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Abstract: Unmanned surface vessels (USVs) are required to perform motion prediction during a task.
This is essential for USVs, especially when conducting motion control, and this work has been proven
to be complicated. In this paper, an off-line black box modeling method for USV maneuvering, the
Sparrow search algorithm-based weighted-least-squares support vector machine (SSA-WLS-SVM)
was proposed to recognize the motion model of a USV. Firstly, the construction of the USV test
platform and the processing process of the experimental data were introduced, the correctness of
the MMG model was verified using a comparison of the test data and the simulation results, and
then the MMG model was used to produce sample data later. To improve the stability and robustness
of LS-SVM, weighted least squares and SSA were introduced to perform the optimization of the
parameters of the algorithm and its kernel function. Then, the random maneuvering dataset was
obtained using simulation on the MMG model, which was then preprocessed and used for training
the black-box model. To verify the generalization ability of the identified model, the black-box
model was used for comparison analysis between motion prediction with the proposed model and
maneuvering test on the USV platform in a scenario different from the training data.

Keywords: USV; WLS-SVM; black-box modeling; ship maneuvering

1. Introduction

The Unmanned Surface Vehicle (USV), which can be equipped with a positioning
system, automatic identification system (AIS), communication system, water quality de-
tection system, and other systems, has been widely used in the fields of hydrological and
geographic exploration, marine weather forecast, coastal port security, and marine envi-
ronment monitoring due to its low cost and fast speed [1–3]. The USV is greatly affected
by disturbance of the sea environment, especially waves, which has a significant influence
on the stability of its motion control system. Accurate motion prediction is the basis for a
USV to perform its maneuverability, so motion prediction is essential for USV navigation
control [4,5]. Motion modeling plays a vital role in research on USV motion prediction
in a real water scenario. At present, the methods for ship motion modeling are mainly
divided into two types: the method based on Computational Fluid Dynamics (CFD) and
the modeling method based on the system identification.

In the CFD method, the hydrodynamic force on a USV can be calculated to predict the
USV motion. However, the method is usually developed on the basis of the assumption
of non-viscous flow, and the calculation accuracy is affected. The viscous flow method in
CFD can be used to obtain details of the flow field and hydrodynamic dynamics of the
ship, but the calculation is time-consuming, and the convergent solution is often difficult
to obtain [5]. Jiang Fan et al. [6] conducted a CFD simulation on the maneuverability of
an asymmetric catamaran, calculating the ±15◦ and ±25◦ turning maneuver simulations
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and the 25◦/25◦ zigzag maneuver simulation under different initial steering directions.
However, the layout of the asymmetric catamaran involved in the calculation was not
perfect, and the self-navigation experiment was not conducted for comparison. Liu et al. [7]
used the commercial software STAR-CCM+ to perform a virtual model test to obtain the
hydrodynamic coefficients of the standard KCS model. The hydrodynamic derivatives
obtained were used in the Abkowitz model to predict the maneuvering performance of the
KCS model, but the calculation accuracy was greatly affected by the experience of software
users.

The commonly used modeling methods based on system identification include white-
box modeling and black-box modeling. White-box modeling is also known as mechanism
modeling, which means the mechanism of the system is clear and the structure of the
model is generally fixed. The parameters in the white-box model are hydrodynamic coeffi-
cients that need to be identified, which can be obtained using system identification and
then substituted into the ship’s maneuvering motion equation for maneuvering motion
prediction [8]. The Nomoto model is a very simple ship maneuvering motion model which
needs only several KT parameters to roughly show the relationship between steering and
heading. Carrillo et al. [9] performed a modeling of ship motion based on the Nomoto con-
trol model and adopted the least square method to identify the KT parameters. Compared
with the Nomoto model, the ship motion model based on the Abkowitz model and MMG
(Maneuvering Modeling Group) model can obtain higher prediction accuracy. The team
of Professor Zou Zaojian [9–11] applied the SVM method to identify the hydrodynamic
derivative and hydrodynamic distance in the Abkowitz model based on the global model
and forecast the ship’s maneuvering motion. Xu et al. proposed an optimal truncated
LS-SVM [12,13] and verified the method using free-run tests [14,15], but the scale effect was
ignored in the study. The literature [16] describes the 3-DOF MMG mathematical model
of the adaptive modular waveship (WAM-V). The model test and the identification of the
system are both used to calculate the maneuvering coefficient of the WAM-V. The MMG
model in the simulation shows a satisfactory uniformity in the characteristics of linear
and turning. However, problems such as serious ocean disturbance and power shortages
remain unresolved. Luo W et al. [17] proposed a two-layer feedforward neural network to
identify the nondimensional fluid dynamics derivative in the linear MMG model, and the
stability of the estimated parameters was verified. The MMG model is simplified too much,
so the accuracy of parameter identification is reduced.

In the above identification work using the white-box model, the task is to identify the
coefficients or parameters in the model, so the accuracy of identification is limited by the
mathematical model [18]. On the one hand, the use of a fixed, linear, and time-invariant
mathematical model of ship maneuvering motion leads to poor generalization [18,19],
which means that complex nonlinear characteristics of the actual ship motion cannot be
obtained; on the other hand, the use of a complex, nonlinear mathematical model needs
to identify too many parameters, which demands a large number of high-quality sample
data [18,19]. In addition, the calculation accuracy of hydrodynamic parameters of the hull,
propeller, and rudder will also affect the accuracy of the motion prediction. In addition, in
the whole life-cycle of a ship, errors in ship design and manufacturing, equipment abrasion
during the maneuvering of a ship, changes in the ocean environment, and ship load will
also lead to the imprecision of the ship motion model. The inaccuracies of all the above
limit the use of the white-box model in motion prediction. However, at the same time, using
the white-box model in research is helpful to improve the original mathematical model.
Bonci et al. [20] improved the completely nonlinear Abkovitz model by identifying CFD
free-run simulations of the USV model by obtaining large amounts of data (less noisy than
experimental data) and using these data to constrain the optimization process. The purpose
of this work is to eliminate the typical characteristic noise of outdoor pool experimental
data using high-precision CFD data.

