
Citation: Cai, C.; Chen, J.; Ayub, M.S.;

Liu, F. A Task Allocation Method for

Multi-AUV Search and Rescue with

Possible Target Area. J. Mar. Sci. Eng.

2023, 11, 804. https://doi.org/

10.3390/jmse11040804

Academic Editor: Rafael Morales

Received: 14 February 2023

Revised: 19 March 2023

Accepted: 7 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

A Task Allocation Method for Multi-AUV Search and Rescue
with Possible Target Area
Chang Cai , Jianfeng Chen * , Muhammad Saad Ayub and Fen Liu

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
caichang@mail.nwpu.edu.cn (C.C.)
* Correspondence: chenjf@nwpu.edu.cn

Abstract: Task allocation is crucial for autonomous underwater vehicle (AUV) collaboration in
multi-AUV maritime search and rescue missions. In real projects, there are possible target areas
existing in task areas, which are not expected to be divided. Motivated by such a special situation,
this paper proposes an area partitioning method to allocate the task to multiple AUVs and maintain
the possible target area as a whole. First, the spatial structure of the task area is defined by the
spiked Morse decomposition, which divides the task area according to a set of angles. Then, we
perform a variational transformation to determine the optimal angles using the AUV order. Next, a
customized backtracking method is introduced to determine the optimal AUV order which divides
the task area among the multiple AUVs without disturbing the possible target areas. The proposed
methodology is validated under various challenging scenarios using a different number of AUVs. The
empirical results show that the divided possible target areas and workload variance were superior to
the comparison methods. This indicates that the proposed method can generate stable solutions that
effectively reduce the segmentation of possible target areas and keep the workload of the multiple
AUVs balanced.

Keywords: multi-AUV search and rescue; task allocation; area partitioning; possible target areas;
Morse decomposition

1. Introduction

Search and rescue missions are a vital application for autonomous underwater vehicles
(AUV), which can cover the task area and acquire sonar data [1–3]. During the task, sonar
images are collected by sonars installed aboard each AUV for further target identification.
To reduce the operation time and increase reliability [4], multi-AUV (MAUV) systems are
extensively utilized for search and rescue missions [5,6]. Furthermore, the resulting task
allocation directly influences the effectiveness of the multi-AUV operation.

Among all multi-robot task allocation methods, the area partitioning method is effec-
tive and suitable for search and rescue missions to decompose the whole task for the MAUV
systems [7,8] due to sonic interference from different sonars. Hence, the multi-AUV task
allocation in this study is performed by an area partitioning method, which divides the task
area into small sections for parallel coverage [9]. Most existing area partitioning methods
are based on geometry partitioning and focus on the constraints of the multi-robot systems,
such as workload balancing, managing robots based on different energy capabilities, and
the complex shape of task areas [10]. Additionally, most of these methods treat the whole
task area similarly without any internal distinction.

1.1. Motivation

When analyzing search and rescue missions, we noticed that there are always possible
target areas in the task area. For example, Figure 1 shows the real search scope of the
air disaster that occurred in March 2022 in China. It can be seen that there is a crash site
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and a key search area, which are more likely to find the target successfully. For maritime
search and rescue, concentrating the possible target area on fewer AUVs aids in the efficient
detection of the target during the sonar image interpretation process. More similar examples
include dangerous areas in adversarial coverage missions [11] and areas with carpets in
cleaning floor tasks. For these scenarios, there are small sections in the task area, which are
essential parts of the whole task and should be processed separately. However, prior area
partitioning methods paid no attention to such special zones.

Figure 1. The search area for finding the airplane that crashed in China in March 2022. The whole
task area includes the crash site, the key search area, and the expanded search area. The three types
of subareas are of different importance.

In this study, we look into the task allocation problem in multi-AUV search and rescue
missions, which is conducted by partitioning the task area in the presence of a possible
target area that should not be divided. It is also applicable for some applications; for
instance, in the adversarial coverage task [11], assigning the dangerous area to fewer robots
helps to guarantee the safety of the robots.

