for roadway flooding and marsh erosion.
Finally, Section 5 discusses the broader implications, considerations, and conclusions of
this study.

2. Study Site

The NC 12 highway is the only coastal roadway connecting the Outer Banks of North
Carolina from the communities of Corolla to Hatteras and providing direct access to the
barrier islands from the mainland. The projected 2025 average daily traffic volume of NC 12
is estimated to be 9600 vehicles per day and 15,400 vehicles per day during the summer [32].
Given the location of this major roadway along narrow sections of barrier islands and
its exposure to storms and high-water events, the road has been the subject of multiple
vulnerability studies in the last two decades [13,33,34]. Such studies have identified several
vulnerable hotspots where the roadway is subject to frequent flooding and sand burial due
to overwash. Some of these vulnerable hotspots are located towards the northern end of
Hatteras Island, where the Pea Island National Wildlife Refuge is located.

The specific stretch of shoreline and roadway analyzed here is located on the bay
side of the northernmost end of Hatteras Island. The roadway section corresponds to the
approach of the southern terminus of the Marc Basnight Bridge (Figure 1), located just
south of Oregon Inlet. The bridge is located in Dare County, for which the United States
Census Bureau [35] reports a 2021 population of 37,826; however, the daily population can
increase to 225,000 to 300,000 during the summer tourist season from June to August [36].
The nearest communities to the study area are Nags Head, located 22 km to the north, and
Rodanthe, located 21 km to the south; restricted access to this section of roadway cuts off
access to towns further south, including Salvo, Avon, Buxton, and Hatteras Village. While
these communities are exposed to coastal flood hazards due to hurricanes, nor’easters, or
erosion, they are particularly impacted by damage or closure of this stretch of highway,
which may delay or limit access by emergency response teams in the event of closure due
to hazardous conditions or adversely affect tourism during summer months.

At this section of the barrier island, the ocean shoreline is accreting due to the presence
of the terminal groin on the north end of the island [37]. However, the estuarine shoreline
has been eroding at rates up to 3 to 4 m/year [38]. This shoreline erosion has been
attributed to the morphological evolution of the adjacent Oregon Inlet and the rotation of
the main channel that causes the southernmost flood channel of the inlet (location shown in
Figure 1C) to encroach into the down drift back barrier [39]. This region was also identified
as a potential location for barrier island breaching by the Federal Highway Administration
(FHWA) and the North Carolina Department of Transportation (NCDOT) [32] due to
its proximity to Oregon Inlet and the possibility of storm surge flows through adjacent
shore-normal estuarine channels.

Although the study site is located on the bay-side of the barrier island system, its
proximity to a tidal inlet makes it responsive to both ocean and bay conditions. Monitoring
of such conditions at the Albemarle–Pamlico Sound (bay side) and ocean side is available
via permanent observational stations. Four kilometers north of the study site, on the
northern bay-side of Oregon Inlet, there is an NOAA Tides and Currents station (Oregon
Inlet Marina, NC-Station ID: 8652587, herein referred to as the “marina tide gauge”) that has
recorded hourly and six-minute water levels since April 1994 and January 1996, respectively,
and two-minute scalar average wind speeds, two-minute vector average wind directions,
and maximum five-second wind gusts since November 2007. Station 44095-Oregon Inlet,
NC, herein referred to as the “waverider buoy”, is owned by the University of North
Carolina Coastal Studies Institute and provides the closest wave measurements to the study
site, including significant wave height, dominant wave period, and mean wave direction
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every 30 min. The station is about 18.5 km offshore of the study site at a water depth of
18.3 m and has been recording wave parameters intermittently since 2012 (Figure 1).
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Figure 1. Location of study site along the US East Coast. Region of Panel (B) is indicated in panel (A);
Panel (B) shows the location of water level (Sta. 8652587 OI Marina) and wave height (Sta. 44095 OI
Waverider) stations employed in this work, with an arrow and black rectangle indicating the location
of Panel (C). Panel (C) shows a detailed view of the study site just south of Oregon Inlet along with
the numerical model output stations (black circles) and the location of the 5 m depth contours of the
inlet flood channel adjacent to the shoreline as of October 2019 (dotted) and April 2021 (solid). The
stations are named according to the convention S = shoreline, M = marsh, and R = roadway.

The top 10 highest total water levels recorded at the marina tide gauge have been
above 1.02 m (referenced with respect to the North American Datum of 1988 (NAVD88)).
The top three total water levels recorded, referenced with respect to NAVD88, were those
corresponding to Hurricane Irene in 2011 (2.070 m), Hurricane Floyd in 1999 (1.525 m), and
Hurricane Michael in 2018 (1.445 m). Numerical simulations of Hurricane Irene indicate
that wind-generated surface waves and wind-driven storm surges are some of the most
important contributors to extreme flooding along estuarine shorelines [40]. In addition to
extreme seasonal events, long-term processes such as relative sea level rise contribute to
the potential vulnerability of the stretch of shoreline. The linear relative sea level trend
observed at the marina tide gauge is 5.32 ± 1.12 mm/year [41], with low (17th percentile)
and high (83rd percentile) relative sea level rise contributions projected for 2050 ranging
from 0.29 m to 0.45 m considering a 0.3 m global sea level rise and from 0.42 m to 0.71 m
considering a 2.0 m global mean sea level rise [42].



J. Mar. Sci. Eng. 2022, 10, 734 5 of 21

3. Methods
3.1. NCDOT Traveler Information Management System Roadway Closure Analysis

NCDOT supports a Traveler Information Management System (TIMS), available to
the public at DriveNC.gov. This system posts real-time notifications of closure or haz-
ardous conditions along North Carolina roadways, enabling travelers to modify behavior
accordingly [43]. The notifications and records of closures can also provide a record of
occurrence frequency and the location of hazardous conditions. A record of the TIMS data
was provided to the authors by NCDOT, comprising incidents on NC 12 along the Pea
Island National Wildlife Refuge from September 2017 to November 2019. The dates of
closure or hazardous conditions were recorded, and the corresponding daily maximum
significant wave height and water level data were obtained from the waverider buoy and
the marina tide gauge records, respectively.

