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Abstract: As wind energy continues to be a crucial part of sustainable power generation, the need
for precise and efficient modeling of wind turbines, especially under yawed conditions, becomes
increasingly significant. Addressing this, the current study introduces a machine learning-based
symbolic regression approach for elucidating wake dynamics. Utilizing WindSE’s actuator line
method (ALM) and Large Eddy Simulation (LES), we model an NREL 5-MW wind turbine under
yaw conditions ranging from no yaw to 40 degrees. Leveraging a hold-out validation strategy, the
model achieves robust hyper-parameter optimization, resulting in high predictive accuracy. While
the model demonstrates remarkable precision in predicting wake deflection and velocity deficit at
both the wake center and hub height, it shows a slight deviation at low downstream distances, which
is less critical to our focus on large wind farm design. Nonetheless, our approach sets the stage for
advancements in academic research and practical applications in the wind energy sector by providing
an accurate and computationally efficient tool for wind farm optimization. This study establishes a
new standard, filling a significant gap in the literature on the application of machine learning-based
wake models for wind turbine yaw wake prediction.

Keywords: yaw wake prediction; NREL 5-MW wind turbine; wind energy optimization; symbolic
regression; AI; wind turbine wake deflection; wind turbine velocity deficit; wind farm design studies;
WindSE; machine learning

1. Introduction
Background

As global energy consumption continues to rise in the face of dwindling fossil fuel
reserves and escalating climate change concerns, the search for sustainable and clean energy
sources has become a pressing imperative. One such source, wind energy, has rapidly
become prominent in the global energy landscape. Recognized for its renewable nature
and significant potential for reducing carbon emissions, wind energy has positioned itself
as a viable and critical solution to the energy conundrum [1].

The translation of this potential into practical energy production at scale has been
realized through wind farms, which are large arrays of wind turbines designed to convert
the kinetic energy of wind into electricity. Scattered across both land and sea, these
towering structures have become symbols of our pursuit of renewable energy, embodying
our commitment to a sustainable future [2].

However, despite the apparent simplicity of their operation, wind turbines are gov-
erned by complex dynamics that pose considerable challenges to their efficiency and
longevity. A central element in these dynamics is the ’wake’ that each turbine generates as
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it extracts energy from the wind [3]. These wakes—areas of turbulent airflow and reduced
wind speed, or ’velocity deficit’, behind the turbines—pose significant challenges to har-
nessing wind energy effectively. The turbulence within the wake not only leads to efficiency
losses but also results in increased fatigue loads, which can reduce the operational lifespan
of turbines [4,5].

The intricacies of wake effects are magnified within wind farms, where the close
positioning of turbines creates an interplay of wakes that can lead to a cascading effect of
power loss across the installation. When multiple wakes intersect, the downstream turbines
face lower wind speeds and increased turbulence, leading to a substantial drop in energy
production and heightened structural stresses [6]. Moreover, when turbines are not aligned
directly with the incoming wind—a condition known as ’yaw’—the wake characteristics
become even more complex. Yawed conditions induce changes in wake structure, which
complicate the prediction and management of wakes and introduce additional efficiency
and load challenges [7].

Given these challenges, modeling wind turbine wakes is of paramount importance
in the pursuit of efficient wind energy harvesting. Traditional methods of wake modeling
often employ Computational Fluid Dynamics (CFD) simulations. Techniques such as Large
Eddy Simulation (LES) and Reynolds-Averaged Navier–Stokes (RANS) equations have
been widely used to simulate and study the dynamics of wakes. While these methods
provide valuable insights, they are computationally intensive and require significant time
to complete, rendering them impractical for large-scale or real-time applications [8].

Additionally, the wake dynamics of yawed turbines present unique challenges that
current analytical models do not fully address. Despite the crucial role of yaw in real-world
wind turbine operation, the body of research on yaw-induced wake behavior is notably
sparse. Existing models often fall short in accurately representing wake behavior under
yawed conditions, leading to significant gaps in our understanding and prediction of wake
dynamics in these scenarios [9]. A comprehensive understanding of yawed wake dynamics
is critical not only for improving individual turbine performance but also for optimizing
the design and control strategies of wind farms. It can provide pathways for increasing
overall energy yield and reducing mechanical loading on turbines, thus enhancing the
durability and efficiency of wind farms [10].

With its ability to recognize patterns and learn from data, machine learning offers
a promising alternative to traditional wake modeling. Leveraging machine learning
techniques, such as symbolic regression, allows for the generation of models that can
accurately predict wake behavior under various operating conditions, including yaw
misalignment [11]. Particularly, symbolic regression provides the added advantage of pro-
ducing transparent and interpretable models, a significant departure from the ’black-box’
nature of many conventional machine learning methods [12]. Consequently, the develop-
ment and refinement of machine learning-based symbolic regression models for predicting
yawed wind turbine wakes represent a promising and emerging field of research. This
approach holds significant potential for enhancing wind energy production and shaping
the future of the wind energy sector.

2. Literature Review
2.1. Wind Turbine Wake Aerodynamics

Understanding the intricacies of wind turbine aerodynamics, specifically wake phe-
nomena, plays a critical role in enhancing turbine performance and, consequently, the
overall efficiency of wind energy systems [3,13]. Wind turbines, by their very nature, inter-
act with wind flow, causing disruptions and giving rise to a wake—a region characterized
by reduced wind speed and increased turbulence.

The fundamental principles underpinning wake aerodynamics in wind turbines are
firmly grounded in the broader discipline of fluid dynamics and, specifically, the study of
turbulence and vorticity [14,15]. As wind interacts with the turbine’s rotor, a momentum
deficit ensues in the immediate downstream region. This deficit translates into a change
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in velocity, often marked by a velocity deficit in the wake compared to the free stream
wind speed [16].

