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Abstract: Dolphin signals are effective carriers for underwater covert detection and communication.
However, the environmental and cost constraints terribly limit the amount of data available in
dolphin signal datasets are often limited. Meanwhile, due to the low computational power and
resource sensitivity of Unmanned Underwater Vehicles (UUVs), current methods for real-time
generation of dolphin signals with favorable results are still subject to several challenges. To this end,
a Masked AutoEncoder Generative Adversarial Network (MAE-GAN) model is hereby proposed.
First, considering the few-shot condition, the dataset is extended by using data augmentation
techniques. Then, to meet the low arithmetic constraint, a denoising autoencoder with a mask is
used to obtain latent codes through self-supervised learning. These latent codes are then utilized
in Conditional Wasserstein Generative Adversarial Network-Gradient Penalty (CWGAN-GP) to
generate a whistle signal model for the target dataset, fully demonstrating the effectiveness of the
proposed method for enhancing dolphin signal generation in data-limited scenarios. The whistle
signals generated by the MAE-GAN and baseline models are compared with actual dolphin signals,
and the findings indicate that the proposed approach achieves a discriminative score of 0.074, which
is 28.8% higher than that of the current state-of-the-art techniques. Furthermore, it requires only
30.2% of the computational resources of the baseline model. Overall, this paper presents a novel
approach to generating high-quality dolphin signals in data-limited situations, which can also be
deployed on low-resource devices. The proposed MAE-GAN methods provide a promising solution
to address the challenges of limited data and computational power in generating dolphin signals.

Keywords: bionic signal generation; few-shot learning; generative adversarial network; data augmentation

1. Introduction

Unmanned Underwater Vehicles (UUVs) are widely used for various underwater tasks.
Moreover, some tasks require covert operations, such as detection and communication,
making it challenging for UUVs to remain undetected. Dolphin signals, due to their
frequency and duration, are well-suited for these covert tasks [1,2] and are gaining attention
in underwater sonar research. While the academic community has made progress in
detecting [3], classifying [4], and extracting dolphin whistle signals [5] and click signals [6],
practical scientific research faces difficulties in acquiring sufficient underwater samples.
This is attributed to factors such as cost, environmental constraints, and time limitations,
which can result in insufficient sample size or an under-representation of the actual data.
Additionally, covert missions amplify the risk of identification due to the limited number
of samples available, making it crucial to develop methods that can effectively outfit UUVs
under limited data conditions. Such methods can enable UUVs to execute covert tasks
without risking detection, which has significant implications for underwater sonar research.
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There are three main methods of covert underwater communication and detection:
low probability of detection [7] (LPD), low probability of recognition [8] (LPR), and low
probability of interception [9] (LPI). Among these methods, LPD provides the highest
level of secrecy by ensuring that the signal is not detectable, but it conflicts with the key
indicators of communication and detection. Increasing transmission power to improve
distance, reliability, and effectiveness will inevitably expose underwater platforms. LPR,
on the other hand, enables communication or detection signal detection without identifica-
tion. This technology utilizes bionic camouflage to communicate and detect through the
ocean’s inherent biological calls, making it challenging for sonar operators to distinguish
biological noise and detection signals. In addition, LPI facilitates signal detection, which
cannot be accurately deciphered, and is primarily used in the field of underwater acoustic
communication. However, this method also poses the problem of exposing communication
platforms, as well as the lack of marine environment friendliness. In other words, the LPR
signal is a more extensively applicable method for covert underwater communication and
detection, capable of striking a balance between secrecy and practicality.

Realizing the LPR signal relies on biological noise, but it is difficult to collect the signal,
thereby leading to small datasets. Moreover, the continued use of these datasets expands
potential detection and communication exposure. To extract and reconstruct dolphin
signals and obtain new biological signals, modifications can be made during reconstruction.
However, these methods fail to fundamentally solve the small data problem. A simple
solution is to directly expand the number of data samples. Data augmentation is a popular
solution to expanding the number of data samples, commonly used in scenarios featuring
an insufficient amount of data or significant model parameters, particularly in the image
field. However, data augmentation can also be applied to sequencing data generation,
which can be considered a simplified image field data expansion. Ekin D. Cubuk et al. [10]
utilized a search algorithm to seek an optimal image augmentation strategy for a specific
dataset, but this approach was computationally intensive. Regarding RandAugment [11],
the author proposed a random augmentation method, which selected all sub-strategies with
equal probability, and thus made the method more suitable to be migrated to other datasets.
Experiments showed that RandAugment had a good effect, even in the case of training large
models. Cutout and Mixup [12,13] are other data augmentation techniques used in image
classification. The former could simulate the classification scene when the subject was
partially occluded, thereby promoting the model to make full use of more image content to
classify and prevent overfitting, whereas the latter was a simple and easy-to-implement
image aliasing augmentation scheme that achieved favorable good results in both image
classification and target detection. Cutmix [14], a similar approach to Mixup, randomly
cropped an ROI (Range Of Interest) from an image and covered the corresponding area in
the current image. However, not taking into account the actual underwater conditions and
inter-population variation, all these above-described data augmentation methods are not
applicable to small-sample dolphin whistle signal datasets.