3.2. Numerical Model and Description of Storm Scenarios

Field observations of water levels during 4 weeks in 2019 suggest that there are
differences in the water level signals between the study site located south of Oregon Inlet
and the marina tide gauge located north of the inlet. Such differences in water level signals
may have consequences for predicting flooding [44]. The tidal amplitude at the study site
is two to three times larger than at the marina tide gauge. The lowpass-filtered subtidal
water levels (48 h cutoff period) are correlated with an r2 = 0.42, suggesting differences
in response to winds, waves, and surges. Given the spatial variability of the water level
signals around the inlet, a numerical model was used to predict flooding scenarios for a
range of conditions and to specifically investigate flooding by bay-side storm events.

A hydrodynamic, two-dimensional Delft 3D [45] model coupled with a wave model
Simulating Waves Nearshore (SWAN) [46] is used in this study. The numerical model
resolution varies from 470 m offshore to 15 m and 20 m within the inlet and the marshes
behind NC 12. The computational domain includes a large portion of the Albemarle–
Pamlico Sound and extends to the edge of mainland North Carolina and 35 m along the
barrier island system. Wetting and drying thresholds were adjusted to better represent the
flooding extent caused by Hurricane Irene (2011). Implementation of mean depth at the
grid cell faces and a threshold depth of 0.01 m resulted in the best match of the simulated
flooding extent and the bay-side wrack line as observed from aerial imagery taken after
Hurricane Irene.

As part of the calibration and validation of the numerical model, simulations’ outputs
were compared to in situ water levels and depth-averaged velocities for 30 days in the fall
of 2019 and 15 days in the summer of 2020. The Willmott Skill Scores [47] for both periods
for water levels ranged from 0.87 (very good) to 0.94 (excellent), providing confidence
in the simulated hydrodynamics at the site. More details on the numerical model set up,
calibration, and validation are presented in [14,48]. In addition to comparisons of water
levels and currents, the simulated flooding extent was compared against 11 days of field
measurements of high-tide flooding on the study site during October 2019 [44]. Peak
measured water depths near station S3 on the marsh ranged from 0.3 m to 0.8 m. The
root-mean-square (RMS) difference between observed and simulated peak water depths
at each high tide for this location was 0.09 m, with the model tending to overestimate
small peak water depths (<0.5 m) and show better agreement for higher peak water depths.
The R2 was 0.80, suggesting good agreement between the simulated and observed flood
elevations on the marsh.

A total of 42 storm scenarios with varying water levels and wave conditions at the
boundary (water levels at the bay boundaries ranging in 0.5 m intervals from 0.5 m to
3.5 m and significant wave heights at the ocean boundary ranging in 1 m intervals from
2 m to 7 m) were generated in the numerical model. The storm scenarios were set up to
simulate bay-side water levels and ocean waves below, equal to, and above those created
by Hurricane Irene (2011), which is the hurricane that has generated the largest bay-side
surge since 1979 [49].
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Monitoring stations were set up in the numerical model along ten cross-shore transects
extending from the location of the NC 12 highway to the shoreline; the locations of each
numerical model output station are shown in Figure 1C. Each numerical model output
station recorded the occurrence (or not) of flooding at that station during a storm scenario.
The placement of the stations along cross-shore transects allowed for the investigation of
the marsh buffer distance’s impact on mitigating roadway flooding, with buffer distances
determined as the perpendicular distance from the roadway station to the estuarine shore-
line. For the roadway transects considered, existing marsh buffer distances ranged from 38
m to 563 m. Ten numerical model output stations were established along each the roadway,
the marsh, and the estuarine shoreline (30 total) to assess the frequency and extent of marsh
and roadway flooding during storm events (Figure 1C).

3.3. Shoreline Change Analysis

Bimonthly aerial images from NCDOT taken from 26 September 2003 to 16 April 2021
were digitized in order to identify historic positions of the estuarine shoreline. Shoreline
change rates were calculated as a linear regression between the shoreline position and
time using the Digital Shoreline Analysis System (DSAS) developed by the United States
Geological Survey (USGS) [50].

In addition to aerial datasets, local estuarine shoreline surveys were conducted pe-
riodically from 2019 to 2021 to evaluate seasonal shoreline changes and the effects of
storms, including a nor’easter in November 2019 and bay-side Hurricane Isaias in August
2020 (Table 1). Trimble R10 and R12 Global Navigation Satellite System (GNSS) Global
Positioning Systems (GPS) with mobile connection to continuously operating reference
stations (CORS) were used to survey the scarp edge of the marsh or the location of the
dense vegetation for all but the May 2021 survey. These systems have a reported horizontal
accuracy of 8 mm and vertical accuracy of 15 mm. The May 2021 survey was conducted
with a hand-held Trimble R1 with maximum precision of 50 mm. Effort was made to
perform all surveys as close to low tide as possible. It is estimated that there was up to 30
cm of uncertainty in visual identification/interpretation of the marsh edge. In some cases,
areas were inaccessible due to hazardous conditions and were not surveyed. These areas
and areas that were not consistently identified as either the marsh edge or the water line
(i.e., sandy portions of the estuarine shoreline) were not considered in the analysis due to
differences in the measurement location not related to erosion.

Table 1. Dates of shoreline surveys performed.