1.2. Contributions

A novel area partitioning method is presented in this study to address the task al-
location problem in multi-AUV search and rescue missions with possible target areas
that should be unpartitioned as much as possible. Since the deployment of AUVs is not
considered in this study, it is assumed all AUVs start from the same position on the edge
of the task area. The Morse decomposition in the spiked pattern is proposed to define the
structure of the beehive-based task area, and the area partitioning result is determined by a
set of split-line angles. Then, a variable transformation is performed, and the optimal angles
are obtained by the AUV order. Considering different energy capacities, the backtrack-
ing method is customized to determine the AUV order with the purpose of keeping the
workload balanced and avoiding the segmentation of the possible target areas. Simulations
considering two scenarios with different numbers of AUVs are employed to verify the
performance of the proposed method. From the simulation results, it can be seen that
the task area is effectively decomposed, taking into account the possible target areas and
workload balancing.

The main contributions of this study can be summarized as follows:

• This study first addresses the area partition problem with possible target areas in the
multi-AUV area coverage task. The possible target areas are assigned to a minimum
number of AUVs, which is beneficial to the performance of the mission.

• The traditional Morse decomposition is extended to discrete task areas. The Morse
decomposition in the spike pattern is adopted to define the discrete spatial structure
of the workspace, as all AUVs started from the same initial position.

• A customized backtracking method is developed to determine the AUV order properly
in order to balance the workload of the AUVs and reduce the number of AUVs
covering the possible target areas. The generated solution employing the customized
backtracking method is stable and globally optimal.
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This paper is organized as follows. In Section 2, the existing relevant studies of
the multi-robot area coverage task allocation are summarized. In Section 3, we define
the structure of the MAUV task allocation problem considering the possible target area.
Section 4 presents the proposed area partitioning method. Its performance is verified via
a series of computational simulations in Section 5. Finally, we give the conclusion and
highlight potential future works in Section 6.

2. Related Work

Concerning generalized area coverage tasks, an exhaustive investigation of applica-
tions and approaches was provided in [5,12]. In general, existing task allocation studies
have two categories: online and offline approaches. The online approaches determine the
real-time motion when performing tasks, such as methods in [13–17]. Online approaches
usually require reliable communication to share working information. However, in many
cases such as underwater or large-scale environments, reliable communication is hard to
guarantee. In order to reduce the requirements for working conditions, offline approaches
generate dependent subtasks for robots. Most offline approaches attribute the problem to
the arc routing problem (ARP) and the area partitioning problem.

As for the ARP approaches, an global path is determined in advance and then allocated
to robots. Considering the energy constraints, the capacitated arc routing problem (CARP)
was raised based on the ARP, which optimally selected the weighted edges of a graph-based
environment. Various modified Ulusoy’s algorithms [18], such as [19,20], were put forward
aiming at different scenarios and constraints. In [21], the authors provided coverage path
planning for multiple Dubins robots, which first obtained the shortest Dubins coverage
path and then divided the path using a tree partition strategy. Approaches in this category
are suitable for a static environment due to the fixed initial route. An obvious drawback
of approaches in this category is that all planned routes need to be adjusted once the task
environment changes.

As for the area partitioning approaches, the task area (which might be composed
of multiple unconnected areas) is divided and appropriately allocated into partitioned
areas to member robots. Compared with solutions in other categories, area partitioning
approaches are relatively flexible and have fewer limits on the environment and equipment.
Moreover, the area partitioning approaches can reduce interference among sensor beams
and collisions among robots due to spatial partitioning.