Data expansion methods may increase the amount of data and partially integrate data
distribution. However, it is challenging to demonstrate the validity and reliability of the
expanded data, and data expansion methods that incorporate constraints often produce a
limited amount of expanded data. To address this issue, a method known as Generative
Adversarial Network (GAN) [15] has been introduced in the field of deep learning in recent
years, which offers a solution to the challenge of small data and enhances the accuracy and
reliability of LPR signals. In the field of few-shot generation, Yijun Li et al. proposed a tech-
nique called few-shot image generation [16], which aimed to generate more data for a given
domain even when there were only a few training examples available. Kai Li et al. [17]
proposed an Adversarial Feature Hallucination Network (AFHN), a novel framework for
Few-Shot Learning (FSL) based on conditional Wasserstein Generative Adversarial Net-
works (CWGAN). AFHN generated diverse and discriminative features by conditioning a
small number of labeled samples, with two innovative regularizers included to promote
the discriminability and diversity of the synthesized features. Data Augmented Generative



J. Mar. Sci. Eng. 2023, 11, 1086 3 of 18

Adversarial Network (f-DAGAN) proposed by Bharat Subedi et al. [18] was motivated by
a DAGAN that learned data distributions from two real datasets. A dual discriminator
was used to process the generated data as well as the resulting feature space to better
learn the given data. Jiayu Xiao et al. [19] adapted a GAN well-trained on a large-scale
source domain to the target domain with a few samples. Abhishek Sinha et al. proposed
Diffusion-Decoding models with contrastive representations (D2C) [20], a method for
training unconditional Variational AutoEncoders (VAE) for few-shot conditional image
generation. For time-series data generation, Synthetic biomedical Signals GAN used bidi-
rectional grid long short-term memory (BiGridLSTM) as the generator and Convolutional
Neural Networks (CNN) as the discriminator [21]. Different features associated with each
of the different signal types could be captured. Lue Zhang et al. [22] employed deep
WAVEGAN and confirmed its effectiveness in generating realistic dolphin signals from
both time and frequency domains. However, all these methods often require large network
parameters and fail to account for the distance between different dolphin samples; thus,
they are considered unsuitable for limited data and computing resources.

Based on the above-mentioned problems, an improved GAN method, Masked Autoen-
coder Generative Adversarial Network (MAE-GAN), was hereby proposed under limited
data conditions. First, the data augmentation scheme was used to effectively expand the
training set of the original signal. After that, an asymmetric autoencoder based on con-
volution was constructed by using an innovative mask mechanism to achieve an encoder
model with high reconstruction capability, based on which the Conditional Wasserstein
Generative Adversarial Network-Gradient Penalty (CWGAN-GP) learned the latent codes
of MAE to achieve a whistle signal generation model with low computational resource
requirements. The time-frequency contours, t-SNE plots, discriminant scores, and time and
space complexity are subsequently used as the evaluation metrics. Experimental results
showed that the network can generate dolphin signals better on low-power devices. In
addition, this method works efficiently in follow-up tasks such as target recognition, which
is of great significance in solving the problem of insufficient samples and provides new
ideas for some data-driven methods.

In the following sections, the second part describes the signal extraction and synthesis
method, data extension method, and model structure; the third section presents the details
of the experimental setup; the fourth section introduces the experiments and analysis of the
results; and the final section summarizes the experimental results and future perspectives.

2. Theory and Method
2.1. Dolphin Whistle Signal Modeling and Synthesis

To deal with the low signal-to-noise ratio found in collected dolphin sound signals,
the time-frequency spectrum obtained through the Short-Time Fourier Transform (STFT)
is hereby utilized, which enables the signal to be processed and analyzed to produce a
distinct profile of its time-frequency spectrum.

2.1.1. Peak Detection

Assuming a whistle signal represented by s[t] and a sampling rate of 1/T, a sampled
signal s[n] = s[t/T] can be obtained. A time-frequency map can be drawn through STFT,
where the window length is chosen to be point W. It is assumed that the whistle signal is
smooth during the duration of point D. The signal, applied STFT with a window length of
point W, is divided into M data blocks, and each block is assigned a data block number m
to obtain the result Xm[k]. Then, the fundamental frequency can be expressed as follows:

f1(m) = argmax|Xmbkc| (1)

In Formula (1), the data block’s ordinal number is m and the ordinal number of the
result of STFT is k. The fundamental frequency of the mth data block is denoted as f 1(m)
and can be expressed using the peak extraction method.
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Typically, the fundamental frequency of a signal has the strongest energy, with the
energy intensity decreasing as the number of harmonics increases. In real samples, the
energy of the second or third harmonic at certain frequency points may exceed that of
the fundamental frequency signal, resulting in abnormal time-frequency profiles of the
extracted whistle signal. To address this, a judgment condition must be added to the peak
extraction method, which involves obtaining the frequency of e(m) where the maximum
energy occurs in the time-frequency signal, along with the corresponding energy value
e(m)′ at one-half of this frequency. This can be expressed as follows:{

[e(m), index(m)] = max|Xm(K)|
e(m)′ = Xm(index(m)/2)

(2)

In Formula (2), index(m) denotes the sample point value at the frequency correspond-
ing to the maximum energy value e(m) after a Fourier transform, i.e., the sample point
corresponding to the fundamental frequency, and e(m)′ represents the energy value at
index(m)/2.