The black-box model does not need to clarify the mechanism and structure of the
system but only needs to describe the functional relationship between input and output.
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Therefore, the physical meaning of the black-box model is usually not clear, but it does not
affect the regression prediction ability of the model [6,21]. In the case of imprecise ship pa-
rameters and uncertain structural forms of ship maneuvering motion mathematical models,
black-box modeling is a satisfactory choice for ship maneuvering motion modeling based
on automatic control [18,19]. Owning to Artificial Neural Networks (ANNs) and Support
Vector Machines (SVMs) having strong advantages in identifying nonlinear systems, SVM
can be used to construct a black-box model to describe the nonlinear mapping relationship
in ship maneuvering motion.

In recent years, Professor Zou Zaojian et al. [22–24] have done a lot of work in black-
box modeling including a black-box modeling method based on the BP neural network
proposed for the 3-DOF ship maneuvering motion, and the network-based model has
the potential to be used as a control model or state observer in the field of ship motion
control; a fully connected neural network used to establish a black box model of the 3-DOF
ship maneuvering motion, and the model can be identified and verified with only three
maneuvering operations, but environmental interference is not considered in the work; a
black-box offline modeling method, multi-output support vector machine (MO-v-SVR),
is also proposed. The traditional v-SVR is optimized in terms of calculation efficiency
and maneuverability, but external interference of environmental factors that may affect
the dynamic characteristics of the ship is not considered. Liu et al. [25] developed three
different identification frameworks in the literature based on KVLCC2, which are the
parametric grey-box model, the nonparametric grey-box model, and the black-box model
based on Bayesian regression. Using the experimental data, the black-box model was
verified to have a stronger generalization ability compared with SVM and ANN, due to
the introduction of prior knowledge in the loss function. However, the training set used
in the paper was based on regular waves, which may not perform well under other wave
conditions. Prateek Gupta et al. [26] used several machine learning (ML) methods to
discover the trend of variation in the hydrodynamic performance of the vessel over time.
The study indicates that the artificial neural network (ANN) model performed the best in
the prediction, but the nonlinear principal component regression (NL-PCR) and nonlinear
partial least squares regression (NL-PLSR) were also not bad, demonstrating that simple
interpretable ML models such as NL-PCR and NL-PLSR can be used to optimize complex
black-box models when extremely high accuracy is not required. However, it is difficult to
apply the method in scenarios with too much noise.

In this paper, a black-box modeling method based on the weighted least squares
support vector machine (WLSSVM) is proposed for modeling 3-DOF ship maneuvering
motion. By using the regression based on a small sample set, the tedious iteration of the
hydrodynamic coefficient in white-box modeling can be avoided, and the convergence and
robustness of the model are improved. In the process of model identification, in order to
obtain the optimal structural parameters in the WLSSVM, the Sparrow search algorithm
(SSA) was introduced into the WLSSVM, and the parameters of the algorithm and its kernel
function were optimized. To test the performance of the proposed WLSSVM model, the
maneuvering motion of the ship is simulated and predicted in the turning test and the
arbitrary steering test, and the predicted results are compared with the actual test data.

The work that has been done in this paper can be listed as the following three steps:

(1) To obtain maneuvering data samples that meet the condition of regression processing.
(2) Determine the black-box regression model and train the model using the dataset obtained

above to obtain the nonlinear relationship between the input and output samples.
(3) To predict the output of the test set using the trained black-box model and to compare

the output with the actual results to verify the generalization of the model.

The paper is organized as follows: the first Section briefly describes the problems to
be solved in ship motion prediction. The second Section describes the construction of the
USV test platform and the processing process of the experimental data, the correctness of
the MMG model is verified through the comparison of the test data, and the simulation
results, and then the MMG model can be used to produce sample data later. In Section 3,



J. Mar. Sci. Eng. 2023, 11, 324 4 of 24

the SSA-WLS-SVM regression prediction method is briefly derived. In Section 4, the
random maneuvering dataset is obtained using simulation of the MMG model and then
preprocessed and used for training the black-box model, and the generalization of the
model was verified using simulation.

2. Description of a Ship Motion Prediction Problem

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implicates that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

In this paper, a 3-DOF MMG model is used to describe the USV motion. The geodetic
coordinate system o-x0y0z0 and the random body coordinate system o-xbybzb, are shown
in Figure 1, where the x-axis in the random body coordinate system o-xbybzb points to the
bow and the y-axis points to the starboard.

Figure 1. Body coordinate system of a USV.

This nonlinear relationship between the input and output samples is given as follows:

y = ρ(x) (1)

where ρ(·) is a non-linear vector function; x is the input sample matrix composed of input
sample vectors xi, x = [x1, · · · xi, · · · , xN]

T ; xi is the input sample vector, xi = [ui, vi, ri, δi]; y
is the output sample matrix composed of the output sample vector, y = [y1, · · · yi, · · · , yN]

T ;
and yi is the output sample vector, yi =

[ .
ui,

.
vi,

.
ri
]
. The superscript T represents the

transpose of the matrix. i represents the input or output vector corresponding to the ith
data point, and i = 1, 2, · · · , N, N is the number of sample points in sample set S. u is the
longitudinal velocity, v is the lateral velocity, and r is the steering angular speed.

Briefly speaking, the USV maneuvering forecast is to calculate the [u, v, r] at the
next moment based on the motion and maneuvering information at this moment, that
is [u, v, r, δ]. When some USV parameters are missing or inaccurate, where the motion
cannot be accurately predicted with a white-box model, it is appropriate to obtain the
mathematical relationship of the input and output with the black-box model.

3. Black-Box Model Training Data Acquisition

The following processes are performed to obtain the training data for the black-box
modeling:

(1) A 3-DOF MMG motion simulation in typical scenes was conducted;
(2) A test platform was established for test verification (including filtering of test data);
(3) The test date was compared with the MMG simulation date to verify the accuracy of

the MMG model;
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(4) The MMG model was used to produce training data.