Among all area partitioning solutions, the Voronoi partitioning method [22–24], opti-
mal polygon decomposition [25], and the Delaunay triangulation method [26] are the most
common methods. The work [22] proposed a Voronoi-based area partitioning and allocation
algorithm considering the different capabilities of robots and unstructured environments.
However, the resulting overlapping area increased the workload. Another area partitioning
approach named the divide areas based on robot’s initial positions (DARP) algorithm [27]
decomposed the task area before area partitioning and then assigned grids according to
the initial positions. The DARP algorithm has also been used to cover areas of complex
shapes in many remote sensing applications [28]. However, an inevitable drawback is the
heavy computational burden. Considering discontinuities (e.g., no-fly zones) in the task
area, a Lloyd’s algorithm-based area partitioning method was provided for monitoring
non-convex areas using multi-robots [29]. Unfortunately, the battery capacity of the robots
was ignored, which decreased the reliability of the proposed method. Considering the
complex land cover types in outdoor environments, a hierarchical quadtree and binary
operations were employed to assign the whole task to multi-robots [30]. Nevertheless, the
time complexity was still high due to the three non-parallel steps. In order to reduce task
time, an optimal polygon decomposition method was put forward [25] considering the
influence of wind on unmanned aerial vehicles. In this method, moving slice lines were
used to divide the complex region, which is a type of Morse decomposition. A constrained
Delaunay triangulation method proposed by Balampanis et al. [26] mainly dealt with
complex geometries and workload balancing. It can be deduced that workload balancing,
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different energy capabilities, and complex shapes of task areas were highlighted in most
existing studies.

Based on the existing methods, we develop a novel method for partitioning task areas
considering the possible target areas to allocate the coverage task to multi-AUV systems. In
real-world applications, examples of special zones include highly possible target areas in
search and rescue missions [3], dangerous areas in adversarial coverage [11], carpet areas in
floor cleaning, and so on. Moreover, workload balancing is essential for multi-AUV tasks,
which is considered in this study.

3. Problem Definition and Assumptions

A multi-AUV system equipped with side-scan sonar is assigned for the search and
rescue mission with a possible target area. Side-scan sonar scans the seabed and generates
sonar images for interpretation of targets. The search and rescue mission is spatially
divisible and parallelizable to allow each AUV to independently perform its subtasks.
Figure 2 describes the overview of the area coverage task, including the beehive-based task
area, the possible target areas, the multiple AUVs, and their start position. The discrete task
area consists of multiple hexagonal grids, referred to as ‘grids’ in the following.

Figure 2. The general scenario of the coverage task. A multi-AUV system equipped with sensors is
employed to cover the beehive-based task area with a possible target area.

Let A be a convex task area, which is open and flat without obstacles. From [27], it is as-
sumed that the task area has been decomposed into Ng grids denoted by G =

{
G1, · · · , GNg

}
.

This assumption is reasonable since a common way to completely cover an area is to visit all
waypoints distributed in the area. The size of each of the grids is determined by the range of
the sensors. Moreover, there are Nz possible target areas represented as Z = {Z1, · · · , ZNz}.
It is required that a fewer number of AUVs are employed for covering these special areas.

Assume Nr homogenous AUVs denoted as Rr are cooperatively covering the task area,
where r = 1, · · · , Nr. The AUVs’ identifiers are the serial numbers assigned beforehand.
It is assumed that the energy consumption of each of the AUVs is different. Let EC =
{EC1, · · · , ECNr} denote the energy capacity of each AUV. The ECr ranges from 1 to 0,
where 1 denotes a full battery and 0 denotes a completely depleted battery. Certainly, the
AUV with a stronger energy capacity should be assigned more workload, i.e., more grids.
Hence, according to the energy capacity, the expected number of grids for AUV Rr, denoted
as NGr, is formulated as

NGr =
ECr

∑Nr
r=1 ECr

× Ng. (1)

It is assumed the energy capacity is enough to cover the corresponding number of grids.
Moreover, as mentioned, all the AUVs start from the same start position since this study
does not discuss the selection of the initial positions of the AUVs. Hence, subareas for each
AUV should be continuous and close to the start position to reduce energy consumption.