The formation and propagation of wind turbine wakes are contingent upon many fac-
tors. From a meteorological perspective, atmospheric stability, wind speed, and turbulence
intensity are major influencing factors [5,17]. Meanwhile, parameters related to turbine
design and operation, such as rotor diameter, tower height, blade pitch, and turbine control
strategies, can significantly modulate wake characteristics [18,19]. Understanding these
factors is paramount for predicting wake behavior and optimizing wind farm performance.

Wake effects have a significant bearing on both individual turbine performance and
the overall efficiency of wind farms. Owing to wake interference, downstream turbines
(i.e., turbines located behind other turbines relative to the prevailing wind direction) often
face reduced wind speeds, leading to lower power output [4,5,19–21]. Furthermore, the
wake’s turbulent nature increases the wind load’s variability on the turbine structures,
potentially resulting in increased structural fatigue and reduced component life [22,23].

To mitigate these detrimental wake effects, various strategies have been proposed and
implemented. Wind farm layout optimization, for example, seeks to arrange turbines to
minimize wake interference and maximize overall power production [24,25]. Similarly,
active wake control strategies such as deliberate yaw misalignment and adaptive blade
pitch control can redirect wakes away from downstream turbines [26,27].

Empirical research and computational modeling have been invaluable in extending
our understanding of wind turbine wake aerodynamics. Real-world measurements of wake
effects using advanced technologies such as LIDAR and SODAR provide critical insights
into wake behavior under varying operational and environmental conditions [6,19,28–30].
Concurrently, computational studies utilizing methods such as Computational Fluid Dy-
namics (CFD) and Large Eddy Simulation (LES) have provided a platform to simulate
and study wake dynamics in controlled conditions, enabling researchers to isolate and
understand the influence of specific factors [8,31,32]. It is worth noting that Large Eddy
Simulation (LES) is a computational technique frequently used for turbulence modeling
and is often deemed advantageous for capturing a wide range of turbulent flow scales.
However, it has its limitations. One of the primary constraints is computational expense, as
LES demands significant computational resources and time, especially for high Reynolds
number flows [33,34]. Additionally, the accuracy of LES is highly dependent on the quality
of subgrid-scale models employed to represent unresolved scales, and inadequate modeling
can lead to erroneous results.

The understanding and characterization of wake aerodynamics continue to evolve as
researchers harness new technologies, adopt innovative modeling techniques, and continue
to collect and analyze field data from wind farms operating worldwide. Through continued
research and development, the wind energy sector hopes to overcome the challenges posed
by wake effects and move closer to realizing the full potential of wind power.

The analysis of wind turbine wakes under normal operating conditions is a pivotal
component in designing and optimizing wind farms. Over the years, various analyti-
cal wake velocity models have been proposed, each bearing unique assumptions and
simplifications derived from flow-governing equations.

Popular models for wind turbine wakes under axial inflow conditions from the existing
literature include the Jensen model [35], the Katic Model [35,36], the Larsen Model [37],
the Frandsen Model [38], the B-P (EPFL) Model [39,40], the Tian Model [41], and the Gao
Model [42]. However, the modeling of wakes under yawed wind turbine conditions is
not extensively covered in the existing literature, and this represents an area requiring
further investigation [43].

2.2. Wake in Yawed Wind Turbines

Yaw in wind turbines pertains to the rotation of a turbine around its vertical axis in
relation to the wind’s oncoming direction [44,45]. This ability to adjust and control yaw
angles ensures the optimal operation of wind turbines, balancing the maximization of
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power output against the minimization of structural loads [46,47]. The mechanical systems
enabling yaw adjustments are central to the functional design of modern wind turbines,
ensuring that they can respond adaptively to fluctuating wind directions [48,49].

When wind turbines operate under yawed conditions, as shown in Figure 1, distinct
changes occur in the downstream wake characteristics. The misalignment introduced by
yawing the turbine causes a deflection and skewness of the wake, effectively steering it
away from its normal trajectory [50,51]. Additionally, this yaw misalignment increases
turbulence within the wake, leading to a more chaotic and diffuse wake structure [52].
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Figure 1. Schematic representation of a wind turbine yawed by the angle γ, illustrating the resulting
wake deflection characterized by the wake deflection yd. Adapted from [9].

The phenomena involved in yaw-induced wake redirection have broad implications
for wind farm operations. While the altered wake can influence the performance of down-
stream turbines, potentially leading to power losses and increased turbulence loads [44,52],
strategic yaw misalignment can also be beneficial. By actively controlling the yaw angle
of turbines, operators can effectively steer the wake away from downstream turbines.
This active wake control method can potentially increase the overall power output of
wind farms [53,54].

Comprehensive research has to be conducted to further characterize wind turbine
wakes under different yaw conditions. Planned future studies, which will involve compar-
ative analyses of wake features under various yaw angles, are anticipated to illuminate the
complex dynamics of yaw-induced wakes [7,52,55–57].

2.3. Analytical Models for Yawed Wind Turbines

In 2016, Micallef and Sant [44] noted in their study on wind turbine yaw aerodynamics
that, regrettably, no empirical models had been put forth to characterize the wake deforma-
tion in yaw. A handful of analytical models for predicting the wake characteristics of yawed
turbines have been put forward in recent years [43]. These models and their limitations are
discussed below.

2.3.1. Jiménez et al. [52] Wake Model for Yawed Conditions, 2010

Introduced in 2010, the wake model by Jiménez et al. [52] adopts a “hat-shaped”
approach to predict the wake characteristics in yawed conditions. The model is particularly
known for its straightforward computational architecture but has several limitations that
need to be addressed.