Furthermore, whether the energy value of e(m) is greater than half of the energy value
at e(m)′ must be determined by a factor of a, and whether the energy value at e(m)′ is
greater than the noise energy must be determined by a factor of b. If both conditions are
simultaneously satisfied, the sampling point corresponding to the fundamental frequency
will be changed to one-half of the frequency. This can be expressed as follows:{

e(m) > ae(m)′

e(m)′ > bN0
(3)

In Formula (3), N0 denotes the energy of the noise, and a and b refer to the coefficients
of the decision.

2.1.2. Fitting

Peak-based extraction of time-frequency contours can result in non-smooth contours
that deviate significantly from the actual time-frequency distribution. Curve fitting is
employed to obtain smooth curves that accurately represent the data obtained from the
method mentioned above while retaining sufficient signal details and smoothness. Thus, a
two-layer fully connected neural network approach is used to accomplish this task. The
fully connected neural network transforms the problem into a regression problem, and the
network structure is depicted in Figure 1.
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Figure 1. Fully connected neural network structure for curve fitting.

2.1.3. Synthesis

The dolphin signal is a frequency-tunable harmonic signal that can be modeled by its
envelope, fundamental frequency, and harmonics. The frequency and amplitude parame-
ters of the whistle signal after STFT are adopted and the sine wave model expressed by the
following formula is used to synthesize the signal.

s[n] =
R

∑
r=1

ar[n] sin(2πφr[n]) (4)
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In Formula (4), R is the harmonic order; ar[n] indicates the amplitude of the nth point
at the rth harmonic; and φr[n] is the phase of the nth point at the rth harmonic.

Therefore, the amplitude and phase of each harmonic in each sampling point of the
signal must be clarified to synthesize the whistle signal. First, the amplitude ar[n] and
phase φr[m] of the nth data block at the rth harmonic of the signal are calculated. Then, the
amplitude ar[n] and phase φr[n] of each sampling point are obtained by interpolation.

1. Energy amplitude conversion: The formula for electrical signal power is E = Um
2

R × t,
where E, Um, R, t denote energy, maximum voltage, resistance, and time, respectively.
Generally, it is considered that the resistivity of the signal circuit is very small, about
1 ohm. Thus, the formula can be written as E = U2

2 × t, where U is the effective
voltage. Therefore, U =

√
2E/t. To improve the signal-to-noise ratio, this paper uses√

2 to amplify the signal. Assuming that the signal is stable within the D data range,
it can be understood from Formula (4) that the energy of the mth data block of the rth
harmonic is er[m], so that each data sampling point becomes ar[mD] = 2

√
er[m]/D.

To obtain the value of each sampling point of the data block, the interpolation method
is used to figure out the amplitude values of the remaining sample points ar[n].

2. Transient frequency phase conversion: The transient frequency represents the rota-
tional speed of the complex plane vector argument, defined as the derivative of the
phase. Hence, the estimate of the phase at each sample point becomes the integral
of the transient frequency, that is, φ[n] = ∑n

i=1 f [i]. As the D points are smooth, it is
possible to use one of these points to represent the entire set of D points and achieve
downsampling. After downsampling, the STFT is performed with a W point window,
and the result is also smooth. Thus, within a certain window in the frequency domain,
a single point can be used to represent the frequency of the whole window. Therefore,
fr [m] = f [mDW], φr[m] is used as the sample point and the interpolation method is
used to obtain the remaining phase values of φr[n] for the reconstruction of φr [n] = φ
[nD]. As shown in Figure 2, the phases from the fundamental to the fifth harmonic are
shown following the order from the bottom to the top.
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Based on the above model, the measured data are reconstructed and the results are
shown in Figure 3.



J. Mar. Sci. Eng. 2023, 11, 1086 6 of 18

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

Based on the above model, the measured data are reconstructed and the results are 

shown in Figure 3. 

  
(a) (b) 

Figure 3. STFT spectrogram for dolphin signal: (a) synthesized signal; (b) original signal. 

2.2. Data Augmentation Scheme 

The frequencies of whistle signals of different individual dolphins are not the same, 

and there may also be large differences in the communication frequencies between the 

different populations. However, the time-frequency contours of the whistle signals of ge-

ographically adjacent dolphin populations are similar, and the sampled small sample data 

usually have only a small number of dolphins’ signals, so the whistle signals of different 

dolphin signals can be simulated using frequency shifts. The different dolphin signals can 

be divided into multiple signals according to the time-frequency contours, and two types 

of signals are mainly explored here to achieve the generation of dolphin signals, so differ-

ent weights are used for the weighting of the same type of signals. The average can effec-

tively pull in the distance of different dolphin signals. 