Based on these assumptions and considerations, the final goal is to partition the
beehive-based workspace with possible target areas for AUVs with different energy capaci-



J. Mar. Sci. Eng. 2023, 11, 804 5 of 16

ties. Let Ar denote the partitioned subareas; the area partitioning problem is formulated
as follows:

min f1 = Nz− Nz′

min f2 =
Nr

∑
r=1

∣∣NGr − NG′r
∣∣2

s.t. Ar ∩ Ar′ = ∅,

A =
Nr⋃

r=1

Ar,

∀r, r′ ∈ 1, · · · , Nr, r 6= r′

(2)

where Nz′ is the number of possible target areas after area partitioning and NG′r is the
real number of grids assigned to Rr after partitioning. The minimum f1 represents the
minimum number of divisions of the possible target areas. The minimum f2 stands for the
most optimal assignment of workload to each of the AUVs.

The constraints of the area partitioning problem in Equation (2) are: (1) each grid
should be assigned to only one AUV, and (2) each portion of the workspace is covered.
Thus, the goal of area partitioning can be achieved by minimizing the objective functions f1
and f2 in Equation (2).

4. Morse-Decomposition-Based Discrete Area Partitioning Method

This section presents the technical details of the proposed Morse-decomposition-
based discrete area partitioning method for area coverage in task allocation. The Morse
decomposition in the spike pattern defines the spatial structure of the discrete task area.
Subsequently, a customized backtracking method is proposed to adjust the sequence of
AUVs and determine the optimal split lines. Finally, we add an operation to guarantee the
continuity of the segmented subareas. The details of the above steps are illustrated in the
following sections. The whole process of the proposed method includes three steps, which
are depicted in Figure 3.

Define spatial structure

Determine robots' order

Construct connected area

Morse decomposition in the 

spiked pattern

Customized backtracking 

method

Grid's reassignment

MethodsSteps

Figure 3. The whole process of the proposed area partitioning method from building structure of
the area partitioning problem using Morse decomposition, roughly assigning grids by customized
backtracking method, to fine adjusting to construct connected subareas.

4.1. Define the Structure of the Discrete Task Area

A Morse decomposition in the spike pattern is developed to define the spatial structure
of the discrete task area. This lays the foundation for optimally generating the subareas.
As is known, the classical Morse decomposition method provides simple and generalized
decomposition structures [31–33]. The main idea is to use a slice to sweep the region and
focus on connectivity fluctuations. Figure 4 shows four Morse decomposition patterns with
different slices and directions.
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Figure 4. Four examples of Morse decomposition in different patterns.

The decomposition shown in Figure 4c, known as the Morse decomposition in the
spike pattern, is used to outline the spatial structure of the task area. The main reason for
selecting the spike pattern is that all AUVs start from the same position. The spike pattern
reduces the distance between the start position and the subarea, which is impossible for
other patterns of Morse decomposition.

In this study, the traditional Morse decomposition in the spike pattern is extended to
the discrete space. Figure 5 gives the related definitions, including the start position, the
possible target area, and the split line decided by the grid Gi. Incidentally, the hexagonal
grid in this scenario can be replaced with any other polygon as long as it seamlessly covers
the task area.

Figure 5. Definitions of the Morse decomposition in the spike pattern for the discrete task area.

From Figure 5, the slice is defined as the line joining the center of the first grid G1 and
the center of the grid Gi. A set of slices can be treated as split lines to divide the task area.
Then, we give the definition of the angle θi.

Definition 1. The angle between the y-axis and the slice of grid Gi is defined as

θi = 90◦ − arctan(
yi − y1

xi − x1
) (3)

where xi and yi are coordinates of the grid Gi, i = 1, · · · , Ng, and G1 is the start position.

According to Definition 1, split lines are determined by the start position and angles
θ (see an example of the split line in Figure 5). When all the angles and split lines are
estimated, the task area can be partitioned.

Let Θ =
{

θ1, θ2, · · · , θNg
}

be the collection of all the angles θi. Thus, the area parti-
tioning problem is transformed to find Nr− 1 elements from Θ.

4.2. Determine the Optimal Split Lines

In this part, we find the optimized split lines by three steps. Initially, we cater for
the conditions of θ to optimize f1 and f2 in Equation (2). Then, the variable θ is further
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transformed based on the order of the AUVs. Finally, the customized backtracking method
is proposed to solve the optimal order of the AUVs.