Survey Dates Purpose/Event
Max Water Level at Marina

Tide Gauge between Surveys
(m NAVD88)

Max Significant Wave Height
Waverider Buoy between

Surveys (m)

13 November 2019 (pre-storm)
25 November 2019 (post-storm)

Nor’easter
16–20 November 2019 0.6 (24 November 2019) 7.6 (16 November 2019)

22 June 2020 2020 Baseline — —

12 August 2020 (post-storm) Hurricane Isaias
4 August 2020 0.9 (4 August 2020) 4.4 (4 August 2020)

8 March 2021 2021 Baseline — —

3 May 2021 2021 Final Shoreline 0.5 (29 April 2021) 5.2 (19 March 2021)

The data points surveyed with the GPS system were imported into ArcGIS and
connected by lines using GIS tools. DSAS was used to create a series of transects with
5 m spacing along the shorelines [50]. The distance from the shoreline to the baseline was
calculated for each date to estimate the marsh edge shoreline change.

3.4. Channel Bathymetry Comparison

Two bathymetric datasets were collected in the study area as part of a collaboration
made possible via the During Nearshore Event eXperiment (DuNEX), a multi-institutional
research program organized by the US Coastal Research Program [51]. An initial survey
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was conducted on 10 October 2019 by staff from the National Science Foundation (NSF)
Natural Hazards Engineering Research Infrastructure (NHERI) Rapid Response Research
(RAPID) program [52]. The survey was performed using the NHERI RAPID program’s
Z-Boat 1800 with a single-beam echo sounder. The Z-Boat was remotely controlled by
NHERI staff and performed soundings, which were located using an onboard Digital Global
Positioning System (D-GPS). A second bathymetric survey was conducted on 20 April 2021
by Woods Hole Oceanographic Institution researchers (data release, [53]). The survey was
completed using a single-beam echo sounder with an onboard GPS locator mounted on
a remotely driven vessel [54]. For the initial survey, vertical elevations were adjusted to
NAVD88 using VDatum and validated using water level data from the marina tide gauge.
For the second survey, Post-Processed Kinematic (PPK) processing methodologies were
used with the CORS reference station (NCBI) located 10 km from the site to measure the
vessel’s position with 3 cm to 5 cm vertical and horizontal accuracy. These surveys were
used to determine the position of the deepest part of the channel and to track channel
migration along the study area via changes in the 5 m NAVD88 depth contour adjacent
to the estuarine shoreline. This contour was chosen because it marks the boundary of the
deeper portions of the channel, where velocities are higher.

3.5. Empirical Fragility Derivation

Three sets of empirical fragility curves were developed: two sets of curves were
derived to predict roadway vulnerability to flooding based on either publicly available
data or numerical model outputs, and one set of fragility curves was developed to identify
marsh vulnerability to erosion. Fragility curves were derived by fitting available data to
the Gaussian probability distribution, consistent with previous studies for engineering
applications that fit damage data to normal or lognormal probability distributions [2,55–57].
Fragility curves derived using Method 1 were based on publicly available data from 2017
to 2019 of daily environmental conditions from the marina tide gauge and waverider buoy
and roadway closure and hazard information for NC 12 from NCDOT TIMS data. Fragility
curves created using Method 2 considered numerical outputs at the study site from bay-
side storm scenarios. Finally, fragility curves were created to assess marsh vulnerability
(Method 3) based on assessments of the marsh condition considering shoreline surveys
following storm events, long-term erosion rates, and proximity of the nearby channel. For
Methods 1 and 2, we define “failure” as the occurrence of flooding on a section of roadway,
leading to either a traffic closure/hazard report in the TIMS data (Method 1) or a period of
flooding at a roadway numerical model output station in the numerical model simulations
(Method 2). Therefore, fragility curves present the probability of flood-based roadway
closure due to a vector of environmental and location variables. For Method 3, failure was
defined based on empirical classification of the marsh as either “healthy”, “eroded”, or
“severely eroded” (Table 2). These classifications were developed based on a literature
review [30,58,59] and field observations at the study area. A detailed classification of
the marsh shoreline was performed by the research team in May 2021 and is used in the
fragility derivations.

The fragility curves based on publicly available data (Method 1) defined failure as a
roadway designated as closed or hazardous in the TIMS data. Thus, curves assessed the
vulnerability of the roadway to flooding or overwash causing hazardous travel conditions
affecting roadway functionality. Independent variables measured at the marina tide gauge
included the maximum daily water level WLmax, peak daily 5 s wind gust, Vwind, and corre-
sponding wind direction θ. Water levels were referenced with respect to NAVD88. These
variables were considered in addition to the maximum daily significant wave height Hs,max
and corresponding dominant wave period Tpd measured at the waverider buoy. While TIMS
data provide the county and often nearby cities of reported incidents, the precise locations
of closures along NC 12 were not able to be determined, and all flood-driven closure events
(from either the ocean or the bay) were considered. Therefore, landscape variables such as
marsh or beach buffer distances to the roadway were not able to be disaggregated.
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Table 2. Objective marsh classification scheme for categorization as healthy, eroded, or severely eroded.

System Rating Shoreline Condition Marsh Condition Example

Healthy

Gentle slope;
plant growth on or adjacent

to shoreline;
minimal to no exposed root mat.

Slope less than 1:30 *;
all or majority of marsh above

0.61 m (2 ft) elevation;
consistent plant growth throughout

marsh, including juvenile plants;
intact root mat.
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model simulations (Method 2). Therefore, fragility curves present the probability of flood-
based roadway closure due to a vector of environmental and location variables. For 
Method 3, failure was defined based on empirical classification of the marsh as either 
“healthy”, “eroded”, or “severely eroded” (Table 2). These classifications were developed 
based on a literature review [30,58,59] and field observations at the study area. A detailed 
classification of the marsh shoreline was performed by the research team in May 2021 and 
is used in the fragility derivations.  