1. Frequency shift: Since more attention is hereby paid to the waveform of the signal in 

signal generation, the frequency of the original signal is shifted up and down as a 

whole to expand the data of the signal. This method can improve the robustness of 

subsequent tasks to frequency changes in different signals, and can be expressed as 

follows: 

( ) ( )
= 

a a
f t f t m   (5) 

In Formula (5), fa′(t) represents the new signal, fa(t) denotes the original signal, and m 

is the base of the offset. 

2. Signal scaling: In the case of the inclusion of dolphin calls, there may be a Doppler 

shift, so signal spreading can be used for the simulation of this situation. In addition, 

this method can improve the feature extraction capability of the subsequent tasks 

[23], and the signal stretching can be expressed as follows: 

( ) ( )


=
a a

f t f t   (6) 

In Formula (6), fa′(t) represents the new signal, βfa(t) refers to the original signal, and 

β is the scaling factor. 

In the specific implementation, after normalizing the above two signals to a fixed 

length, their waveforms are the same. Thus, a small part of the signal at the beginning and 

end of the signal is cut out, and the signal is then normalized to the same length. 

3. Weighted average: In a data-limited scenario, the data distribution may not be com-

plete, and the data elements of the same type of data may be far apart, which will 

cause trouble for subsequent tasks. Therefore, the weighted average of the signals 

between the same type of signals can be achieved [24]. Obtaining a new signal biased 

Figure 3. STFT spectrogram for dolphin signal: (a) synthesized signal; (b) original signal.

2.2. Data Augmentation Scheme

The frequencies of whistle signals of different individual dolphins are not the same,
and there may also be large differences in the communication frequencies between the
different populations. However, the time-frequency contours of the whistle signals of
geographically adjacent dolphin populations are similar, and the sampled small sample
data usually have only a small number of dolphins’ signals, so the whistle signals of
different dolphin signals can be simulated using frequency shifts. The different dolphin
signals can be divided into multiple signals according to the time-frequency contours, and
two types of signals are mainly explored here to achieve the generation of dolphin signals,
so different weights are used for the weighting of the same type of signals. The average
can effectively pull in the distance of different dolphin signals.

1. Frequency shift: Since more attention is hereby paid to the waveform of the signal
in signal generation, the frequency of the original signal is shifted up and down as
a whole to expand the data of the signal. This method can improve the robustness
of subsequent tasks to frequency changes in different signals, and can be expressed
as follows:

fa′(t) = fa(t)±m (5)

In Formula (5), fa ′ (t) represents the new signal, fa(t) denotes the original signal, and m
is the base of the offset.

2. Signal scaling: In the case of the inclusion of dolphin calls, there may be a Doppler
shift, so signal spreading can be used for the simulation of this situation. In addition,
this method can improve the feature extraction capability of the subsequent tasks [23],
and the signal stretching can be expressed as follows:

fa′(t) = β fa(t) (6)

In Formula (6), fa ′ (t) represents the new signal, βfa(t) refers to the original signal, and
β is the scaling factor.
In the specific implementation, after normalizing the above two signals to a fixed
length, their waveforms are the same. Thus, a small part of the signal at the beginning
and end of the signal is cut out, and the signal is then normalized to the same length.

3. Weighted average: In a data-limited scenario, the data distribution may not be com-
plete, and the data elements of the same type of data may be far apart, which will
cause trouble for subsequent tasks. Therefore, the weighted average of the signals
between the same type of signals can be achieved [24]. Obtaining a new signal biased
towards one of the signals also results in an average signal of the two signals. The
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method of weighted average makes the distribution of similar signals more uniform,
and this method can be expressed as follows:

f (t) = µ fa(t) + (1− µ) fb(t) (7)

In Formula (7), f (t) represents the new signal, fa(t) fb(t) denotes the same category in
the original signal, and µ refers to the weight.

Figure 4 shows the results of frequency shifting, stretching, mixing, and the original
signal on the same signal when the above three methods are used for data augmentation.
For the same type of waveform, the basic waveform has not changed.
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2.3. Proposed Method

MAE-GAN, as shown in Figure 5, mainly includes an autoencoder and a GAN. The
encoder structure mainly improves the network generation effect and enhances the com-
patibility of UUVs and other equipment. GAN transforms a random noise into a hidden
representation learned by an autoencoder. In the training phase, the autoencoder reduces
the loss of reconstructed data and original data, whereas the generator reduces the loss of
real hidden representation and generated data, and the discriminator reduces the loss of
generated data and real data.
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For the GANs, the quality of generated data is more emphasized. Thus, for the
combined network of the Autoencoder and GAN [25], improving the ability of the decoder
or generator can effectively improve the quality of the generated data. It is easier to improve
the ability of the decoder to handle limited data. Considering the finite computing resources
and real-time requirements in UUVs and other equipment, the proposed method is different
from most of the time-series data generation methods. Using Recurrent Neural Network
(RNN) as an autoencoder, the proposed method, MAE-GAN, is based on convolution [26].