• Limitations

– The model has a tendency to exaggerate the deflection of the wake [9,43,58–61].
– Additionally, this model has a tendency to underestimate the maximum velocity

deficit [61].
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2.3.2. Bastankhah and Porté-Agel [58] Wake Model for Yawed Conditions, 2016

Developed in 2016, the wake model by Bastankhah and Porté-Agel utilizes Gaussian
functions to better capture the characteristics of wakes in yawed conditions. The model
excels in its computational efficiency but also presents challenges with respect to empirical
parameter estimation.

• Advantages

– A cost-effective analytical approach for computational prediction of wake charac-
teristics in the far wake [62].

• Limitations

– The estimation of two empirical parameters is necessary to figure out the initiation
of the far wake zone. However, obtaining universal values for these parame-
ters is challenging, as their forecasts heavily rely on computer simulations or
experiments. Consequently, the practicality of the wake model is significantly
constrained [61].

– Wake is significantly impacted by turbulence intensity, which is not sufficiently
taken into consideration in this model [62].

2.3.3. Qian and Ishihara [9] Wake Model for Yawed Conditions, 2018

The wake model by Qian and Ishihara, formulated in 2018, also employs Gaussian
functions but with distinct improvements over the Bastankhah and Porté-Agel model.
Specifically, this model accommodates varying conditions of ambient turbulence and thrust,
enhancing its practical utility.

• Advantages

– In contrast to the Bastankhah and Porté-Agel model, this model incorporates
input parameters that are expressed as functions of ambient turbulence intensity
and thrust coefficient. This consideration is believed to improve the practicality
of the model [61].

• Limitations

– The model has a tendency to underestimate the maximum velocity deficit in
scenarios involving yaw angles of 10◦ and 20◦ [63].

– The underestimation of maximum velocity deficit is especially evident in the
instances of yaw angles γ = 20◦ and γ = 30◦ [61].

– More validation studies are necessary to support the efficacy of this model [61].

2.3.4. General Limitations of Existing Analytical Models for Yawed Wind Turbines

There are several disparities included within the wake models pertaining to yawed
turbines. In their study, Dou et al. [43] extensively elucidated the variations in the con-
cept of wake center across various models. In general, experts regard the wake center
as the spot where the foremost velocity deficit occurs at each subsequent downstream
position. Therefore, in this study, the maximum velocity deficit is considered to be the
wake center. Another crucial assumption is that the suggested models for downstream
velocity distribution are based on a presumption of symmetry in the streamwise velocity
distribution around the center of the wake. However, this assumption is seldom validated
by experimental findings. The presence of asymmetry in the flow conditions may signif-
icantly impact the operation of the downstream turbine, perhaps resulting in inaccurate
predictions of the wake [43].

2.4. Role of Machine Learning in Wind Turbine Wake Modeling

Machine learning (ML) has recently emerged as a transformative paradigm across
multiple domains, bringing innovative solutions and improved efficiency to long-
standing challenges. Wind energy, specifically in the context of wake modeling, stands
as a conspicuous beneficiary of this technological influx. Although conventional ap-
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proaches like the Blade Element Momentum (BEM) method and Computational Fluid
Dynamics (CFD) provide valuable insights, their limitations in accurately capturing com-
plex aerodynamic behaviors or high computational cost have led researchers to consider
data-driven approaches [12].

It is salient to note that machine learning’s active application in modeling yawed
wake characteristics such as deflection or velocity deficit has been relatively minimal.
Nevertheless, its potent influence in related areas of wind turbine wake modeling is
irrefutable. For instance, machine learning algorithms like Support Vector Regression
(SVR), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost) have
been applied to accurately predict wake velocity and wake turbulence intensity [11]. These
algorithms have demonstrated their ability to be commensurate with CFD simulations
while operating at speeds akin to those of low-fidelity wake models.

Similarly, Genetic Programming (GP), another machine learning technique, has been
used to formulate new analytical models for predicting wake velocities and turbulence
intensities [64]. This highlights machine learning’s adaptability in generating models that
accommodate the complex and non-linear nature of wake effects, including the Atmo-
spheric Boundary Layer (ABL) impacts.

Moreover, machine learning algorithms have been integrated with physics-based
models to yield hybrid methodologies that strive for increased generalization. The focus on
the generalizability of these models has been a noteworthy avenue of investigation, aiming
to ensure that machine learning-based wake models can predict properties across multiple
turbines and varying operating conditions [65].

Data-driven approaches have proven effective not only in static models but also in
dynamic wind farm wake modeling, utilizing sophisticated deep learning techniques like
Long Short-Term Memory networks (LSTMs) [66]. In addition, reinforcement learning has
been employed for optimizing the power output of wind farms through yaw-based wake
steering, showcasing machine learning’s potential in real-time applications [67].

Nevertheless, while machine learning brings forth numerous advantages, it is crucial
to exercise prudence. The limitations in machine learning approaches, particularly in the
context of training data and the need for advanced regularization techniques, still present
challenges that warrant further research [65].

Although machine learning has yet to be actively applied in creating data-driven
models for yawed wake characteristics, it has played a significant role in advancing wind
turbine wake modeling. Not only has it improved the accuracy and efficiency of existing
models, but it has also opened avenues for real-time optimization and control. The synergy
of machine learning with traditional computational methods presents an exciting frontier
for the wind energy sector, promising more robust and versatile wake models in the future.

2.5. Original Contributions and Objectives of the Study

The present study endeavors to make contributions to existing knowledge through
the following carefully articulated objectives:

1. To develop a data-driven symbolic regression model aimed at accurately capturing
vital aerodynamic parameters, including velocity deficit at hub height, velocity deficit
for a yawed wake center, and wake deflection.