3.1. MMG Modeling for Simulation Purposes

According to the requirements of maneuvering and motion characteristics of USVs, the
RANS method is used to calculate the maneuvering hydrodynamic forces of a USV in still
water, and the MMG model is established. Using the established model, the maneuvering
and motion characteristics of a USV in still water are analyzed by solving the ship motion
equation.

It mainly includes two works: (1) the hydrodynamic calculation method and modeling
of the USV; and (2) the maneuvering and motion characteristics of the USV.

3.1.1. Static Hydrodynamic (Moment) Modeling

The 3-DOF MMG motion model of the USV horizontal plane is established as fol-
lows [27]: 

.
x = ucosϕ− vsinϕ
.
y = usinϕ + vcosϕ
.
ϕ = r
.
u = 1

m+mx

[(
m + my

)
rv + XH + XP + XR

]
.
v = 1

m+my
[−(m + mx)rv + YH + YP + YR]

.
r = 1

Izz+Jzz
(NH + NP + NR)

(2)

where X, Y, and N represent hydrodynamic forces and moments, while the subscripts H, P,
and R represent the hull, propeller, and rudder, respectively. x and y are the coordinates of
the USV in the geodetic coordinate system, ϕ is the angle of the bow, mx is the additional
longitudinal mass, my is the additional transverse mass, and Izz is the inertia moment of
yaw. Jzz is the additional moment of inertia in yaw.

For the modeling of hydrostatic hydrodynamic (moment), the approximate model for
calculating Xcalm, Ycalm, Ncalm was established using the MMG model, the hydrostatic ma-
nipulates the hydrodynamic force, due to the linear superposition of the details (moments)
acting on the hull, propeller, and rudder, which ignores the transverse force and turning
moment acting on the propeller.

Xcalm = XH + XP + XR
Ycalm = YH + YR

Ncalm = NH + NR

(3)

The force acting on the hull is approximate to the hydrodynamic derivative, XH , YH ,
NH and can be expressed as:XH = X0 + Xu∆u + Xuu(∆u)2 + Xuuu(∆u)3 + Xvvv2 + Xrrr2 + Xvrvr

YH = Yvv + Yvvvv3 + Y .
v

.
v + Yrr + Yrrrr3 + Y.

r
.
r + Yvrrvr2 + Yvvrv2r

NH = Nvv + Nvvvv3 + N .
v

.
v + Nrr + Nrrrr3 + N.

r
.
r + Nvrrvr2 + Nvvrv2r

(4)

where ∆u = u− u0 is the speed difference of the ship relative to the initial ship speed; and
−X0 is the resistance when the speed of ship is u0.

Based on the assumption of fluid incompressibility, the governing equations (conti-
nuity equations and RANS equations) for manipulating fluid flow around the USV are as
follows:

∂Ui
∂xi

= 0 (5)

∂Ui
∂t +

∂(UiUj)
∂xj

= fi − 1
ρ

∂p
∂xi

+ ∂
∂xj

[
ν
(

∂Ui
∂xj

+
∂Uj
∂xi

)
−U′i U

′
j

]
−
(

∂ui
∂t + εijkΩjuk

)
− εijkΩjεkmnΩmxn − 2εijkΩjUk − εijk

∂Ωj
∂t xk

(6)
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where Ui is fluid velocity; p is for pressure; ν is the dynamic viscosity coefficient; xi is the
coordinate; ui = (u, v, w) is the speed of the ship; Ωj = (p, q, r) is the angular velocity of
ship rotation; −ρU′i U

′
j is Reynolds stress; ρ is the density; fi is volume force; and εijk is the

permutation symbol.
Compared with the RANS equation in the geodetic coordinate system, the RANS

equation in the horizontal shipboard coordinate system, Equation (6), has four more inertia
force terms in the second row. In this project, based on OpenFOAM, a program module
for the calculation of these four terms was developed to solve the RANS equation in the
horizontal shipboard coordinate system, to achieve the calculation of the hydrodynamic
force of the vessel controlled by constrained motion.

3.1.2. Calculation Object

The geometric shape and model of the USV are shown in Figure 2. The main dimen-
sions of the ship model are shown in Table 1.

Figure 2. Geometric model and physical model of the USV (a) geometric shape (b) model of the USV.

Table 1. Main scale of the unmanned boat.

Project Value

Hall

Lpp (m) 1.5

B (m) 0.444

d (m) 0.107

CB 0.395

xG (m) −0.12

zG (m) −0.3

Iz
(
kg·m2) 3.947

Ix
(
kg·m2) 0.35

Propeller

Dp (m) 0.05

ZP (number) 5

Rudder

AR
(
m2) 0.001675

HR (m) 0.05
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3.1.3. Compute Grid

The calculation region is limited to a rectangular solid, whose ranges are−4.5 ≤ x/Lpp ≤ 3,
−1 ≤ y/Lpp ≤ 1, and −1 ≤ z/Lpp ≤ 1.0. The commercial software Hexpress is used to
generate unstructured cutting grids in the calculation area. The calculation grid in the
calculation area is shown in Figure 3, and the number of grid cells is about 1.6 million.

Figure 3. Compute grid.

3.1.4. Calculation Result of Direct Navigation Resistance

The direct navigation resistance is calculated, and the Fourier coefficient of the captain
is 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8,
a total of 19 speeds. The calculation results of the drag are shown in Figure 4. In the
figure, the abscissa is the volume Fourier coefficient Frv = u/

√
g∇, and the ordinate is the

dimensionless drag R′ = R/
(

0.5ρu2L3
pp

)
.

Figure 4. Resistance of the USV in direct navigation.

As can be seen from the figure, the drag coefficient increases first and then decreases
with the increase of the volume Fourier coefficient. When the volume Fourier coefficient is
1, the drag coefficient reaches its maximum value. Figure 5 gives the ripple around the hull
at different speeds. As the ship speed increases, the amplitude of the wave is larger, and
the wavelength of the wave is longer.
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Figure 5. Wave shape (Fourier coefficient: left: 0.2, middle: 1, right: 1.6). Different colors represent
different wave heights, which gradually decrease from the tail to the distance.