The fragility curves based on publicly available data (Method 1) defined failure as a 
roadway designated as closed or hazardous in the TIMS data. Thus, curves assessed the 
vulnerability of the roadway to flooding or overwash causing hazardous travel conditions 
affecting roadway functionality. Independent variables measured at the marina tide 
gauge included the maximum daily water level WLmax, peak daily 5 s wind gust, Vwind, and 
corresponding wind direction θ. Water levels were referenced with respect to NAVD88. 
These variables were considered in addition to the maximum daily significant wave 
height Hs,max and corresponding dominant wave period Tpd measured at the waverider 
buoy. While TIMS data provide the county and often nearby cities of reported incidents, 
the precise locations of closures along NC 12 were not able to be determined, and all flood-
driven closure events (from either the ocean or the bay) were considered. Therefore, land-
scape variables such as marsh or beach buffer distances to the roadway were not able to 
be disaggregated.  

Table 2. Objective marsh classification scheme for categorization as healthy, eroded, or severely 
eroded. 

System 
Rating Shoreline Condition Marsh Condition Example 

Healthy 

Gentle slope; &&&plant 
growth on or adjacent to 

shoreline; &&&minimal to 
no exposed root mat. 

Slope less than 1:30 *; &&&all or 
majority of marsh above 0.61 m 
(2 ft) elevation; &&&consistent 

plant growth throughout marsh, 
including juvenile plants; 

&&&intact root mat. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Eroded

Scarp less than 0.30 m (1 ft);
evidence of offshore (in-water)

plant growth.
May include: evidence of

undercutting or cracks, chunks of
marsh breaking off along shoreline.

Slope between 1:30 and 1:10 *;
50% of marsh above

0.61 m (2 ft) elevation;
evidence of dead or otherwise

removed plants;
intact or exposed root mat.

May include: signs of semi-regular
flooding, evidence of channel

incursion or paleo inlets.
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For Method 2, numerical model outputs from storm scenarios allowed for the inves-
tigation of environmental conditions specifically leading to bay-side flooding. Roadway
section failure was determined based on a numerical model output of whether a station
was shown as flooded (failure) or remained dry over the duration of a storm scenario.
Flooding was the most likely indicator of roadway closure in this situation, as the lim-
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ited dimensions of the infrastructure (two-lane roadway with minimal shoulder) provide
minimal opportunity to maintain traffic during inundation events. Variables considered
in the numerical model-based fragility curves included significant wave height at the
boundary Hs,boundary, peak water level at the marina tide gauge WLmax,marina, significant
wave height at the shoreline Hs,shoreline, and peak water level at the shoreline WLmax,shoreline.
The resolution of the numerical model outputs further allowed for consideration of the
marsh buffer distance Xmarsh as a potential predictor of roadway vulnerability, where Xmarsh
is defined as the perpendicular distance between the numerical model output station and
the estuarine shoreline.

For fragility curves based on marsh conditions (Method 3), two definitions of failure for
marshes were considered: one considering failure when the marsh segment was classified
as “severely eroded”, and one considering failure when the marsh segment was classified
as “eroded” or “severely eroded” per Table 2. These conditions are important for both the
persistence of the marsh and the performance of the vegetation in shoreline stabilization and
infrastructure protection. Possible predictor variables influencing marsh failure included
(i) the distance from the marsh shoreline to the shoreline-adjacent 5 m depth contour in
the channel X5mcontour based on bathymetric measurements taken in either October 2019
or April 2021 (Figure 1), (ii) the slope of the channel between the 2 m contour and 5 m
contour m2mto5m, (iii) the rapid response erosion rate RR determined using linear regression
of shoreline positions between November 2019 and March 2021 (Table 1), (iv) the long
term erosion rate LTR measured from satellite images of the shoreline at low tide taken
between 2003 and 2021, and (v) the percentage of time TBSS>0.2 that the modeled bed shear
stress exceeded a critical threshold (0.2 N/m2) near the marsh shoreline. This threshold
was defined based on the median grain size d50 for the study site of 205 µm [44] and the
0.2 N/m2 minimum critical shear stress for sands with d50 = 200 µm, as reported from
flume experiments [60,61].

Backward multiple regression was used to determine fragility models for each track
within each method, and variables were assessed for importance based on their statistical
p-value considering the 99% percent significance level [62]. Univariate regressions testing
the significance of individual variables were also considered for roadway and marsh
vulnerability. For the three sets of fragility curve derivations, multiple variable “tracks”
were evaluated such that only one variable representative of an independent predictor was
considered in any regression model. For example, marsh failure was modeled as a function
of distance to the 5 m depth contour in the channel. While distances were available from
both the 2019 and 2021 bathymetry data, only one distance (from either the 2019 or the
2021 bathymetry data) was included in a given regression analysis. The resulting fragilities
were then compared to determine which variable (e.g., X5mcontour,2019, the distance from the
shoreline to the 2019 bathymetry 5 m depth contour or X5mcontour,2021, the distance from the
shoreline to the 2021 bathymetry 5 m depth contour) was the more significant predictor of
marsh vulnerability. The goodness of fit was assessed based on each model’s deviance and
R2 value, which describes the proportion of the variance in the data that is explained by the
predictor variables.

4. Results
4.1. Long-and Short-Term Shoreline Changes

Figure 2 shows the long-term shoreline change rates along the estuarine shoreline
as determined from the shorelines derived from aerial imagery. The most severe erosion
was observed in the northern portion of the study area, with rates of over 4 m/year of
shoreline recession. Along the more southern portions of the study site, the shoreline was
observed to be stable to slightly accreting (less than 0.6 m/year of accretion). The shoreline
classification on 3 May 2021 according to Table 2 is also shown in the figure. Areas of
ongoing long-term erosion were often classified as severely eroded or eroded, and sections
observed to be stable were typically classified as healthy.
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Figure 2. (A) Long-term shoreline change rate (m/year) at each transect (shore-perpendicular green-
to-red lines), determined using bimonthly aerial imagery. The 26 September 2003 shoreline position
(light blue) and 16 April 2021 shoreline position (darker blue) are shown to illustrate the severity of
ongoing erosion in the study area. (B) The 3 May 2021 shoreline classification shows severely eroded,
eroded, healthy, and sandy shorelines.