MAE-GAN uses the autoencoder and CWGAN-GP for joint training. The autoencoder
uses the encoder to obtain the latent codes of the original data and the decoder to reconstruct
the original signal. Specifically, the classical autoencoder structure of the input to latent
codes can be expressed as follows:

l = f (x) (8)

In Formula (8), x and l denote input and latent codes, and f represents the function
mapping relationship from the input to the latent codes.

In denoising autoencoder, this process can be described as l = f (n(x)), with n denot-
ing noise addition, and the hidden layer to the output layer can be written as follows:

x̂ = g(l) (9)

In Formula (9), x̂ denotes the output and g refers to the function mapping relationship
from the latent codes to the output.

The goal of the optimization algorithm is to minimize the distance between the input
and the output, which can be expressed as follows:

MinimizeLoss = dist(x, x̂) (10)

According to the principle of the autoencoder, it can be used for dimensionality
reduction. On this basis, the denoising autoencoder can enhance the robustness of the
data to noise and improve the stability of the implicit representation. It is attractive to
use the latent representation for downstream tasks in computationally resource-sensitive
devices. However, in the case of sparse samples, although both autoencoders and denoising
autoencoders can perform the implicit representation of the data, overfitting or underfitting
can easily occur. In addition, the generated implicit representation may differ from the
original number of data categories, which adds new variables to the downstream task.

Herein, MAE is adopted to eliminate the influence of the above problems. Masks
are used to randomly cover a part of the input data so that the encoder can only receive
part of the original signal, and the decoder uses the complete original signal (MAE is
an asymmetric self-encoder from this perspective) so that a more challenging task can
be constructed to express the complete signal from the incomplete signal. In this case,
compared to the above AE expression, the process of inputting MAE to latent codes can be
expressed as follows:

lm = mask( f (n(x))) (11)

In Formula (11), mask denotes the process of adding masks. In this way, the process
from latent codes to the output can be expressed as follows:

x̂ = g(lm) (12)

The rest is the same as other autoencoders, and this overall structure is shown in Figure 6.
MAE has been recently introduced by Kaiming He [27] on the framework of Trans-

former [28] and Vision Transformer (VIT) [29], and it also presented good results in other
small sample size fields [30]. However, due to the performance considerations of UUV and
other equipment, the calculation complexity and model size of the transformer model is
costly. Therefore, MAE is a simulation of this architecture using a convolutional neural
network. At the same time, He’s MAE deals with image problems, in which transform-
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ing two-dimensional data to one-dimensional data requires the introduction of position
coding. Nevertheless, a convolution-based MAE structure for one-dimensional data is
hereby proposed, which naturally has position information, so there is no need to add
positional encoding.
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In the data augmentation scheme, there is also the practice of discarding part of the
data [31]. The present experiments have found that this method can also improve the effect
of final data generation with the classic autoencoder structure, but it is still difficult to
explain whether the improvement comes from the improvement of the feature extraction
ability of the autoencoder or the improvement of the reconstruction ability. Based on the
results of this paper, an autoencoder with a more powerful reconstruction capability is
more effective.

From an implementation perspective, the structure of the autoencoder in the MAE
is shown in Figure 7. First, the original signal is unified to the length (1824) by using
the interpolation method. Then, the unified signal is divided into several (16) patches,
and a small CNN is used by each patch of the original signal for feature extraction. For
the unexposed data, the features of this part are directly replaced by 0, and then, those
of these parts are spliced to obtain the implicit representation of the overall data. To be
specific, let the input be s and divide the input into n equal parts, which can be expressed
as Formula (13)

s = [s1, s2, . . . , sn] (13)

The corresponding input to the function of the latent codes can be expressed as
Formula (14):

f = [ f1, f2, . . . , fn] (14)

The generated mask (m) consists of a vector of length n with a definite proportion of 0
and 1, and then the latent codes of MAE can be expressed as follows:

lm = [m1 f1(s1), m2 f2(s2), . . . , mn fn(sn)] (15)
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Afterward, the masked hidden variables are input into the decoder to restore the
original complete input signal. Through this process, on the one hand, the decoder will
learn global features from the missing latent coeds, thus avoiding the possible overfitting
phenomenon of AE for small sample data and improving the recovery ability of the decoder,
while on the other, the fusion of different features can be realized by randomly replacing
the data of a specific signal with features from different signals. New signal data can be
generated after passing through the decoder.

The hidden vector of the trained MAE is used as the learning goal of GAN. Considering
the potential fusion of the previously mentioned features, CWGAN-GP is used in this
paper. Hidden vectors are generated by using random noise, and a discriminator is used
to discriminate against the hidden vectors generated by the generator. In this process, the
inference of the mapping from the normal distribution noise to the distribution of latent
vectors is implemented.