3.1.5. Coupled Hydrodynamics of Oblique Motion and Circling Motion

The coupled hydrodynamics of oblique motion and circling motion of the USV are
calculated. The ship’s length Fourier coefficient is 0.2, the drift angles are 0 degrees,
±10 degrees, and ±20 degrees, and the dimensionless steering angular speeds are 0, ±0.4,
and ±0.8. Figure 6 shows the ripple of the coupled motion. It can be seen that the variation
tendency of the ripple around the hull is reasonable.

Figure 6. Coupled ripple of oblique motion and circumferential motion (left: dimensionless steering
angular speed is 0.4, drift angle is 0 degrees; middle: dimensionless steering angular speed is 0.4, drift
angle is −10 degrees; right: dimensionless steering angular speed is 0.8, drift angle is −10 degrees).

3.1.6. Hydrodynamic Derivative

The hydrodynamic derivative can be calculated using regression analysis based on
the above calculation, and the hydrodynamic result obtained is shown in Table 2.

Table 2. Hydrodynamic derivatives.

Hydrodynamic Derivative Calculated Value

X′0 −0.0026

X′u −0.000700

X′uu 0.002500

X′uuu −0.001800
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Table 2. Cont.

Hydrodynamic Derivative Calculated Value

X′vv 0.002744

X′rr −0.002807

X′vr 0.01247

Y′v −0.01471

Y′vvv 0.112200

N′v −0.006399

N′vvv −0.006952

Y′r 0.003013

Y′rrr −0.000467

N′r −0.001708

N′rrr −0.000261

Y′vvr −0.005687

Y′vrr −0.013020

N′vvr −0.015600

N′vrr −0.001047

The derivative of acceleration (additional mass) are determined empirically. The
acceleration derivative values are: X′.u = −0.000238, Y′.v = −0.007049, N′.v = −0.000283,
Y′.r = −0.000777, N′.r = −0.000419.

3.2. Test Platform Construction

In order to verify whether the 3-DOF MMG model can accurately describe the motion
of a real ship, a USV maneuverability test platform was built. The remote control platform
was developed using QT software and is used to send control instructions and receive test
data from the USV. The ship is equipped with an electronic compass, Ultra Wide Band
(UWB) positioning kit, inertial navigation kit, etc., to collect the current state of the ship’s
movement in real time. The USV communicates with the shoreside control platform using
the E32 wireless module.

The size of the experimental tank is 60 m × 80 m, the test coordinate system was
established as shown in Figure 7a, and the lower right corner of the tank was taken as
the origin. Four UWB base stations are placed at the four corners of the tank, covering
the range of the test; USV coordinates were calculated using the distance, S0, S1, S2 and
S3, from the USV to the four base stations, according to the trilateration measurement
method [28]. Using four UWB instead of three UWB could effectively improve positioning
accuracy.

The hardware and data transmission system are shown in Figure 7b. On the USV,
the STM32 MCU controls the steering gear angle and motor speed by adjusting the PWM
output duty ratio. The electronic compass and the UWB positioning module collect the
real-time heading angle and the distance between the USV and the four base stations and
then transmit the collected data to STM32 using serial port communication (UART). After
sorting the data in a specific sequence, STM32 gives the data to the wireless serial port in
UART mode. The wireless serial port transmits data to the remote control platform at a
transmission rate of 9600 baud and an air data transmission rate of 2400 bit. On the remote
control platform, the computer analyzes and stores the received data, calculates the motor
speed and the rudder angle at the next moment according to the ship control requirements,
and then sends the command back to the STM32 on the USV.
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Figure 7. Test Platform Architecture Diagram (a) Establishment of the test coordinate system;
(b) Schematic diagram of data transmission on the hardware platform.

3.3. Test Data Processing

Compared with the simulation data, errors and high-frequency disturbances would
exist in the data obtained from the experiment, making the comparison between the sim-
ulation data on the MMG model and the experimental data difficult [29]. The errors of
the real USV test come mainly from the following aspects: the equipment errors from the
angular transducer, locator device, and other sensors, the loss of data in the UWB posi-
tioning system caused by environmental interference such as scatterers and ferromagnetic
interference, and the imponderable time delay caused by the loss of signal when wireless
signals pass through obstacles. To overcome the error caused by the above reasons and
reduce the influence of random noise interference, it is necessary to process the test data
and eliminate the abnormal data and subsequently perform the smoothing, filtering, and
interpolating work on the preprocessed data. In this paper, the Radial Reach Filter (RRF)
is used for data processing, and its filtering principle is shown in Figure 8 [30]. First, the
signal sequence is passed forward through the filter for filtering to complete the output of
the first filtered signal, and then the output signal sequence is reversed on the time axis.
Then, the second filtering is carried out through the filter again to complete the output
of the second filtering signal, and then the output signal is flipped in the time domain,
obtaining the zero phase shift filtering signal with zero phase characteristics.

Figure 8. Schematic diagram of the RRF.

z represents the frequency domain, that is z = ejw, and the process can be expressed as
the following formula:

Y1
(
ejw) = X

(
ejw)H

(
ejw)

Y2
(
ejw) = e−jw(N−1)Y1

(
e−jw)

Y3
(
ejw) = Y2

(
ejw)H

(
ejw)

Y
(
ejw) = e−jw(N−1)Y3

(
e−jw)

 (7)
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where X
(
ejw) is the input; Y

(
ejw) is the output; H

(
ejw) is the impulse response sequence;

and Yi(i = 1, 2, 3) is the intermediate response.
The RRF can display the data trend accurately, but it requires time-reversal processing

of the signal sequence, which is impossible for real-time data processing since time cannot
travel backward, but it is suitable for offline data processing. Therefore, in this study, the test
data were completely collected and filtered, and then compared with the simulation test.