The results of the estuarine shoreline surveys illustrated that changes in shoreline
position over the shorter term could vary significantly depending on the characteristics of
the events between surveys (Table 1). Despite this variation, evidence of marsh erosion was
observed during each of the rapid response shoreline surveys (following the nor’easter in
November 2019 and Hurricane Isaias in 2020), including marsh platform cracking and scarps.

During the nor’easter in November 2019, ocean-side flooding and sand overwash led
to the closure of the NC 12 Highway from the Basnight Bridge to Rodanthe, NC, from 17:00
November 16 to 10:00 November 20 [63,64]. During the rapid response shoreline survey
on November 25, many of the areas that exhibited signs of ongoing undercutting in the
pre-storm survey had eroded further, with escarpments observed throughout most of the
shoreline except within the southern pocket beach. The primary mechanism of erosion
appeared to be undercutting and slumping of the marsh platform, leading to sections of
marsh breaking away from the shoreline. The average marsh edge erosion during the
event, excluding the southern pocket beach region, was approximately 2.5 m along the
surveyed area. The recession was generally between 1 m and 3 m, with a maximum of
5.3 m measured just north of the pocket beach.

Hurricane Isaias, with a track landward of the barrier island system (Figure 1), affected
the study area on 4 August 2020, and the rapid response shoreline survey was conducted
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on 12 August 2020. Results of the shoreline survey indicated that the highest rates of
erosion were in the northern to middle sections of the study area, consistent with historical
analyses. In general, there was more erosion during the November 2019 nor’easter than
during Hurricane Isaias. The average shoreline recession observed during Hurricane Isaias
was approximately 0.8 m, less than half that observed during the 2019 nor’easter. It is
theorized that this difference in shoreline response could be because of the longer duration
that the nor’easter affected the shoreline (~5 days) compared to the duration that the
hurricane affected the study area (~1 day). Additionally, differences in water levels during
each storm may have affected erosion rates. Hurricane Isaias’s maximum water level was
approximately 0.3 m higher than that of the 2019 nor’easter (Table 1). This higher water
level may have reduced the erosion by inundating the marsh and decreasing the impact
of waves on the marsh edge. Likely, a combination of these factors led to the reduced
shoreline recession during Hurricane Isaias compared to the 2019 nor’easter.

The 2021 survey events were widely spaced and reflected ongoing difficulties with
travel during the coronavirus pandemic. Between 8 March and 3 May 2021, there were
several smaller nor’easter events with a maximum water level at the marina of 0.5 m on
29 April 2021, and a maximum significant wave height at the waverider buoy of 5.2 m on
19 March 2021 (Table 1). The marsh edge change between these surveys ranged from a
maximum of approximately 2 m of recession in the northern area to 3 m of advance in the
southern area due to seasonal marsh growth.

4.2. Marsh and Roadway Flooding due to Storm Scenarios

Numerical model output variables included the peak water level at the marina tide
gauge, the peak significant wave height and water level at each estuarine shoreline numeri-
cal model output station, and the occurrence of roadway or marsh flooding at each of the
respective stations. For the range of storm scenarios considered, peak water levels at the
marina ranged from 0.46 m to 2.27 m, and resulting peak significant wave heights and peak
water levels at the shoreline numerical model output stations ranged from 0.01 m to 0.11 m
and 0.51 m to 1.90 m, respectively. Excluding the cases driven by the lowest surge level
(0.5 m), maximum water levels at the marina station were roughly 60% of the magnitude of
the surge level forced at the bay-side boundary. Given the extreme bay-surge conditions
imposed in the simulations, waves at the waverider buoy had minor contributions to water
level, with 0.08 m variability due to waves offshore of Oregon Inlet in the cases driven by
the lowest surge level (0.5 m), and decreased in contribution as the surge level inside the
sound increased (0.006 m variability in maximum water level at the marina tide gauge is
due to offshore waves).

Of the ten numerical model output stations established along the length of the roadway
(Figure 1), stations R3, R4, R6, R7, R8, and R9 did not have any flooding for any of the storm
scenarios considered. Stations R0 and R5 flooded when the marina tide gauge water levels
exceeded 1.91 m NAVD88. Stations R1 and R2 were also flooded when marina water levels
exceeded 2.27 m NAVD88. Numerical model output stations along the landward marsh
edge suggested that all marsh stations flooded when the marina water levels exceeded
0.46 m NAVD88, except for stations S0, S1, and S2, which flooded when marina water levels
exceeded 1.18 m NAVD88, 1.91 m NAVD88, and 0.50 m NAVD88, respectively.

4.3. Fragility Curves

Results of the multivariate logistic regression for publicly available data (Method 1)
indicate that the maximum daily water level at the marina tide gauge and maximum signif-
icant wave height at the waverider buoy are significant predictors (p < 0.01) of roadway
closure due to either ocean or bay-side flooding (Table 3). Figure 3 provides an example of
fragility curves for Method 1, showing the probability of roadway closure P(f)1 for four dif-
ferent water levels as a function of significant wave height. Larger significant wave heights
and larger water levels cause an increased probability of failure (i.e., roadway closure due
to flooding). The ranges of water levels (referenced with respect to NAVD88) and signif-
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icant wave heights considered in the fragility model are −0.20 m < WLmax < 1.43 m and
0.44 m < Hs,max < 7.59 m, respectively. The R2 value for the fragility model is 0.26, indicating
that 26% of the variance in the data is accounted for by maximum daily significant wave
height and water level at the waverider buoy and marina tide gauge, respectively.

Table 3. Summary of fragility model derivation methods, definition of failure, data sources, variables
considered, significant variables based on p < 0.01, and model R2 values.