2. To move beyond traditional modeling assumptions, such as actuator disc models and
Gaussian velocity deficit estimates, in an effort to achieve a more faithful representa-
tion of the intricate physics involved in wind turbine operations.

3. To employ the actuator line method as the computational foundation of this research,
recognizing its merits in better representing complex flow dynamics compared to
traditional actuator disc models.

4. To make use of symbolic regression’s natural ability for interpretability, with the
aspiration of revealing not just empirical relationships but also the underlying physical
principles that govern aerodynamic behaviors.



J. Mar. Sci. Eng. 2023, 11, 2111 7 of 21

5. To conduct a thorough parametric study, covering a meaningful range of yaw an-
gles and thrust coefficients, with the intent of validating the model’s efficacy and
broadening its range of applicability.

3. Methodology
3.1. WindSE

This investigation utilizes the WindSE (FY23Q3 Release) software package , a
Navier–Stokes solver developed at the National Renewable Energy Laboratory
(NREL) [68,69]. WindSE is uniquely equipped with an actuator line methodology, provid-
ing superior fidelity in capturing complex flow dynamics, especially in wake studies [70].
The software is built on the FEniCS framework, an open-source platform for the automated
finite-element solution for partial differential equations [71].

3.1.1. Unsteady Solver in WindSE

To accurately capture the wake characteristics under yawed conditions, a time-resolved
solution for the flow field is essential. The underlying physics are governed by the filtered
Navier-Stokes and continuity equations as follows [70]:

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇P + µ∇2u−∇ · τ + F∇ · u = 0. (1)

The solver employs first-order continuous piecewise finite elements for spatial dis-
cretization. The benefit lies in computational efficiency while maintaining acceptable fidelity.

Temporal discretization is realized via a fractional-step method. A predicted fluid
velocity field at the next time step, u∗, is first computed, followed by a pressure-correction
step to enforce the divergence-free constraint.

The total viscosity, ν, in the model includes subgrid-scale eddy viscosity, formulated as:

νT = (C∆)2|S|S =
1
2

(
∇u + (∇u)T

)
. (2)

In this formulation, C denotes the Smagorinsky constant, presently set at 0.17. The
symbol ∆ signifies the representative length scale for each computational cell. The strain
rate tensor, S, is the resolved strain within the fluid domain.

3.1.2. Actuator Line Method in WindSE

The implementation of blade geometry and rotor induction effects in WindSE utilizes
the external forcing term, F, described in Equation (1). This is accomplished through the
actuator line method, which spatially distributes time-dependent blade forces. Specifi-
cally, the actuator line method employs a summation of discrete forces, each modeled by
Gaussian-distributed point forces [70]. The mathematical representation of this forcing
term is:

F(x, y, z, t) = −
N

∑
j=1

f j
(
xj, yj, zj, t

) 1
ε3π3/2 exp

(
−
∣∣dj
∣∣2

ε2

)
.

Here, N represents the count of blade discretization segments, and ε governs the
Gaussian width. The distance vector dj indicates the separation between any fluid point
and the jth actuator point.

The actuator force, f j, constitutes the vector sum of lift and drag forces, whose magni-
tudes are represented as:

L(x, y, z, t) = β
1
2

Cl(α)ρcw|urel(x, y, z, t)|2

D(x, y, z, t) = β
1
2

Cd(α)ρcw|urel(x, y, z, t)|2.
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The local angle of attack, α, is functionally dependent on the relative velocity and the
blade twist. The tip-loss factor, β, is included to moderate the force near the blade tip and
is expressed as:

β =
2
π

cos−1

[
exp

(
3
2

(R− r)
r sin

(
αrp
))].

Finally, the rotor power W is formulated as:

W = ω
N

∑
j=1

rj

(
f j · n̂j

)
.

This mathematical framework provides a comprehensive yet computationally efficient
method to emulate the complex physics involved in rotor-blade interactions within the
fluid domain.

3.2. Symbolic Regression

In an era where artificial intelligence (AI) has found applications ranging from mun-
dane household utilities to advanced medical diagnostic systems [72–75], a plethora
of analytical methodologies have emerged to tackle complex, data-driven challenges.
One such method, critical to the discourse of this study, is regression analysis. This
statistical approach is pivotal for discerning and quantifying the intricate relationships
among variables [76,77].

Among the diverse array of regression techniques, symbolic regression distinguishes
itself. Unlike conventional regression methods, which necessitate an initial hypothesis
regarding the model’s form, symbolic regression is uniquely capable of both identifying
the optimal model structure and fine-tuning the associated parameters [78].

Symbolic regression excels at approximating mathematical functions through a rigor-
ous exploration of the formulaic space, while also ensuring that the derived models are
readily interpretable [79,80]. Two prevailing optimization techniques used in symbolic
regression are Genetic Programming (GP) [81] and Simulated Annealing (SA) [82,83]. While
both employ tree-structured representations to encapsulate mathematical expressions, they
diverge substantially in their optimization mechanisms.

In this study, we have opted for Simulated Annealing as our optimization technique.
SA is proficient at initiating its algorithmic search with a broad scope, subsequently refining
its focus based on the iterative adjustment of parameters and probabilistic acceptance or
rejection of proximal solutions. The primary goal of our symbolic regression implementa-
tion is to strike an optimal balance between the complexity of the model and the fidelity
with which it represents the data. To realize this objective, we employed Pareto Simulated
Annealing, a Multi-Objective Combinatorial Optimization (MOCO) method, which refines
solutions based on multiple objectives rather than a single metric.

The implementation was executed on an AMD Ryzen™ 9 5900 CPU with 24 threads
using the TuringBot Python library and consumed approximately 3000 CPU hours in total.