4.2.1. Objective Functions of θ

Let Θ∗ =
{

θ∗1 , · · · , θ∗Nr−1
}

denote the solution required in this study. Next, we deduce
the conditions of Θ∗ to optimize f1 and f2 in Equation (2).

In terms of f2 in Equation (2), i.e., the workload balancing, the number of grids
assigned to AUV Rr, i.e., the NG′r, is regarded as the workload. For a given α ∈ Θ, let W(α)
denote the number of grids that satisfies θi ≤ α, i.e.,

W(α) = ]{θi|θi ≤ α, θi ∈ Θ}. (4)

In Figure 5, the W(θi) is the number of grids in the blue area. Furthermore, the
workloads determined by θ∗ are

Wr =


W(θ∗r ) r = 1

W(θ∗r )−W(θ∗r−1) r = 2, · · · , Nr− 1
Ng−W(θ∗r−1) r = Nr

(5)

Given the definitions of θ and W, f2 from Equation (2) can be transformed into: Hence,
to minimize f2, Θ∗ should satisfy

arg min f2(θ
∗) =

Nr

∑
r=1
|NGr −W(θ∗r )|

2, θ∗r ∈ Θ∗. (6)

While dealing with f1 in Equation (2), i.e., avoiding the partitioning of possible target
areas, it should be ensured that split lines should avoid falling into any possible target area.
Let θZk denote the θ of the grids in each possible target area Zk. Then, we can define θu as

θu = {θi | min θZk ≤ θi ≤ max θZk , i = 1, · · · , Ng,

k = 1, · · · , Nz}
(7)

If the θ of split lines belongs to θu, the possible target area must be divided. Thus, to
guarantee no split line passes the possible target areas, Θ∗ should satisfy

Θ∗ ∩ θu = ∅. (8)

After defining the spatial structure of the discrete task area, the area partitioning
problem is transformed into finding a set of Θ∗ that minimizes Equation (6) and satisfies
Equation (8).

4.2.2. Find the Optimal θ

This section elaborates the customized backtracking method to determine the satisfy-
ing Θ∗ by adjusting the order of the AUVs. The proposed customized backtracking method
assigns workloads according to the results of Equation (1). Then, it adjusts the order of the
AUVs to avoid the split lines passing the possible target areas. The variable conversion
guarantees the minimization of f1 and reduces the computational complexity. Take Figure 6
as an example. The segmentation of the possible target areas can be avoided by changing
the order of the AUVs. Simultaneously, the workload balancing can also be made optimal.

The AUVs’ identifiers are expressed as {1, · · · , Nr}, which are in the order of the
energy capacity of each of the AUVs. The order of the AUVs is represented as S =
{S1, · · · , SNr}, where Si indicates the identifier of the AUV that is placed in the i-th position.
For instance, S2 = 5 indicates that the AUV whose identifier is ‘5’ will be the second AUV
in the predefined direction.

The backtracking method is customized to determine the order of the AUVs inspired
by the N-Queen problem [34]. Similar to finding the proper positions for Queens, this study
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aims to find the proper position for the AUVs. The backtracking method is a depth-first
search algorithm. Based on the traditional position selection strategy for the N-Queen
problem, the customized backtracking method neglects diagonal attacks and adds the
process of checking if the θ∗ is included in θu and is incorporated.

Figure 6. The split lines with different orders of AUVs. The workloads of AUVs are 0.261, 0.413,
and 0.326, respectively. By changing the AUVs’ order, the split lines can be prevented from passing
through the possible target area.

The detailed procedure of the customized backtracking method is illustrated in
Algorithm 1. The most important steps (Lines 3–11) are the iterative selection of the
most suitable AUV order until all AUVs are optimally arranged. For each position, Θ∗ is
calculated. If Θ∗ satisfies Equation (8), we continue to find the AUV for the next position,
or else we try other candidate AUVs. If all candidate AUVs are unavailable, the robot in
the last position is changed. If possible target areas must be partitioned, i.e., there is no
solution without partitioning possible target areas, the order S with minimum f1 is chosen
as the optimal solution.

Algorithm 1 Customized backtracking method in Morse decomposition.