Method Failure Definition Data Sources Variables Considered Significant Variables
(p-Value) R2

1 Roadway closure due
to flooding

Publicly available from
TIMS, marina tide

gauge, waverider buoy

Hs,max, WLmax, Tpd
Vwind, θ

Hs,max (1.14 × 10−12)
WLmax (1.17 × 10−4)

0.26

2 Roadway transect
flooding

Numerical model
outputs

Hs,boundary,
WLmax,marina, Hs,shoreline,
WLmax,shoreline, Xmarsh,

WLmarina (8.2 × 10−9)
Xmarsh (2.6 × 10−6)

0.48

3
Marsh condition as

severely eroded
Bathymetry data (2019,
2021), aerial shoreline
imagery (2003–2021),

rapid response shoreline
measurements

X5mcontour,2019,
X5mcontour,2021, m2mto5m,

RR, LTR, TBSS>0.2.

X5mcontour,2019 (2.48 × 10−4) 0.46

LTR (1.39 × 10−4) 0.52

Marsh condition as
eroded or

severely eroded

X5mcontour,2019 (3.11 × 10−4) 0.35

LTR (1.39 × 10−7) 0.52
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Figure 3. Probability of roadway failure P(f)1, defined as roadway closure due to flooding based on
TIMS data, as a function of peak significant wave height Hs,max (waverider buoy) for four peak water
levels (NAVD88, marina tide gauge).

While a model including peak wind gusts, wind direction, water levels, and significant
wave heights improves the R2 value compared to the model considering only water levels
and significant wave heights by 0.05 (from 0.26 to 0.31), both wind speed and wind direction
are not significant predictors of roadway closure due to flooding (p > 0.01), although wind
direction is statistically significant at the 0.05 level. Univariate models considering wind
speed or wind direction individually indicate that wind speed is a significant predictor of
roadway closure due to flooding, with p < 0.01. However, wind direction is not a significant
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predictor, potentially because bay-side and ocean-side flooding events are not distinguished
in the fragility model based on TIMS roadway closure data. These results suggest that
combinations of high wind speeds and directions may be correlated with water levels at
the marina tide gauge, with high marina water levels associated with sustained periods of
high westerly winds, while wind direction does not predict roadway flooding without the
co-occurrence of high directional wind speeds.

The low R2 of the final model considering peak water levels and significant wave
heights (0.26) may partially be due to differences in local drivers of flooding (e.g., the water
level at the shoreline of Pea Island [44]) from what was measured at publicly available
gauges. In addition, other variables not able to be determined from publicly available
data (e.g., buffer distance, the elevation of the flooded roadway) are likely to contribute to
roadway vulnerability. Similarly, temporal considerations may also contribute to roadway
inundation, such as previous flooding or rainfall events that saturate the soil, the duration
of sustained directional winds, or the duration of flooding and elevated significant wave
height conditions.

Considering the results of numerical model outputs for storm scenarios (Method 2),
roadway vulnerability to bay-side flooding is dependent on the peak water level at the
marina tide gauge and the buffer distance between the roadway transect and shoreline
(p < 0.01) for the marina water levels ranging from 0.4 m to 2.2 m NAVD88 and buffer
distances ranging from 38 m to 563 m. Significant wave height at the boundary and
significant wave height at the shoreline are not significant indicators of bay-side flooding.
The little significance of waves in this method results from simulations only accounting
for bay-side storms, where the main flooding driver is a bay-side surge that counteracts
the effects of waves as they try to propagate through the neighboring Oregon Inlet. While
both the water level at the marina tide gauge and water level at the shoreline are found in
separate models to be significant predictors of bay-side roadway flooding, both models
exhibit similar performance (R2 = 0.48), even though there may be local variability in water
levels at the shoreline that is not captured consistently at the marina tide gauge. The water
level at the marina tide gauge is selected as the predictor variable in Figure 4 due to it being
readily obtained from publicly available data.
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Figure 4A shows the probability of roadway transect flooding P(f)2 as a function of
water level at the marina tide gauge for a buffer distance of 50 m. The 95% confidence
intervals are shown as dashed curves, and the solid fragility curve indicates that the
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probability of roadway flooding increases with increased water levels at the marina tide
gauge. Figure 4B shows the effect of buffer distance on roadway transect flood vulnerability,
depicting fragility curves for four buffer distances from the roadway based on the water
level at the marina tide gauge. The probability of roadway transect flooding increases with
a decreasing marsh buffer distance: for a water level at the marina tide gauge of 2.5 m
(NAVD88), the probability of roadway transect flooding increases from 0.18 for a 200 m
buffer to 0.95 for a 50 m buffer. These results highlight the importance of mitigating erosion
to maintain large buffer distances between the bay-side shoreline and the roadway.

For fragility curves investigating marsh failure (Method 3), the horizontal distance
from the marsh shoreline to the 5 m contour in the channel (ranging from 13.2 m to 66.5 m
in 2019 data and 7.8 m to 49.5 m in 2021 data), the long-term erosion rate (ranging from
−2.3 m/year (accretion) to 5.6 m/year), and the slope between the 2 m and 5 m contours
in the channel offshore of the marsh segment (ranging from 0.12 to 0.58) obtained from
the 2021 bathymetry data are identified in univariate regression as significant variables
predicting marsh failure (p < 0.01). While the distance to the 5 m contour is identified as
significant in both the 2021 and 2019 bathymetry data, the fragility model using the 2019
bathymetry data provides a better description of the proportion of the variance in the data
(severely eroded model, R2 = 0.46, severely eroded or eroded model, R2 = 0.35) compared
to the fragility model using the 2021 bathymetry data (severely eroded model, R2 = 0.40,
severely eroded or eroded model, R2 = 0.22). The better performance of the fragility model
derived based on 2019 bathymetry data compared to the fragility model based on the more
recent survey suggests a lag between channel proximity (determined from bathymetric
measurements) and shoreline erosion on a temporal scale of several months to years.