3.3. Data Generation
3.3.1. NREL 5-MW Wind Turbine

The National Renewable Energy Laboratory’s (NREL) 5-MW offshore wind turbine
serves as a benchmark in the analysis of wind turbine wakes under yawed conditions. This
standardized model is characterized by a rotor diameter of 126 m and a hub height of 90 m,
and it is specifically designed for offshore applications. With a rated power of 5 MW, it has
been instrumental in providing a consistent framework for understanding wake behavior
when the rotor is misaligned with the incoming wind direction [84].

The aerodynamic attributes of this particular model are conducive for studying wake
deflection and recovery under yaw misalignment. Given the large rotor diameter and high
hub height, the turbine provides an ideal scale for scrutinizing the subtleties of wake flow
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properties during yawed conditions. Consequently, the NREL 5-MW turbine becomes a
pivotal tool in investigating how yaw adjustments impact the downwind energy capture
and turbulence intensity [85].

Often employed in Computational Fluid Dynamics (CFD) studies, the NREL 5-MW
turbine enables high-fidelity simulations that illuminate the complex interactions occurring
in the wake when the turbine operates under yawed states [86]. Due to its widespread
adoption and well-documented specifications, the NREL 5-MW wind turbine serves as an
invaluable reference model for wake studies under yawed conditions, aiding in both the
calibration of computational models and the validation of empirical findings [59].

3.3.2. Case Setup

The aim of this computational study is to investigate the aerodynamic behavior and
wake dynamics of the NREL 5-MW wind turbine under different yaw conditions. A series
of five simulations are conducted, including a baseline scenario with no yaw, as well as
cases with yaw angles of 10◦, 20◦, 30◦, and 40◦.

For these simulations, the actuator line method (ALM) is employed to represent the
turbine. The rotor operates at a speed of 9.155 RPM, and blade aerodynamic features are
configured using chord and Gaussian weighting factors set to 1.0 and 2.0, respectively.

The computational domain is box-shaped and discretized based on the rotor diameter
D of 130 m. The domain spans from −2D to 20D in the streamwise direction, −2D to 2D
in the spanwise direction, and approximately 0 to 4D in the vertical direction. The grid
consists of 190 nodes in the streamwise direction, 35 nodes in the spanwise direction, and
35 nodes in the vertical direction.

Mesh refinement is implemented via a split-type strategy that modifies 83.33% of
the cells below a height of 260 m. Additional custom refinements are also applied in the
streamwise direction to capture the wake dynamics more accurately. Linear finite elements
are utilized for both pressure and velocity field calculations.

The inlet features a uniform velocity profile with a hub-height velocity of 10 m/s.
Boundary conditions include inflow conditions at the upwind boundary, stress-free con-
ditions at the downwind boundary, free-slip conditions at the lateral and top boundaries,
and no-slip conditions at the bottom surface.

This setup offers a robust framework for scrutinizing the aerodynamic performance
and wake behavior of wind turbines under varying yaw conditions, while maintaining a
reasonable computational expense.

3.4. Procedure: Yawed Wake Model Development through Symbolic Regression
3.4.1. Objective

The primary objective of this research is to construct a symbolic regression model
optimized for a rigorous analysis of pivotal aerodynamic parameters related to wind
turbines. The parameters in focus are: wake deflection y/D, velocity deficit ∆U at the hub
height in the absence of yaw effects, and ∆U when exposed to yawed wake conditions.
By deeply understanding these parameters, we aim to facilitate optimized wind turbine
operations across a spectrum of yaw angles.

3.4.2. Input Parameters

To capture the intricacies of the aerodynamic behaviors associated with wind turbines,
our model integrates the following salient input parameters:

• Yaw angle, γ, measured in radians;
• Downstream distance normalized to the rotor diameter, represented as x/D;
• Yaw-specific thrust coefficient, defined as CTγ = CTγ=0 × cos(γ);
• Ambient turbulence intensity, Ia, capturing the environmental dynamics the turbine

operates within.
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The strategic selection of input parameters is intrinsically aligned with the primary
objective of this research: to construct a symbolic regression model designed for an in-depth
analysis of crucial aerodynamic parameters affecting wind turbines. Specifically, the yaw
angle γ serves as a foundational input that directly influences wake deflection y/D and
velocity deficit ∆U, thus offering insight into the turbine’s performance across a range
of yaw conditions. This is particularly relevant for our focus on optimizing operations
over diverse yaw angles. The downstream distance normalized to the rotor diameter,
x/D, adds a spatial dimension to the model, enabling a granular understanding of how
wake deflection and velocity deficit evolve at varying distances from the turbine. Such
understanding is paramount for optimizing the spatial configuration of wind farms. Fur-
thermore, the yaw-specific thrust coefficient CTγ enhances our ability to precisely quantify
the nuanced aerodynamic behavior under yawed conditions. Finally, the inclusion of the
ambient turbulence intensity Ia permits the model to capture the interplay between the
wind turbine’s operational parameters and the environmental conditions it faces. Therefore,
each chosen input parameter serves as a sophisticated tool in dissecting the aerodynamic
phenomena under study, directly contributing to our objective of achieving optimized
wind turbine operations. This meticulous parameterization forms the crux of our symbolic
regression model, ensuring it is well-suited for the rigorous analytical tasks set forth by our
research aims.

3.4.3. Symbolic Regression

Our approach hinges on a sophisticated symbolic regression algorithm, tailored for
precision and efficiency.

• Automated Input Selection: The algorithm autonomously sifts through potential input
variables, zeroing in on those of paramount importance for creating mathematical
representations of y/D, ∆U at hub height, and ∆U of yawed wake.

• Optimization Technique: The optimization leverages the prowess of Simulated An-
nealing (SA). SA is prized in computational research for its unparalleled ability to
perform exhaustive searches within vast solution spaces, ensuring that the optimal
solution is approached.