Input: Nr, θu
Output: f1, f2, S

1: Initialize: f1 = f2 = Ng, i = j = 1;
2: while i > 0 do
3: while j ≤ Nr do
4: if tempS(i) = j is available then
5: tempS(i)← j
6: break
7: else
8: j← j +1
9: temp f1 ← Nr− i

10: compare and record f1 ← min temp f1
11: nS← arg min f1
12: end if
13: end while
14: if j ≤ Nr then
15: i← i + 1, j← 1
16: else
17: BACKTRACKING
18: end if
19: if all elements in tempS are settled then
20: calculate temp f2
21: f2 ← min temp f2, S← arg min f2
22: end if
23: end while
24: if S is ∅ then
25: restrobot← {1, · · · , Nr}
26: S← nS ∪ (restrobot \ nS)
27: calculate f2(S)
28: end if
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4.3. Construct Connected Subareas

The generated subareas by the aforementioned processes can roughly assign the
task area into Nr subareas. However, the continuity of subareas cannot be guaranteed,
especially in case the difference between two adjacent θ is small. To address this problem,
an additional procedure is introduced for constructing spatial connected areas.

Algorithm 2 describes the main procedure. Let GRr expresses the all grids assigned to
AUV Rr. After computing the allocation matrix AM according to the current assignment,
the body region P and the rest regions Q of each subarea are obtained. Then, for AUV
Rr, all grids connecting Pr and Qr, denoted as ConnectedGrids, are calculated. In addition,
the EdgeGrids expresses the boundary grids assigned to two adjacent AUVs. All grids in
ConnectedGrids and EdgeGrids are assessed and reallocated. Thus, the continuity of the
partitioned areas is ensured, and the number of grids for the AUVs is adjusted to be as
close as possible to NGr in Equation (1).

Algorithm 2 Constructing connected areas.

Input: GRr,GRr−1, AM
Output: GRr,GRr−1, AM

1: for r = 2 to Nr do
2: Calculate Pr, Qr
3: Calculate ConnectedGrids and EdgeGrids
4: while Qr 6= ∅ do
5: AdjustGrids← ConnectedGrids

⋃
EdgeGrids

6: (ScoreP, ScoreP′)← Assess(AdjustGrids)
7: if ScoreP− ScoreP′ ≥ 0 then
8: Pr ← AdjustGrids
9: else

10: Pr−1 ← AdjustGrids
11: end if
12: Update GRr, GRr−1, Pr, Qr and AM
13: end while
14: end for

5. Simulation Results

In this section, simulations considering two different scenarios are implemented to
assess the performance of the proposed area partitioning method. The simulations and
analysis of the results were performed using MATLAB. The simulation results give the area
partitioning result for different numbers of AUVs and the comparison to two existing area
partitioning methods. Finally, results and discussions are given to thoroughly analyze the
proposed method and verify its ability to handle different cases.

5.1. Scenarios and Performance Metrics

During analysis, Nr AUVs were assigned the coverage task in a 5000 m by 2500 m
rectangular area for 3 ≤ Nr ≤ 8. The task area had a small area as the start position. The
radius of the hexagon grids was set as 100 m, which can be adjusted according to the range
of the equipped sensor. The whole area was required to be partitioned into Nr subareas
based on area partitioning methods. Furthermore, the energy capacities of AUVs were
randomly set as EC = {0.93, 0.98, 0.65, 0.97, 0.85, 0.4, 0.7, 0.9}. The value of Nr determines
the number of values taken from EC; for instance, if Nr = 3, then EC = {0.93, 0.98, 0.65}.
For clarity of presentation, Table 1 summarizes the basic parameters of the task scenario in
the simulation.
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Table 1. Simulation parameters.

Category Item Value

Task area Length (m) 5000
Width (m) 2500

Hexagonal grid Radius (m) 100

AUV Number 3∼8
Energy capacity 0.93, 0.98, 0.65, 0.97, 0.85, 0.4, 0.7, 0.9

Under these configurations, two cases were analyzed to validate the proposed method
for different environments. The basic task area of the two cases was the same. The difference
between the two scenarios was the number and location of possible target areas. In Case
1, we considered the scenario as shown in Figure 5, while in Case 2, the scenario with
scattered possible target areas was considered.