3. Data and Implementation
3.1. Dataset

The vocal sound signals of bottlenose dolphins can be divided into three main cate-
gories, i.e., click echolocation signals, whistle communications signals, and emergency burst
signals. Dolphins are capable of precise individual communication in extremely complex
environments with various noise disturbances. The signal is represented as a Frequency
Modulated (FM) signal presenting certain time-frequency characteristics. According to
the time-frequency contours, it can be subdivided into six categories, including the fixed
frequency signal, the up-sweep frequency signal, the down-sweep frequency signal, the
concave signal, the convex signal, and the sinusoidal signal.

The total number of signals in the dataset of this paper is 279, of which 13 are from the
Woods Hole Oceanographic Institution database [32]. These signals include two categories,
i.e., convex signal and up-sweep frequency signal. The sampling frequency of the signal is
81.9 kHz, and the effective frequency range of the signal is 3–40 kHz. In this paper, the fifth
harmonic is taken into account, which can be regarded as a multiple of the fundamental
frequency, so each data set is constructed by six rows, with one indicating the frequency
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and the other five representing the amplitude. In this case, the size of the original data set
is (279, 6, 1824).

3.2. Implementation Detail

In data augmentation, the frequency range of the time-frequency contour of the data is
normalized from 0 to 40 k to 0–1. In the data expansion stage, the frequency offset operation
is performed for the same segment of signals with parameters −0.02, −0.010, 0.010, and
0.02., respectively, whereas signal aliasing is performed for signals with parameters 0.015,
0.03125, and 0.0625, respectively. Signal aliasing with weights of 0.25, 0.5, and 0.75 is used
for two signals of the same class.

The initial parameters of MAE-GAN included a batch size of 1824 and an epoch of
3000. Adam is selected as the optimizer for MAE. The learning rate is ε, the exponential
decay rate for moment estimates is β1 and β2, and the values of ε, β1, and β2, are set as
1 × 10−4, 0.5, and 0.9, respectively. For CWGAN-GP, using RMSPROP as the optimizer, the
learning rate is 1 × 10−4, and the hyper-parameter λ equals 10. The generator is updated
once after the discriminator has been updated 5 times.

PyTorch 1.10.0 and Python 3.9 are applied for the training and evaluation of the
proposed MAE-GAN. All experiments are based on a Windows 10 PC equipped with an
Intel Core i5-10400 CPU, an Nvidia GeForce GTX 1070ti GPU, and 16 G RAM. The Nvidia
CUDA version and cuDNN version are 11.7 and 8.2.1, respectively.

The construction of the dataset is implemented on the MATLAB R2022a platform, and
the data extension work as well as the construction and operation of the generated model
are based on the Python environment.

The implementation details of MAE-GAN are shown in Table 1.

Table 1. MAE-GAN internal details.

Model
1D CNN Layer §

Normalization Activation
Layer Convolution

Method
Input

Channels
Output

Channels
Kernel

Size Stride Padding

Encoder
Block *

1 Conv1d 6 32 8 1 0 LayerNorm

LeakyReLu †2 Conv1d 32 64 8 1 0 LayerNorm
3 Conv1d 64 128 8 2 0 LayerNorm
4 Conv1d 128 64 5 1 0 LayerNorm

Decoder

1 ConvTranspose1d 64 512 8 2 0 LayerNorm LeakyReLu
2 ConvTranspose1d 512 1024 8 2 0 LayerNorm LeakyReLu
3 ConvTranspose1d 1024 512 8 2 0 LayerNorm LeakyReLu
4 ConvTranspose1d 512 6 8 2 0 LayerNorm LeakyReLu
5 Linear 602 512 - - - - LeakyReLu
6 Linear 512 256 - - - - LeakyReLu
7 Linear 256 512 - - - - Sigmoid

CWGAN-GP-
generator

1 ConvTranspose1d 100 512 4 1 0 LayerNorm ReLu
2 ConvTranspose1d 512 256 4 2 1 LayerNorm ReLu
3 ConvTranspose1d 256 128 4 2 1 LayerNorm ReLu
4 ConvTranspose1d 128 64 4 2 1 LayerNorm ReLu
5 Conv1d 64 64 4 2 1 LayerNorm Tanh

CWGAN-GP-
Discriminator

1 Conv1d 64 64 4 1 1 LayerNorm LeakyReLu
2 Conv1d 64 128 4 2 1 LayerNorm LeakyReLu
3 Conv1d 128 256 4 2 1 LayerNorm LeakyReLu
4 Conv1d 256 512 4 2 1 LayerNorm LeakyReLu
5 Conv1d 512 1 3 1 0 - -

* In MAE-GAN, the encoder consists of several encoder blocks; † the parameter α of LeakyReLu is 0.2; § for Linear
layer, the Input Channels and Output Channels represent the in features and the out features, respectively.