• Balancing Complexity and Accuracy: To strike the delicate balance between a model’s
complexity and its representational accuracy, we have intertwined Pareto Simulated
Annealing within our approach. This method is a specialized variant of Multi-
Objective Combinatorial Optimization (MOCO) and ensures our model remains both
versatile and true to the data it represents.

3.4.4. Mathematical Operators in Symbolic Regression

To ensure our model’s adaptability and resilience, we have incorporated a diverse set
of mathematical operators:

• Multiplication;
• Division;
• Exponentiation;
• Square root function;
• Trigonometric functions.

The selection of mathematical operators for incorporation into the symbolic regression
model has been carried out with calculated intention, aligning closely with our research
objective of facilitating a nuanced analysis of key aerodynamic parameters affecting wind
turbines. Multiplication and division serve as fundamental building blocks, permitting the
model to establish basic proportional relationships among the variables, which constitute
an essential feature for understanding linear and inverse dependencies. The inclusion of
exponentiation and the square root function adds a layer of complexity, enabling the model
to capture nonlinear relationships that are often inherent in aerodynamic phenomena.
These functions thereby enhance the model’s ability to represent more intricate patterns
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in the data, thus aligning closely with the objective of a rigorous analytical framework.
Trigonometric functions, on the other hand, are particularly relevant for our focus on
yaw angles and their corresponding effects. Given that trigonometric functions naturally
describe oscillatory behavior and angular relationships, their inclusion is strategically
poised to yield valuable insights into the aerodynamic parameters that are inherently
angle-dependent, such as yaw-specific thrust coefficients. Collectively, the chosen operators
ensure that the symbolic regression model is not only adaptable and resilient but also
adequately equipped for the detailed and multifaceted examination mandated by our
research aims.

3.4.5. Model Training and Validation

Integral to the development of a robust symbolic regression model is the manner in
which the data are managed and the model is trained, validated, and tested. We carefully
curated our approach to guarantee a model that is both predictive and interpretable.

Data Management: A stratified sampling approach was used to segment the dataset,
ensuring that the training, validation, and testing datasets represent the entire spectrum of
yaw angles and other aerodynamic behaviors. Specifically, 70% of the data was used for
training, 15% for hyperparameter tuning (validation), and the remaining 15% for testing.

Hyperparameter Tuning: To further refine our model, we employed a grid search
coupled with hold-out validation. This iterative process fine-tuned the model’s key hy-
perparameters, such as the coefficient c1 in Equation (5), coefficient c2 in Equation (8) and
coefficients c3 and c4 in Equation (11) .

Prevention of Overfitting: In the current investigation, we judiciously segmented
the dataset into separate partitions for rigorous model development and performance
assessment: 70% was allocated for training, 15% for hold-out validation, and the remaining
15% for testing. Utilizing symbolic regression, we endeavored to derive functional forms
that encapsulate the intrinsic physical principles governing the system. To that end, we
incorporated a Multi-Objective Combinatorial Optimization (MOCO) technique. This
approach was crucial for traversing the intricate solution space with the dual aims of
simplicity and accuracy in the resulting functional forms. By adopting this strategy, we
effectively mitigated the propensity for overfitting, a prevalent issue in black-box machine
learning frameworks [87,88]. The resulting Equations (5) and (8) serve as tangible evidence
supporting the model’s robustness; their structural simplicity, in conjunction with high
predictive efficacy, strongly indicates that our model is not over-optimized to the training
data. It is worth noting that the integration of MOCO with symbolic regression introduces
considerable computational complexity to the training process. Furthermore, due to the
model’s focus on determining precise functional forms, a k-fold validation strategy was
eschewed to avoid potential model instability, making the hold-out method a more suitable
choice for this particular study.

Model Evaluation Metrics: Two primary metrics were used to assess the
model’s performance:

• R2 (Coefficient of Determination): A measure that illustrates how well the model
predictions approximate the real data points. An R2 value of 1 indicates perfect pre-
dictions, while values closer to 0 indicate a model that fails to capture the underlying
data trend.

• RMSE (Root Mean Square Error): It provides a quantifiable measure of how far off
our model predictions are from the actual values. Lower RMSE values signify that the
model predictions are close to the true values, while higher values suggest potential
issues with the model or underlying data.

Post-training, the model was rigorously validated using the validation dataset, and
hyperparameters were adjusted to achieve the best balance between precision and gener-
alizability. The final model, post-tuning, was then tested on the reserved test dataset to
ensure its performance in predicting unseen data.
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The combination of strategic data management, meticulous hyperparameter tuning,
and rigorous evaluation has resulted in a symbolic regression model tailored for analyzing
pivotal aerodynamic parameters related to wind turbines.

4. Results and Discussion

Wind turbines, due to their imposing structures and intricate engineering, are con-
sistently exposed to myriad aerodynamic forces. These forces play a pivotal role in de-
termining the performance, longevity, and efficiency of the turbines. Hence, the demand
for accurate modeling of these forces and understanding their interplay is incessant. This
section demystifies the key aerodynamic parameters associated with wind turbines and
elucidates the new models proposed in this work to capture their behaviors.