Figure 9 gives the comparison results of the position (x, y) and the resultant velocity
U of the 35◦ rotation test processed using the RRF, SG filter [31], and Cubic filter [32],
respectively. The figure shows that the data processed using the SG smoothing filter is
close to the original motion trajectory, but it is sensitive to large-value interference. The
trajectory data processed using Cubic interpolation is smoother than the original data, but
it has a poor smoothing effect on the velocity. The result of the RRF is smoother and closer
to the real value; the high-frequency noise is also effectively reduced. So, the RRF is used
for subsequent data procession of the angular velocity, speed, and other data information
in the test.

Figure 9. Comparison results of different data processing methods (a) Comparison results of the
resultant speed. (b) Comparison results of the position.

3.4. Validity Verification of Simulation Samples

In this section, the 35◦ rotation test is discussed, and the test platform data are com-
pared and analyzed with the simulation data to demonstrate the collaboration effectiveness
of the test and simulation in obtaining samples.

(1) Test platform data acquisition

The USV first performed a straight-line navigation after the speed of the USV became
stable, and the shoreside upper computer sent a turning command to the USV for per-
forming the 35◦ turning maneuvering. The experiment ended when the USV heading had
changed by 540◦.

(2) Simulation data acquisition

The hydrodynamic derivative of the ship calculated using CFD was substituted into
the MMG model for maneuverability simulation. With a simulation step size of 0.01 s, the
numerical simulation of the 35◦ turning maneuvering was carried out, and the simulation
ended when the heading had changed 540◦ as well. The data obtained from the simulation
are equidistantly extracted with a ratio of 1% to form the sample data, which contained
80 samples. The coordinates and speed comparison of simulation and experiment of the
35◦ rotation are given in Figure 10.
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Figure 10. Comparison of the prediction and experiment in the 30◦ turning circle. (a) Speed compari-
son. (b) Track comparison.

As can be seen in Figure 10, in the steady state rotary diameter, the difference in
tactical diameter, longitudinal and transverse distance, and other characteristic parameters
between the test and simulation is less than 15% in both straight-line navigation and turning
conditions, indicating that the 3-DOF MMG model can accurately describe the motion
state of the USV. Therefore, on the one hand, data generalization can be carried out using
simulation to form a large number of test samples for black-box model training; on the other
hand, the black-box model trained using simulation data can be verified with experiments.

4. The SSA-WLS-SVM Algorithm

The black-box model is commonly used in neural network and fuzzy control models.
The core algorithm of the neural network is based on the principle of empirical risk mini-
mization, which has a problem of “over fitting” in practice. Vapnik [33] first introduced
support vector machines (SVMs) in 1995 to solve the problem of pattern recognition. The
standard support vector machine (SVM) uses the structural risk minimization principle
to overcome this shortcoming and has the advantages of robustness and sparsity. Robust-
ness means that its solution is stable, and sparsity means that the training samples are all
effective support vectors that contribute to the objective function. However, the parameter
adjustment on the SVM algorithm is relatively difficult, and the calculation amount brought
by inequality is large. The least squares support vector machine (LSSVM) is an extension of
SVM, which improves the solving speed of the black-box model but loses the advantages
of the robustness and sparsity of the SVM. In this paper, a black-box model with weighted
least squares support vector machine (WLS-SVM) based on the Sparrow search algorithm
(SSA) is proposed to perform regression training on USV motion samples.

The sample set S = {(xi, yi), (xi, yi) ∈ RN, i = 1, 2, · · · , N}, where RN is the original
data space. The sample is mapped from the original low-dimensional space RN to the
high-dimensional feature space ψN using the nonlinear mapping function ϕ(x), and the
low-dimensional nonlinear problem is transformed into a high-dimensional linear problem
simplifying the complex nonlinear relationship between xi and yi. The set of samples
corresponding to ψN space is represented as S̃ = {[ϕ(xi), yi], (xi, yi) ∈ RN, i = 1, 2, · · · , N}.
Thus, the optimal decision function can be constructed in the high-dimensional space,
which is also called the “hyperplane” [34]:

y(x) = ωT ϕ(x) + b (8)

where ω is the normal vector that determines the direction of the hyperplane; and b is the
displacement term that determines the distance between the hyperplane and the origin.
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The optimization equations of the algorithm are as follows:

min
ω,b

J(ω) = 1
2 ‖ ω ‖2 +C

N
∑

i=1

(
ξi + ξ∗i

)
s.t.


yi −

[
ωT ϕ(xi) + b

]
≤ ε + ξi

ωT ϕ(xi) + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(9)

where C is the penalty parameter, which is a constant that needs to be determined; and ξi
and ξ∗i is the interval relaxation factor introduced to ensure that the objective function has
a solution under the constraint. ε is an insensitive loss factor and represents the allowable
training loss.

The SVM has been widely used by scholars because of its promotion in generalization
ability and reduction in curse of dimensionality due to the introduction of the kernel func-
tion. However, its generalization performance mainly depends on the selection of the kernel
function and the design of the penalty parameters and insensitive loss factors. To improve
the rapidity of the SVM algorithm and reduce the uncertainty of parameter adjustment,
LS-SVM [35] transforms the inequality conditions in Equation (9) into equality constraints,
which improves the calculation speed while reducing the optimization parameter ε. The
multilayer neural network (MLP) training procedure is also used, introducing the sum
of error squares (SSE) into the optimization problem and adding the term 1

2 C ∑N
i=1 e2

i , to
transform the optimization problem into:

min
ω,b,ei

J(ω) = 1
2 ‖ ω ‖2 + 1

2 C
N
∑

i=1
ei

2

s.t. yi −
[
ωT ϕ(xi) + b

]
= ei, i = 1, 2, · · · , N

(10)

where ei is the error variable, numerically equal to the difference between the output data
yi and the optimal decision function y(x).

Equation (10) is an equation quadratic programming (QP) problem, and its corre-
sponding Lagrange function is:

L(w, b, ei, αi) =
1
2
‖ ω ‖2 +

1
2

C
N

∑
i=1

ei
2 −

N

∑
i=1

αi

(
wT ϕ(xi) + b + ei − yi

)
(11)

where αi is the Lagrange multiplier, i = 1, 2, · · · , N.
Although the LS-SVM has been widely used because of its simple characteristic,

its solution does not achieve the characteristic of sparsity due to the simplification of
constraints. In other words, not all samples involved in training are support vectors,
leading to inaccurate output when the basic assumption, that the error variable ei is the
Gaussian distribution, is not valid.