4. Experiments and Analysis
4.1. Evaluation Metrics

Herein, raw data, t-SNE graph [33], discriminative score [34], and space and time
complexity are used as evaluation metrics.
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Among these metrics, the raw data plot, instead of hearing, is used to observe the
difference between the generated whistle time-frequency profile and the original whistle
signal profile. The effect of signal generation can be observed from the difference in
images. The t-SNE plots show the low-dimensional distribution of the generated and the
original data; the closer they are to each other in terms of distribution, the better the effect
will be. The discriminative score is an evaluation metric for the generated data obtained
through supervised learning by using a fully connected network. The network is trained
to label the two classes of real signals in the used dataset, followed by the creation of a
classification model. The generated data are then subjected to a classification task, and the
classification error rate of the discriminant is used to evaluate the quality of the generated
data. Mathematically, the discriminant score can be expressed as follows:

DS = Nwrong/Nall (16)

In Formula (16), Nwrong denotes the total number of misclassifications and Nall repre-
sents the number of all signals.

The space and time complexity mainly considers the performance requirements of the
algorithm operations. For the discriminative score and the space and time complexity, the
lower the value, the better the generated effect.

4.2. Evaluation Results

Herein, the Time-GAN [34] network [35] is used as the baseline model for comparison.
The evaluation results of the comparative experiments are as follows. To visualize the
features of the time-frequency profile, only the fundamental frequency profile is shown.

4.2.1. Raw Data

The whistle signal of dolphins has a high variability, the fundamental wave of its
spectrogram can roughly reflect the characteristics of the signal, and the signals of different
whistle signal spectrograms are not the same. However, in general, the fundamental
frequency waveform of the whistle signal can be divided into several fixed categories.
Figure 8 shows the waveforms of the two types of real signals. The waveform of the actual
signal is indicated by the red line, and the waveform of the generated data is indicated by
the blue and green lines. Comparing the two generated data, the generated data waveform
of the proposed method is closer to that of the real signal. Although the baseline network is
capable of extracting the outline of the waveform effectively, it tends to exhibit fluctuations
in waveform details and experience feature fusion. For example, the waveform on the
left illustrates fluctuations at its peak, which is common in the signal type on the right.
Therefore, the proposed method was found to perform better in generating the whistle
signals of the dolphin.
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4.2.2. t-SNE

To evaluate the similarity between generated and real data, t-SNE, an embedding
model that can map data in a high-dimensional space to a low-dimensional space and
preserve the local characteristics of the dataset, is hereby used to plot visualization example
graphs of data point distributions mapped to two dimensions. t-SNE can be regarded as one
of the most effective data dimensionality reduction and visualization methods. After the
transformation, the data are not separable in the case of no separability in low-dimensional
space, which could be attributed to either the dataset being inherently inseparable or the
data within the dataset being unsuitable for projection into a low-dimensional space, and
vice versa. Therefore, to verify the authenticity of the generated data, the application
of t-SNE will contribute significantly. Based on its properties, the generated outcome is
considered better when the distribution of the generated data closely or coincidentally
matches that of the original data.

In Figure 9, the blue data represent the real data, whereas the orange represents the
generated data. Subfigure (a) shows the data generated using the baseline model for the
used dataset, and Subfigure (b) presents the data generated using MAE-GAN. It can be
seen that the data generated using the proposed method perform better than those of the
baseline model. In Subfigure (a), although the generated data partially fit the real data,
there is a partial distance between the generated model and the true data distribution. In
Subfigure (b), although MAE-GAN still has some offset, the overall generation mode has
been dramatically improved compared with the baseline model.
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4.2.3. Discriminative Score

In the discrimination process, it is not convincing enough to use only naked-eye
observation. To this end, a discriminative neural network based on supervised learning is
adopted to analyze the authenticity of the generated data. First, the dataset is constructed
for the discriminant network using an equal amount of generated and real data, and
the label “true” is assigned to the real data and “false” to the generated data. Then, a
discriminant network is built. Herein, a three-layer fully connected neural network is used
to classify the data. After 1000 epoch iterations, the target discriminant neural network
converges. Finally, the error rate of the generated data test set is used as the evaluation
index; therefore, the lower the discriminative score, the better the quality of the generated
model. Table 2 shows the scores of the baseline model and MAE-GAN with the best results
in bold, where the total generated data used is 15,000.
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Table 2. Discriminative scores of Time-GAN and MAE-GAN generated data.

Method Discriminative Score

Baseline model 0.362

MAE-GAN 0.074

It can be observed from Table 2 that MAE-GAN exhibits the lowest error rate. The
relatively high error rate of the benchmark algorithm is attributed to the substantial dis-
crepancy between the waveform profile of the fundamental wave generated by the baseline
algorithm and the actual data.