To validate the effectiveness of our method, we compare our method with two existing
approaches, i.e., the generalized Voronoi diagram (GVD) [23] and the boustrophedon and
backtracking (BoB) method [15]. The GVD is a common area partitioning method, while
the BoB method is based on the boustrophedon coverage method, which also considers
the workload balancing. As the possible target area partitioning method is proposed, we
compare two related methods that can be applied in our context.

For analyzing the performance, two metrics are employed, including the ability to
keep the possible target areas undivided and workload balancing. This is in correspondence
with the objective functions f1 and f2. A smaller value of f1 indicates less partitioning of
the possible target areas, while a smaller f2 indicates that the square difference between
the practical number of assigned grids and the expected number of assigned grids is small,
and hence, the workload is optimally balanced.

5.2. Case 1: One Special Zone

This case study aims to verify the proposed method with one possible target area in
the whole area. The beehive-based workspace and the possible target area are shown in
Figure 5.

Table 2 lists the numerical results using the proposed method, including the order S
and angles of split lines Θ∗ for 3 ≤ Nr ≤ 8. Figure 7 shows the resultant area partitioning
according to Table 2. Grids in the possible target area are marked with red stars, and grids
assigned to different AUVs are shown with different colors. From the graph, it is clear
that the possible target area is unpartitioned for Nr = 3, 5, 6, 8. In the other two cases,
the possible target area is divided into only two parts. Hence, the proposed method can
generate continuous subareas and ensure less division of the possible target areas.

Table 2. Numerical results of the proposed method in Case 1.

Nr S Θ∗

3 1 2 3 54.79 75.82
4 1 3 4 2 45.29 60 74.56
5 1 4 3 2 5 38.64 58.20 67.05 79.11
6 1 2 5 4 3 6 35.82 57.69 66.89 77.99 85.87
7 1 2 3 4 5 6 7 32.204 53.69 60 70.33 79.10 83.02
8 2 4 5 8 7 6 3 1 28.26 49.84 58.20 66.89 72.89 76.39 82.17



J. Mar. Sci. Eng. 2023, 11, 804 11 of 16

Figure 7. The workspace is partitioned into Nr subareas using the proposed method for 3 ≤ Nr ≤ 8.
Grids assigned to different AUVs are shown with different colors. Red stars denote the grids in
possible target areas.

The comparison of f1 for the proposed method, the GVD method, and the BoB method
are summarized in Figure 8. The f1 values of the proposed method (red line) stay lower
than the other two compared methods and do not increase with the number of AUVs. The
maximum f1 of the proposed method is 1; that is, there is at most one extra partitioned
possible target area using the proposed method. The BoB method has a higher fluctuation
and shows a slight growth with the number of AUVs, while the f1 of GVD method (blue
line) also rises with the number of AUVs. This indicates that the proposed method can
better protect the area from partitioning.

Figure 8. The f1 value of the proposed method, the BoB method, and the GVD approach in Case 1
where Nr is from 3 to 8. The smaller f1 value indicates fewer divisions of the possible target areas.

Figure 9 shows the comparison of the f2 value of the three compared methods, which
measures the difference between the expected and practical number of grids assigned to
each AUV. It can be seen that the f2 of the proposed method remains stable and maintains
a small increase with the number of AUVs. However, the f2 of the BoB method (cyan line)
is slightly higher than the proposed method. The GVD method has a worse performance
regarding workload balancing. Therefore, the proposed method has a better ability for
workload balancing compared to the other two approaches.
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Figure 9. The comparison of the f2 value of the three methods for 3 ≤ Nr ≤ 8. The smaller f2 value
indicates better ability of workload balancing.

In summary, for Case 1, the proposed method shows a significant increase in the
ability to keep the completeness of the possible target areas and assign grids reasonably for
3 ≤ Nr ≤ 8.