In WLS-SVM [36,37], the weighting coefficient vi(i = 1, 2, · · · , N) is adopted to grant
the weight of the error variable ei in LS-SVM and converts the optimization Equation (10) into:

min
(

1
2 ‖ ω∗ ‖2 + 1

2 C
N
∑

i=1
vie∗i

2
)

s.t.yi −
[
ω∗T ϕ(xi) + b∗

]
= e∗i , i = 1, 2, · · · , N

(12)

The Lagrange function corresponding to Equation (9) is:

L(ω∗, b∗, e∗i , α∗i ) =
1
2
‖ ω∗ ‖2 +

1
2

C
N

∑
i=1

vie∗i
2 −

N

∑
i=1

α∗i

(
ω∗T ϕ(xi) + b∗ + e∗i − yi

)
(13)

The symbol * in Equations (12) and (13) represents the variable after weighting. α∗i
is the weighted Lagrange multiplier; b∗ is the weighted displacement term; and e∗i is the
weighted error variable, i = 1, 2, · · · , N.
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Equation (13) is solved according to the Karush–Kuhn–Tucker (KKT) condition,

∂L
∂ω∗ = 0⇒ω∗ =

N
∑

i=1
α∗i ϕ(xi)

∂L
∂b∗ = 0⇒

N
∑

i=1
α∗i = 0

∂L
∂e∗i

= 0⇒ α∗i = Cvie∗i
∂L
∂α∗i

= 0⇒ ω∗Tϕ(xi) + b∗ + e∗i − yi = 0

(14)

ω∗ and e∗i were eliminated to form Equation (15):[
0 ET

E A

][
b∗

α∗

]
=

[
0
Y

]
(15)

In order to simplify the calculation of the inner product in the high-dimensional
space, this paper introduces the kernel function Kij = K

(
xi, xj

)
i,j=1,2,··· ,N = ϕ(xi)

Tϕ
(
xj
)

to
describe the nonlinear mapping ϕ(x) of Equation (12), the inner product of xi and xj in the
high-dimensional characteristic space ψN is equal to the result calculated by K(·, ·) for the
original low-dimensional space RN [26]. Where α∗ is the weighted Lagrange multiplier
submatrix, α∗ =

[
α∗1 ; · · · ; α∗N

]
; E = [1; · · · ; 1]T , E ∈ RN×1; Y = [y1; · · · ; yN], Y ∈ RN×1;

Ω =
{

Kij = K
(
xi, xj

)}
, Ω ∈ RN×N ; and A = Ω + diag

{
1

Cv1
, . . . , 1

CvN

}
.

According to Equation (14), the following results can be obtained:

b∗ = ETA−1Y
ETA−1E

α∗ = A−1(Y− Eb∗)
(16)

Equation (14) was transformed to obtain the final WLS-SVM regression modeling
model. Equation (8) was combined to form Equation (17).

y(x) =
N

∑
i=1

a∗i K(x, xi) + b∗ = ωT ϕ(x) + b (17)

The weighting coefficient is determined according to the error variable ei of the
unweighted LS-SVM in Equation (10):

vi = −


1,

∣∣∣ ei
Ŝ

∣∣∣ < τ1

τ2−
∣∣∣ ei

Ŝ

∣∣∣
τ2−τ1

, τ1 ≤
∣∣∣ ei

Ŝ

∣∣∣ ≤ τ2

10−4, else

(18)

In the formula, τ1 and τ2 are generally taken as τ1 = 2.5, τ2 = 3 [38]. Ŝ is the robust
estimate standard variance of error variable ei in LS–SVM:

Ŝ = 1.483 MAD(ei) (19)

where MAD stands for the absolute median difference.
The WLS-SVM in Equation (18) ignores the assumption that the error variable ei in

LS-SVM should follow the Gaussian distribution; the two weights, τ1 and τ2, can correct
outliers or non-Gaussian error distributions of the outputs, so as to obtain robust estimates
when the distribution is abnormal. On the basis of the optimization, stable and robust
estimation output and be obtained.



J. Mar. Sci. Eng. 2023, 11, 324 15 of 24

In this paper, the Radial Basis Function (RBF) is used to conduct WLS-SVM training:

Kij = K
(
xi, xj

)
= exp

(
−
‖ xi − xj ‖ 2

K

)
(20)

where K is the parameter of the kernel function that represents the influence of a single
training sample on the regressor.

The sparrow search algorithm (SSA), proposed by Xue Jiankai [39], simulates the
foraging and antipredation behaviors of sparrows for optimization. On the basis of the
position iteration formula of three kinds of sparrow particle (discovering, following, and
detective particle), the fitness value of sparrow is calculated using the fitness function to
realize the role and position transformation among sparrow particles. Finally, the position
of the sparrow particle with the highest fitness value is obtained. The SSA effectively avoids
the local optimum problem by constructing a fitness function to evaluate moving particles.

The dimension of each sparrow was set as D = 2, which was equal to the number of
parameters to be optimized. The number of sparrows in the population is n = 20. The
randomly initialized sparrow population matrix X(X ∈ R20×2) can be expressed as:

X =


C11 K12
C21 K22

...
...

C20,1 K20,2

 (21)

Then, the position of the qth individual sparrow in the space is Xq =
[
Cq1, Kq2

]
,

q = 1, 2, · · · , 20.
Let g

(
Xq
)

be the fitness value of the sparrow, equal to the root mean square error
(RMSE) between the predicted data and the real data:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (22)

among them, ŷi stands for the forecast output based on the ith input sample vector xi, and
yi for the corresponding actual output.