4.1. Velocity Deficit at Hub Height (∆Uhub/U∞)

Velocity deficit at the hub height, denoted as ∆Uhub/U∞, is a critical parameter that
sheds light on the reduction in wind speed as it interacts with the turbine blades at the hub
height. Mathematically, it is expressed as:

∆Uhub/U∞ =
U∞ −Uhub

U∞
, (3)

where U∞ represents the undisturbed wind speed, and Uhub is the wind speed at the
hub height after the wind interacts with the turbine. Computational Fluid Dynamics
(CFD) simulations, especially those with yaw considerations, are pivotal in deriving Uhub.
Grasping this parameter is paramount for optimizing turbine placements in wind farms,
given its implications for downstream turbine performances. This relationship is given by:

∆Uhub/U∞ = f (γ, X/D, CTγ , Ia). (4)

Our new model for this relationship is:

∆Uhub/U∞ =
c1 × Ct,γ√( x

D
)2 sin(γ)+1 × Ia

, (5)

with c1 = 0.11.
The discussion surrounding the velocity deficit at the hub height, ∆Uhub/U∞, serves as

a robust validation of our symbolic regression model, notably when compared to Computa-
tional Fluid Dynamics (CFD) simulations. Our model, described by Equation (5), introduces
a nuanced understanding of the relationship between velocity deficit and several key aero-
dynamic parameters, including yaw-specific thrust coefficient Ct,γ, downstream distance
normalized by rotor diameter x

D , and ambient turbulence intensity Ia. This relationship is
critical for understanding wind–turbine interactions and wake characteristics, with direct
implications for optimized wind farm operations.

The equation includes the variable Ct,γ in the numerator, emphasizing its importance
in affecting the velocity deficit at the hub height. Higher values of this yaw-dependent
thrust coefficient would lead to a greater velocity deficit, in line with the physical intuition
that a larger thrust coefficient entails stronger wind–turbine interactions.

On the other hand, the denominator includes a term
( x

D
)2 sin(γ)+1 × Ia under a square

root. This term combines the downstream distance x
D with yaw angle γ and ambient

turbulence intensity Ia. It indicates that the velocity deficit is more sensitive to downstream
distance as the yaw angle increases, reflecting the yawed flow’s propensity to spread the
wake. In addition, higher ambient turbulence levels would help recover the wind speed
downstream, thus reducing the velocity deficit.

The term sin(γ) in the equation further emphasizes the yaw angle’s critical role in the
velocity deficit. Hence, the model provides wind farm operators with the ability to predict
wind speed at hub heights more accurately for varying yaw angles and downstream distances.
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Such predictive prowess allows for more optimized spacing and placement of turbines to
minimize wake interference, fulfilling the overarching aim of wind farm optimization.

The model’s reliability is further corroborated by Figure 2, which presents a com-
pelling alignment between our symbolic regression predictions and the CFD simulations.
Despite the highly nonlinear nature of the aerodynamic phenomena being studied, the
consistency between these datasets underlines the model’s utility and applicability in
real-world scenarios.
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Figure 2. Correlation between CFD results and symbolic regression predictions for the velocity deficit
at hub height ∆Uhub/U∞.
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It is worth noting the slight mismatch between the model and CFD simulations at
a yaw angle of zero and x/D < 5. While this warrants acknowledgment, these discrep-
ancies do not significantly detract from the model’s utility in the context of our specific
research objective. Given that our primary focus is on wake characteristics at higher
x/D values—which are more pertinent for wind farm studies—the model’s minor inconsis-
tencies at lower x/D values and zero yaw angle can be considered acceptable limitations.

4.2. Maximum Velocity Deficit of Yawed Wake (∆Uyawed/U∞)

Yaw-induced maximum velocity deficits, represented by ∆Uyawed/U∞, are pivotal in
understanding the turbine’s wake behavior under varying yaw conditions. It is described as:

∆Uyawed/U∞ =
U∞ −Uyawed

U∞
. (6)

This modeling becomes indispensable when devising strategies like “wake steering”,
where turbines are intentionally misaligned with the wind direction to deflect the wake
and optimize performance of downstream turbines. Furthermore, understanding the yaw-
induced maximum velocity deficit is also essential for analyzing fatigue loads due to yaw
misalignments. The underlying relationship is:

∆Uyawed/U∞ = f (γ, X/D, CTγ , D, Ia). (7)

In this work, we propose:

∆Uyawed/U∞ = Csin(γ)+1
t,γ ×

(
Ia ×

( x
D

)2
)c2× x

D
, (8)

with c2 = 0.0197.
The yawed wake velocity deficit, as captured by this equation, encapsulates the com-

plex interplay of yaw angle with other influential parameters. The equation suggests a
non-linear relationship, emphasizing the significant role of yaw misalignment in shaping
the wake profile. The exponent sin(γ) + 1 applied to Ct,γ accentuates the yaw angle’s
substantive role, implying that even a small deviation in yaw angle could lead to consider-
able changes in the velocity deficit. The term Ia ×

( x
D
)2 illustrates the combined effects of

turbulence and downstream distance, which are further modulated by c2 × x
D , an empirical

constant tailored to align the model with observed data. Such insights can be invaluable
for strategies like wake steering, guiding operators on the degree of yaw misalignment for
desired wake deflections, and reduced turbine fatigue.

The efficacy of the proposed model in predicting yaw-induced maximum velocity
deficits is visually portrayed in Figure 3. This figure juxtaposes the symbolic regression’s
outcomes with the findings from the CFD simulations. The CFD results are vividly illus-
trated using scatter plots, while the proposed model’s predictions are rendered through line
plots. A notable alignment between the two datasets is clearly discernible, underpinning
the model’s ability to accurately replicate CFD results across varied conditions.