The 2 m contour was not continuous, resulting in insufficient data to construct a
fragility model using the 2019 bathymetry data. However, sufficient data were available to
calculate the slope between the 2 m and 5 m contours obtained from the 2021 data, which
is identified as a significant predictor of the marsh condition. The performance of the
fragility model based on channel slope (severely eroded model, R2 = 0.33, severely eroded
or eroded model, R2 = 0.37) is similar to the fragility model based on the distance to the
2019 5 m contour, slightly under-performing in its prediction of marsh classification as
severely eroded and slightly improving the prediction of marsh condition as either eroded
or severely eroded.

The best overall predictor variable based on statistical significance and R2 value is
the long-term erosion rate, determined from overhead imagery of the marsh shoreline
obtained at low tide between 2003 and 2021 (severely eroded model, R2 = 0.52, severely
eroded or eroded model, R2 = 0.52). Notably, multivariate regression considering both long
term erosion rate and distance from shoreline to the 5 m depth contour produces a fragility
model with slightly better performance compared to the univariate model (severely eroded
model, R2 = 0.54, severely eroded or eroded model, R2 = 0.53), but with non-significant
p-values, indicating the collinearity of these two predictor variables. Fragility curves are
shown in Figure 5 for marsh classification as severely eroded (black curve with markers) or
eroded/severely eroded (black curve) as a function of (A) distance to the 2019 5 m contour
X5mcontour,2019 and (B) the long-term erosion rate LTR. Shoreline data are shown as colored
symbols, using a similar color scheme classification as in Figure 2B. As indicated in Figure 2,
many of the areas classified as severely eroded or eroded (red squares and orange triangles
in Figure 5, respectively) are associated with locations of high long-term erosion rates in
the northern to central sections of the study area. These areas, similarly, are associated with
closer proximity to the channel, as indicated by the 5 m depth contour (Figure 1).
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5. Discussion and Conclusions
5.1. Implications for Planning

Empirical fragility curves derived from publicly available data and storm scenario
simulations indicate the importance of measurements at nearby monitoring stations in
predicting roadway inundation or closure due to flooding, particularly for bay-side events.
Therefore, the results of this study may contribute to risk-management programs in the
area: transportation planners may identify elevated water level conditions and take pre-
cautionary action to mitigate roadway flooding or prevent unsafe travel conditions, and
coastal managers may identify adaptation alternatives to improve the resilience and robust-
ness of transportation infrastructure. The fragility curves based on numerical simulations
identified marsh buffer distance as a significant predictor of bay-side roadway flooding. An
increased buffer distance of 150 m (from 50 m to 200 m) for a 2.5 m water level reduces the
likelihood of roadway transect flooding by over 75% for the hydrodynamic conditions con-
sidered here, highlighting the importance of a healthy marsh buffer between the shoreline
and the roadway for mitigating flooding impacts.

SLR may exacerbate the vulnerability of coastal transportation infrastructure by inun-
dating marshes and reducing the buffer distance between the shoreline and the roadway.
Interactions between marshes and developed near-shore infrastructure must also be con-
sidered. While no adverse effects of the roadway on marsh erosion were observed in this
study area (i.e., marsh erosion was driven by proximity to the channel and long-term
erosion rates related to channel velocity and/or sediment budget), the effects of coastal
squeeze by near-shore infrastructure may limit the ability of vegetation to adapt to rising
sea levels [65,66]. The marsh’s condition is an essential component of roadway vulnerability
(or robustness) to bay-side flooding for the ranges of hydrodynamic conditions considered
here, in addition to its significance for ecosystem services, such as a habitat for migratory
birds and loggerhead turtles [67] and carbon sequestration [68], which are particularly
important given the location of the study area in a National Wildlife Refuge. Therefore, the
results indicate the importance of marsh monitoring and adaptive management through
conservation, restoration, and erosion-mitigation measures.

As identified in the marsh vulnerability analysis, long-term erosion rates and proximity
to a tidal inlet flood channel affect the marsh’s classification as severely eroded or eroded.
Therefore, steps may be required to reduce long-term erosion rates by relocating the channel
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or providing some type of shoreline edge stabilization. The rapid-response erosion rate
was not identified as a significant predictor of marsh condition in the fragility model, but as
observed in pre-and post-storm surveys for the 2019 nor’easter and 2020 Hurricane Isaias,
episodic events caused further erosion of already-eroding areas of the marsh shoreline.
These observations suggest that the pre-storm condition of the marsh may affect the severity
of impact from episodic events: an already-eroding marsh is vulnerable to more erosion
during storms, while a healthier marsh (with more established vegetation and a gentle
shoreline slope) may be more robust and resistant to storm damage. In other words, for this
study area, while the main drivers of the shoreline condition are long-term erosion rates
associated with the proximity of the inlet flood channel, episodic events can exacerbate
existing erosion issues. A systems approach must be used to consider marsh vulnerability
and its connection to the vulnerability of coastal transportation infrastructure.

5.2. Study Considerations

While the fragility models considered here identified significant variables influencing
roadway flooding or marsh condition, several idealizations and assumptions were made
in the fragility models’ derivations. First, the models were derived by fitting fragility
data to a Gaussian distribution and assuming that data are normally distributed. Future
work may consider fitting data to alternative distributions, such as the Weibull distribution
or generalized extreme value distribution [3,12]. Similarly, variables not considered in
fragility model derivation due to unavailability or insufficient data may be significant
contributors to roadway or marsh fragility. The relatively low R2 values for all fragility
models considered indicate that other variables are required to explain the variance in
the fragility models or that larger sample sizes are required to improve confidence in
fragility model outputs. For example, publicly available data could not identify locations
of roadway flooding, and therefore effects of buffer distance or flooded roadway elevation
could not be included. While roadway elevations were available in the numerical model,
marsh elevations were variable between the shoreline and roadway transect, and the
range of elevations for roadway numerical model output stations was small (<1.0 m).
Therefore, marsh buffer distance was selected as the landscape parameter mitigating
roadway flooding, although greater elevations in the marsh or roadway are expected to
further mitigate flooding impacts.