The population fitness matrix is expressed by Equation (20):

Gx =


g(X1)

g(X2)
...

g(X20)

 =


g([C11, K12])
g([C21, K22])

...
g([C20,1, K20,2])

 (23)

In the group foraging process, the responsibility of the discovering particles is to look
for food and provide foraging range for the population. The following particles are to
forage together with the discoverer particles later after the food is located by discoverer
particles, and the detective particles are to raise the alarm when danger is discovered in the
foraging process. The discoverer particle constantly updates its location to search foraging
areas and obtain the food that the population needs. After the food is located, the following
particles follow the location and obtain a higher fitness. When threatened by a predator, the
detective particles raise the alarm to the population for performing anti-predator behavior.

The position of the discovering particle is updated on Equation (24):

Xiter+1
q,d

{
Xiter

q,d · exp
(
− i

λ·itermax

)
i f R2 < ST

Xiter
q,d + Q·L i f R2 ≥ ST

(24)
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where iter is the time of current iterations, itermax represents the maximum time of
iterations, which is set to 128, λ is a random number in (0, 1], R2 ∈ (0, 1) represents the
alert value, ST ∈ (0.5, 1) represents the security threshold, Q is the matrix of random
numbers complying with the normal distribution, and L ∈ R1×2, represents a matrix in
which elements are all 1. R2 < ST means no predator was found and the discovering
particles can perform a search in the global scope. R2 ≥ ST represents that the detective
particles have located the predator.

The position of the following particle is updated on Equation (25):

Xiter+1
q,d

 Q· exp
(

Xworst−Xiter
q,d

q2

)
i f q > n

2

Xiter
p +

∣∣∣Xiter
q,d − Xiter

p

∣∣∣·A+·L else
(25)

where A+ ∈ R1×2 whose elements are composed of 1 or −1 randomly, Xiter
p represents

the best position of the current discovering particle, and Xworst represents the worst global
position of the current discovering particle. q > n/2 indicates that the qth following particle
does not perform well since it has a low fitness value and needs to forage in other places.

The position of the detective particle is updated on Equation (26):

Xiter+1
q,d


Xiter

best + β·
∣∣∣Xiter

q,d − Xiter
best

∣∣∣ i f fq > fg

Xiter
q,d + G·

( ∣∣∣Xiter
q,d −Xiter

worst

∣∣∣
( fq− fw)+γ

)
i f fq = fg

(26)

where Xiter
best is the global optimal position at the moment; β is the parameter controlling

the step length, complying with the N(0, 1) distribution, U ∈ [−1, 1]; fq means the fitness
value of the qth sparrow at the moment; fg is the optimum fitness value of the qth sparrow
till now; fw is the corresponding worst fitness value ever; and γ is a constant. fq > fg
indicates that the sparrow is at the edge of the colony. fq = fg represents that the sparrow
in the center of the swarm is aware of danger and needs to move close to other sparrows to
avoid preying. G is a vector that represents both the direction in which the sparrow moves
toward and the parameter that controls the step length.

The structure of the model of SSA-WLS-SVM is shown in Figure 11, and the algorithm
steps are summarized as follows:

Figure 11. SSA-WLS-SVM Black-Box Model motion prediction process.

(1) The sample set S = {(xi, yi), (xi, yi) ∈ RN, i = 1, 2, · · · , N} given by WLS-SVM is
taken as the benchmark, the regularization parameter C and kernel parameter K of
WLS-SVM were taken as the optimization objects of the SSA algorithm. The sparrow
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population size, iteration times, and initial safety threshold are determined to initialize
the SSA optimization algorithm.

(2) Initial or subsequent updated values of C and K are taken as optimization parameters
of the LS-SVM algorithm, and the LS-SVM Lagrange multiplier αi is weighted to
obtain error variables ei = αi/C. According to Equation (16), the standard variance ei
is taken to calculate Ŝ; then, the weighted coefficient vi is determined based on ei and
Ŝ, and Equation (13) is solved to obtain the WLS-SVM model corresponding to the C
and K values.

(3) The RMSEs of both the predicted value ŷ from the WLS-SVM model and the actual
sample value y are used to calculate the adaptive value of each sparrow.

(4) Update the position of the sparrow particles based on Equations (21)–(23) to obtain
the fitness value of the sparrow population, and save the optimal individual position
and global optimal position in the population.

(5) Check whether the termination conditions have been met or whether the maximum
number of update iterations has been reached. If yes, the loop will end and the optimal
individual solution, which determines a set of optimal parameters of WLS-SVM, will
be returned; otherwise, steps (2)–(4) will continue.

(6) Take the optimal particle value output using the SSA algorithm as the regularization
parameter C and kernel parameter K in WLS-SVM. Step (2) is repeated to calculate
the WLS-SVM model corresponding to the optimal regularization parameter C and
kernel parameter K.

5. Model Training
5.1. Design and Pre-Processing of Datasets

Referring to the research of Professor Zou Zaojian et al. [23], the multi-output ν vector
machine is used for the simulation of ship motion, and the random maneuvering test is
adopted for training. The resulting trained model is better than the one trained with the
test data of 20◦/20◦ zigzag maneuvering. As the effectiveness of the 3-DOF MMG model
has been verified in the 35◦ turning maneuvering test above, the simulation data of the
model can be used for black-box model training.

Firstly, the training set was obtained using the 3-DOF MMG model simulation: the
hydrodynamic coefficients of the USV calculated using CFD were substituted into the
MMG model for the maneuvering simulation. The timestep was 0.01 s, the duration was
300 s, and the initial USV speed was 0.8 m/s. The random maneuvering test with the
rudder angle changing in the range of δε[−35, 35] in every 8 s was carried out. Dataset
No. 1, with 300 samples out of 30,000 samples, was used for training. Based on the theory
in Section 2, longitudinal velocity, lateral velocity, steering angular speed, and steering
angle are used as input x, while longitudinal acceleration, lateral acceleration, and steering
angular acceleration are used as output y.