The discussion of yaw-induced maximum velocity deficits, denoted as ∆Uyawed/U∞,
merits particular attention in evaluating the robustness of our symbolic regression model
against Computational Fluid Dynamics (CFD) simulations, as depicted in Figure 3. Our
model, succinctly represented by Equation (8), exhibits substantial congruence with the
CFD data, particularly at higher x/D values. This level of agreement serves as a testament
to the model’s suitability for practical applications, particularly in the realm of wake steering
strategies aimed at optimizing the performance of downstream turbines. Nonetheless, it is
imperative to acknowledge a marginal divergence between the model and CFD simulations
at lower x/D values across nearly all yaw angles. While this might initially appear to be a
limitation, it is worth emphasizing that our principal research objective is focused on wake
characteristics at higher x/D ranges, where the model demonstrates considerable accuracy.
In this light, the slight discrepancies at lower x/D values can be deemed tolerable given the
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broader context of our study aims. These minor deviations do not significantly undermine
the model’s overarching efficacy in furnishing a nuanced, quantitative understanding
of yaw-induced maximum velocity deficits, thereby aligning well with our end goal of
optimized wind farm operations.
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Figure 3. Comparison of CFD outcomes with the symbolic regression predictions for yaw-induced
maximum velocity deficit ∆Uyawed/U∞.



J. Mar. Sci. Eng. 2023, 11, 2111 16 of 21

4.3. Wake Deflection y/D

Wake deflection, denoted as y/D, is a pivotal metric for understanding the sideways
drift of turbine wakes. It can be described as:

y/D =
Wake deflection

Diameter of the wind turbine
. (9)

An accurate model for y/D becomes essential in wind farms in order to comprehend
how wakes from one turbine might affect adjacent turbines, potentially influencing their
efficiency and causing wear. The derived relationship is:

y/D = f (γ, X/D, CTγ , D, Ia). (10)

Our new equation for this is:

y/D =

 c3 × Ct,γ(
c4 × x

D
)√sin(γ)

×
( x

D

)2
× Ia

 1
2

, (11)

where c3 = 5.56 and c4 = 0.00089.
The proposed equation for wake deflection y/D serves as a comprehensive analyti-

cal tool that captures the complex interrelationships among key aerodynamic variables.
Central to this equation is the yaw-specific thrust coefficient Ct,γ, whose presence in the
numerator underlines its pivotal role in dictating the wake’s lateral behavior. Further
sophistication is introduced by the sin(γ) term, enclosed within a square root function.
This mathematical nuance accentuates the heightened sensitivity of wake deflection to
changes in yaw angles. When coupled with the exemplary predictive fidelity demonstrated
in Figure 4, where a compelling alignment between the symbolic regression outcomes and
CFD data is evident, the equation gains substantial empirical validation. The robustness of
the model is corroborated by an impressive R2 value of 0.98, substantiating its accuracy.
Therefore, this equation serves not merely as a theoretical construct but also as a pragmatic
instrument. Wind farm designers can judiciously leverage its predictive power to anticipate
the lateral displacements of wakes, thereby optimizing turbine placement to both minimize
detrimental wake interactions and maximize overall farm efficiency.
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Figure 4. Cont.
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Figure 4. Comparison of the CFD results and the proposed symbolic regression model for wake
deflection y/D.

5. Conclusions and Future Work
5.1. Summary of Findings

In the specialized domain of wind energy engineering, a critical research challenge is
optimizing the aerodynamic properties of wind turbines, which is crucial for enhancing
both power extraction efficiency and structural longevity. The present research advances
this line of inquiry by employing a hybrid methodology, integrating symbolic regression
algorithms and the actuator line method (ALM) for a comprehensive aerodynamic evalu-
ation. Symbolic regression was specifically deployed for data-driven quantification and
modeling of imperative aerodynamic parameters, notably velocity deficit and wake de-
flection, which have a direct impact on turbine power extraction and downstream wake
interaction. Simultaneously, ALM acted as the underpinning computational platform,
facilitating high-fidelity Computational Fluid Dynamics (CFD) simulations that capture
complex flow structures, including tip vortices and blade–boundary layer interactions.

This integrated approach has distinct advantages over traditional actuator disc models
and Gaussian wake formulations, by providing a multi-faceted, physically consistent, and
empirically validated representation of the underlying aerodynamic phenomena.

The primary findings of this research work are:

1. The symbolic regression model demonstrated the ability to characterize aerodynamic
parameters, notably velocity deficit and wake deflection.

2. By moving beyond actuator disc models and Gaussian velocity deficit assumptions,
the study approached a more nuanced depiction of the physics involved in wind
turbine operations.
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3. The actuator line model served as the computational foundation, highlighting its
potential in representing complex flow dynamics.

4. Symbolic regression’s inherent interpretability facilitated insights into the underlying
physical principles that govern wind turbine aerodynamics.

5. The extensive parametric study encompassed a diverse range of yaw angles and
thrust coefficients, reinforcing the model’s adaptability and potential applicability.

In summary, this study integrates symbolic regression techniques with high-fidelity
Computational Fluid Dynamics (CFD) simulations via the actuator line method (ALM) for
wind turbine aerodynamic analysis. The practical implications of this research focus on
the optimization of wind turbine design and operational planning. Specifically, the model
effectively quantifies key aerodynamic parameters such as yaw-induced maximum velocity
deficits and wake deflections. These parameters are critical for engineering decisions
concerning turbine placement and layout to optimize energy yield. Given the range of yaw
angles and thrust coefficients tested in this study, the model offers broad applicability for
wind farm design considerations.

5.2. Future Directions

Given the advancements and findings of this research, it is evident that a vast expanse
of exploration lies ahead. The potential demonstrated by the models developed, combined
with the evolving landscape of computational techniques and wind energy practices, lays
the groundwork for future endeavors. The authors, in their work, have developed a
non-symmetrical analytical model for velocity profile distribution in uniform inflow. This
model addresses the maximum velocity deficit and the velocity deficit at the wake center. In
future studies, the authors plan to develop a model for yawed input. In climatic conditions
marked by highly variable or turbulent winds, additional research may be needed to fine-
tune the model for those specific scenarios. In conclusion, this study serves as a testament
to the advancements in understanding wind turbine aerodynamics, setting the stage for
future studies focused on further refinement and exploration.
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