5.3. Case 2: Scattered Special Zones

In this analysis, a new workspace with several small possible target areas was designed
as depicted in Figure 10. The area partitioning result using the proposed method is given.
Furthermore, the performance of the proposed method in comparison to the BoB and GVD
approach is analyzed on the defined area.

The numerical results of the proposed method are summarized in Table 3, while the
area decomposition results are represented in Figure 11. Grids in possible target areas are
marked with black stars, and grids assigned to different AUVs are filled using different
colors. It is clear that the subareas assigned to different AUVs were continuous and started
from the grids closer to the start position. For Nr = 3, · · · , 7, the possible target areas were
not divided, while for Nr = 8, there was only one additional possible target area caused by
the area partitioning.

Figure 10. The scenario to be partitioned in Case 2. The scattered possible target areas (red zones) are
distributed in the workspace. The broken blue lines show the boundaries of possible target area.

Table 3. Numerical results of the proposed method in Case 2.

Nr S Θ∗

3 1 2 3 54.79 75.82
4 1 2 4 3 46.58 65.81 81.30
5 4 3 5 2 1 40.74 56.02 66.93 79.70
6 1 4 5 2 3 6 37.52 57.64 67.45 78.90 87.59
7 1 5 6 2 7 3 4 34.21 52.65 57.82 67.73 74.76 81.64
8 3 1 5 2 4 8 7 6 21.96 44.66 56.867 65.35 73.58 82.06 88.91
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Figure 11. The workspace is partitioned according to the energy capability of AUVs using the
proposed method. Grids assigned to different AUVs are shown with different colors. The black stars
are possible target areas.

Similarly, the performance of the proposed method in avoiding segmentation of the
possible target area is shown in Figure 12. In most cases, the f1 values of the proposed
method stay zero except for Nr = 8. The maximum value of f1 for the proposed method is
1, which indicates only a single subzone is added, which is considered acceptable. However,
the f1 of the other two approaches has large fluctuations and significantly increases with
the number of AUVs. Hence, even though the workload balancing was considered in the
BoB method, the proposed method is still more conducive to protecting the division of the
possible target areas.

Figure 12. The comparison of f1 value between the proposed method and the other two approaches
in Case 2. The smaller f1 value indicates fewer divisions of the possible target areas.

In case 2, the comparison of f2 is shown in Figure 13. As is indicated in the figure, the
f2 of the proposed method keeps close but is lower than the BoB method. However, the
GVD method is significantly higher than the other two methods and increases with the
number of AUVs. This indicates that the proposed method is effective in balancing the
workload. Furthermore, smaller grids result in better workload balancing.
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Figure 13. The comparison of the f2 value among the proposed method, the GVD method, and the
BoB method in Case 2. The smaller f2 value indicates better ability of workload balancing.

Based on the aforementioned results, the proposed method’s area partitioning results
have the following characteristics: (1) possible target areas are rarely partitioned, (2) the
numbers of grids assigned to each AUV are close to the expected numbers, and (3) parti-
tioned subareas are continuous and close to the start position. Hence, it can be concluded
that the proposed method is more effective in avoiding the partitioning of the possible
target areas and provides optimal workload balancing.

6. Conclusions

Considering the possible target areas in multi-AUV area coverage tasks, this study
provided a task allocation method that partitions the beehive-based task area and assigns
subareas to AUVs. Simulation results in different scenarios reveal that the proposed method
can avoid the partitioning of the possible target areas and keep the workload balanced
among the AUVs. The exemption of dividing the possible target area is essential in many
area coverage tasks, such as adversarial coverage and search and rescue missions. The
proposed approach is ideally suited for such applications. In the proposed method, the area
partition problem with possible target areas in the multi-AUV area coverage task was first
addressed. Furthermore, Morse decomposition was applied in the discrete task area. The
proposed method is suggested for convex task areas limited by Morse decomposition. As a
future work, a tailored path planner will be studied for covering the task area with possible
target areas. Moreover, the practical factors that have an effect on operational performance
will be taken into account, such as the unevenness of the seabed and underwater currents.
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