Similarly, sustained periods of high directional winds likely play an important role
in bay-side roadway flooding, and wave direction may be important in driving flooding
from the bay or ocean. While wind speed and direction are included in the fragility model
based on publicly available data, multi-variate regression indicates a correlation between
hydrodynamic conditions (water levels at the marina tide gauge and significant wave
heights at the waverider buoy) and wind speed and/or direction. For example, high water
levels at the marina tide gauge are associated with high sustained westerly wind events. The
significance of wind speed and direction variables are likely reduced in the fragility model
based on publicly available roadway closure data, which does not distinguish between
bay-side and ocean-side flooding-related closures. Fragility model derivations based on
numerical model outputs indirectly account for wind speed and direction, considering
water levels at the marina tide gauge and shoreline and significant wave heights at the
shoreline and boundary. Peak directional wind speeds must be sustained for durations
sufficient to generate significant fetch-generated waves and water level setup. Therefore,
future work may consider explicitly including threshold wind speeds, directions, and
durations in fragility investigations.

Other temporal considerations likely play a role in both roadway vulnerability to
flooding and marsh vulnerability to erosion, such as the duration of elevated water levels
and/or wave heights and pre-storm marsh or roadway conditions based on the timing
and frequency of previous rainfall or inundation events. As indicated in the analysis of
short-term shoreline change following episodic events, longer-duration, lower-intensity
storms (e.g., 2019 nor’easter) may have a more significant effect on event-driven shoreline
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erosion (and flooding) than shorter duration, higher peak-intensity storms (e.g., 2020
Hurricane Isaias). Processes occurring on longer temporal scales, such as climate change,
long-term scour, and infrastructure deterioration, as well as the occurrence of multiple
hazards, should also be considered [8,9]. Future work may thus consider the importance of
time-dependent predictors in roadway or marsh fragility.

The models presented here are case-specific to the study area considered and only valid
for the range of water levels, wave heights, and landscape conditions observed at nearby
monitoring stations or tested in the numerical model. Future work may consider process-
based relationships between sediment transport and hydrodynamic forcing (e.g., current,
wave, and water level effects on bed shear stress or sediment transport). The relationships
identified here as significant must be verified with additional modeling or field observations
for a range of sites and conditions before these features can effectively be incorporated into
design guidance [58,69].

While this study identified key relationships between roadway and marsh vulnerabil-
ity, environmental conditions, and landscape features, other considerations and vulnera-
bilities may make climate change adaptation in the area more complex. For example, the
subsidence [70] of the Outer Banks contributing to relative sea level rise may create long-
term challenges for adaptation in the study area, particularly considering issues of a coastal
squeeze if the marsh is not able to retreat due to the presence of the roadway. In addition,
implications of interventions at regional scales must be considered for both updrift and
downdrift locations. Critical next steps for future work include the integration of fragility
curves presented here, coupling the marsh vulnerability to the resulting disruption in road-
way functionality and, ultimately, the losses suffered by affected communities. Risk-based
approaches may further help to understand hazard probabilities, community exposure, and
vulnerability. Finally, the implications of mitigation actions (or inactions) on populations
must be considered to ensure equitable shoreline management approaches. Communica-
tion among stakeholders, engineers, and decision-makers is essential to develop equitable
and robust solutions for future climate change challenges.

5.3. Study Contributions

One contribution of this study is the proposed methodology for characterizing the
marsh shoreline as “healthy,” “eroded,” or “severely eroded” (Table 2). While guidance
exists for shoreline assessment that provides criteria for healthy or eroding marshes based
on marsh slope or scarp height [58] and other studies have evaluated shoreline condition
following extreme events [30,59,71], vulnerability to erosion [72–77], and recovery after
storms [71,78], a standardized engineering methodology is required for assessing shoreline
condition considering the status of erosion, vegetation persistence, and other landscape
factors. Therefore, Table 2 may be refined, expanded, and generalized for evaluation of the
condition of marsh shorelines or other nature-based shoreline-protection alternatives.

This study further provides a framework for assessing the vulnerability of coastal
transportation infrastructure to chronic and extreme bay-side flooding events as a function
of hydrodynamic characteristics and interconnection with existing landscape geomorpho-
logical processes. We present observations, modeling results, and empirical fragility curves
showing (i) relationships between roadway flooding, water levels, wave heights, and/or
marsh buffer distances and (ii) relationships between marsh condition, long-term erosion,
and proximity to an encroaching flood channel. The results may be particularly useful for
emergency and transportation planners; generally, roadways are closed when flooding or
debris on the roadway creates unsafe driving conditions. The fragility curves presented
here allow for the identification of water levels at which roadway flooding exceeds a thresh-
old likelihood, providing infrastructure agencies with the ability to address potentially
hazardous driving conditions or to mitigate potential flooding in advance of actual im-
pacts (e.g., dune reinforcement). Methods for reducing roadway vulnerability (e.g., by
increasing the marsh buffer distance between the roadway and the bay-side shoreline)
are also identified; these results suggest the potential of nature-based alternatives, such
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as healthy wetland systems, to bolster the resilience of coastal transportation infrastruc-
ture. While the results are specific to the study area, the curves may be tested, calibrated,
and validated for other locations and predictor variables to inform future planning and
flood-risk-management efforts.

As coastal communities consider adaptation pathways to manage future coastal flood
hazards in the face of climate change and sea level rise, the interconnectivity between
the shoreline condition and infrastructure vulnerability may play a greater role in flood
risk management. Understanding these processes may allow decision-makers to best
leverage nature-based and conventional infrastructure to improve the resilience of coastal
transportation infrastructure and surrounding communities.
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