To equally consider each parameter in the input vector and output vector, the MaxAb-
sScaler method is used to normalize the data:

x f ormal = x./max(|x|)
y f ormal = y./max(|y|) (27)

where x f ormal is the input after normalization and y f ormal is the output after normalization.
Following the simulation and preprocessing process described above, a 25◦ turning

maneuvering simulation was performed to form the maneuvering dataset No. 3, and both
the random maneuvering dataset No. 2 and the 25◦ turning dataset No. 3 were used for
generalization verification. The uses of the different data sets are shown in the Table 3.
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Table 3. Datasets for training, validation, and testing.

Datasets Details of Dataset

Training sets random maneuvering dataset No.1

Test sets random maneuvering dataset No.2

Generalized set
random maneuvering dataset No.2

25◦ turning dataset No.3

5.2. Model Training

The proposed SSA-WLS-SVM method was used for parameter optimization and
dataset training. In the parameter optimization process, the dimension of the sparrow pop-
ulation was set to 2, the number of sparrows was 20, and the proportion of discovery of the
sparrow was 70%. The warning value was 0.6, the maximum number of iterations was 128,
the parameter optimization range was set as C = 1e4 ∼ 1e6, K = 50 ∼ 200. The 10-fold
cross validation method was used for the discriminant criterion of parameter optimization.
Three groups of optimization parameters were obtained, for u, v and r, the optimized
parameters (C, K) are (835170.71, 131.17), (901565.56, 170.06) and (386631.116, 54.496),
respectively. The 300 input samples were considered as support vectors. The regression
model of the SVM with weighted Lagrange multiplier α∗i , weighted displacement term b∗

was established.
The trained SVM is used to predict the entire navigation process in the random

maneuvering dataset 1, and longitudinal acceleration
.
u, lateral acceleration

.
v, steering

angular acceleration
.
r can be outputted. Subsequently, the longitudinal velocity u, lateral

velocity v, steering angular speed r, and USV track can also be obtained. As shown in
Figure 12, by comparing the prediction results of SSA-WLS-SVM with the simulation results
of the MMG model, it can be concluded that the black-box modeling and prediction method
based on SSA-WLS-SVM can accurately predict the ship’s 3-DOF motion.

Figure 12. Cont.
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Figure 12. Comparison of the prediction with SSA-WLS-SVM and simulation in dataset 1. (a) Longitu-
dinal acceleration. (b) Longitudinal velocity. (c) Lateral acceleration. (d) Lateral velocity. (e) Steering
angular acceleration. (f) Steering angular speed. (g) Rudder angle. (h) Track of USV.

5.3. Model Generalization Verification

In order to verify the generalization performance of the black-box modeling based on
SSA-WLS-SVM, the trained black-box model was tested on datasets No. 2 and No. 3. In the
prediction process, in the ith step, [u(i), v(i), r(i), δ(i)] was inputted and the corresponding[ .
u(i),

.
v(i),

.
r(i)

]
can be outputted, with which the input vector [u(i + 1), v(i + 1), r(i + 1)]

in the next step can be calculated. Therefore, the initial USV status [u(0), v(0), r(0), δ(0)]
is the only thing needed for predicting the entire maneuvering motion. Comparison of
the SSA-WLS-SVM black-box prediction results and the MMG-model simulation results
in Figures 13 and 14 illustrate that the black-box modeling prediction method based on
SSA-WLS-SVM has a satisfactory generalization performance.

Figure 13. Cont.
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Figure 13. Comparison of the prediction with SSA-WLS-SVM and simulation in dataset 2. (a) Longitu-
dinal acceleration. (b) Longitudinal velocity. (c) Lateral acceleration. (d) Lateral velocity. (e) Steering
angular acceleration. (f) Steering angular speed. (g) Rudder angle. (h) Track of USV.

Figure 14. Cont.
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Figure 14. Comparison of the prediction with SSA-WLS-SVM and simulation of the 25◦ turning
maneuvering motion. (a) Longitudinal acceleration. (b) Longitudinal velocity. (c) Lateral acceleration.
(d) Lateral velocity. (e) Steering angular acceleration. (f) Steering angular speed. (g) Rudder angle.
(h) Track of USV.

The root mean squared error (RMSE) and the correlation coefficient (CC) are two
main evaluation criteria used to measure the accuracy of the prediction. The RMSE and
CC of longitudinal velocity u, lateral velocity v, and steering angular speed r in random
maneuvering dataset No. 1 and No. 2 and 25◦ turning maneuvering dataset No. 3 are
listed in Table 4. It can be concluded that black-box modeling based on the SSA-WLS-SVM
method performs well in predicting the 3-DOF ship maneuvering motion.
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Table 4. Prediction accuracy of the USV test.

Type of Test
RMSE CC

u v r u v r

random maneuver set1 4.92 × 10−3 5.43 × 10−3 1.07 × 10−2 0.99383 0.99696 0.99382

random maneuver set2 4.25 × 10−3 7 × 10−3 1.08 × 10−2 0.9880 0.9915 0.9878

25◦ turning circle maneuver set 2.15 × 10−3 1.19 × 10−3 1.64 × 10−3 0.9989 0.9991 0.9990

6. Conclusions

In this paper, the SSA-WLS-SVM prediction method is proposed to study the USV
maneuver prediction under random maneuvering and turning maneuvering. A comparison
between the 35◦ turning maneuvering of the experimental test and the simulation of the
3-DOF MMG model is conducted to prove that the 3-DOF MMG simulation can accurately
perform the motion of the USV. Thus, the MMG simulation is used for generating the
training data. Meanwhile, the black-box model trained with MMG simulation data is used
for the verification of generalizability and accuracy judgment with the USV maneuvering
test. The random maneuvering motion and 25◦ turning circle motion were used as a
supplement to verify the generalization performance of the black-box model obtained. The
identified results indicate that the trained black-box model has accurate prediction accuracy
and a strong generalization performance.

Although the predicted results so far look acceptable, some problems still need to be
addressed in future work. In an actual navigation scenario, maneuvering motion modeling
is mainly applied to USV motion control, which means an online forecasting is the ultimate
goal of USV motion prediction. In this paper, only an off-line 3-DOF maneuvering motion
has been modeled and forecasted so far. Thus, an online modeling algorithm with rapid
prediction speed should be investigated in further research.
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