4.2.4. Space and Time Complexity

To verify whether the proposed method can be adapted to real-time operation in low-
energy and low-computing devices, this paper compares the parameters and calculations
of MAE-GAN, Time-GAN, and deep WAVEGAN to generate the same data. Among these
models, it can be concluded from Table 3, where the best results are shown in bold, that the
Time-GAN network has the least number of parameters, but it requires a large amount of
calculation. The deep WAVEGAN model demonstrates highly satisfactory results, but it has
the most parameters and calculation resources, and its high calculation cost is unaffordable
for UUVs. Additionally, the proposed MAE-GAN has fewer parameters and requires
the least computing resources, i.e., 24% more parameters are required but only 30.2% of
computation recourse is required.

Table 3. Comparison of time complexity and space complexity of different models.

Method Param (M) MFLOPs

MAE-GAN 1.65 68.5
Baseline model 1.24 226.7

Deep WAVEGAN 3.73 86,951.3

In practical implementation, the energy consumption of computing resources signifi-
cantly surpasses that of memory, making the proposed method particularly well-suited for
real-time operation in UUVs.

4.3. Ablation Experiment

The experiments in this paper use a new data enhancement scheme and a masked
autoencoder. The following ablation experiment is designed to demonstrate the effective-
ness of the simultaneous operation of these two modules. Based on the above experiments,
three experiments have been added, including experiments using MAE but not data en-
hancement scheme; experiments using data enhancement scheme alone without MAE; and
experiments that do not use either MAE or data enhancement scheme. When MAE is not
used, a denoising autoencoder is used instead for comparison.

Figure 10 shows the raw data and t-SNE graphs of using only MAE without the data
enhancement scheme; without using MAE but only the data enhancement scheme; and
without both MAE and the data enhancement scheme. Figure 11 shows corresponding
t-SNE plots, and Table 4 presents the corresponding discriminative scores.

The experimental results show that both the data augmentation scheme and MAE
can improve the generated effect, but the practical improvement of a single scheme is
relatively limited.

The discrimination scores corresponding to the above ablation experiments are shown
in Table 3. The fusion of the two methods together brings a significant improvement, with
an increase of 13.6%, compared to the best mono-method. Meanwhile, the effect of using
MAE only is 8% higher than that without data augmentation and MAE, which can be
attributed to the fact that although MAE possesses good feature extraction capabilities,
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it still relies on a certain amount of data for support, which can be supplemented by the
data enrichment approach. The reason for the severe degradation of generation quality
when data augmentation methods are not used is that MAE is limited by the operating
environment and can only use smaller convolutional kernels and depths, making it difficult
to achieve better feature extraction capabilities. Meanwhile, the excessive data differences
within the few-shot dataset, such as contour feature differences, worsen the above problem.
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Table 4. Discriminative scores of Ablation experiment results.

Method Discriminative Score

Data augmentation without MAE 0.21
MAE without data augmentation 0.84

Without data augmentation and MAE 0.92

5. Conclusions

Herein, a novel approach for the real-time generation of dolphin whistle signals is
proposed by using a data augmentation scheme and a convolution-based MAE-GAN
network. The experimental results indicate that the proposed method can enhance the
quality of dolphin signal generation under small sample conditions, and their combined
application is more effective than that of either method alone. The proposed approach
generates realistic dolphin whistle signals, as evidenced by the original data waveforms
and t-SNE plots, and the discriminative scores proposed are upgraded by 28.8%, which
confirms the good quality of the generated signals. To reduce computational resources, a
CNN structure instead of the RNN structure used in the baseline model is hereby employed.
The proposed method requires only 30.2% of the computing resources of the comparison
network and enhances the expression capability of the decoder of autoencoder by using a
masking mechanism. These two modifications significantly reduce the time complexity of
the algorithm, making it suitable for devices with limited computational resources.

In conclusion, the proposed MAE-GAN network demonstrates outstanding perfor-
mance in terms of both generation accuracy and efficient utilization of computational
resources. However, the purity of the generated signal based on the sinusoidal model may
require further research on the reconstruction method of the whistle signal. Furthermore,
the application of a discard strategy to the mask may result in insufficient recovery of the
self-encoder, causing occasional unavailability during the generation process.

Author Contributions: Conceptualization, Q.H., H.W. and Z.W.; methodology, X.W., H.W. and Y.H.;
software, X.W., H.W., X.H. and C.H.; validation, H.W.; formal analysis, Q.H., X.W. and C.H.; investi-
gation, H.W., X.H. and Y.H.; resources, Q.H.; data curation, H.W.; writing—original draft preparation,
H.W.; writing—review and editing, Q.H., X.W. and H.W.; visualization, H.W.; supervision, Q.H. and
X.W.; project administration, Q.H.; funding acquisition, Q.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is funded by the Major Program of the National Natural Science Founda-
tion of China under Grant No. 61890961, the General Program of the National Natural Science
Foundation of China under Grant No. 61971412, the Basic Research Project of China under Grant
No. JCKY2020110C074, and the Rapid Support Fund Project of China under Grant No. 61404150405.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, C.; Jiang, J.; Wang, X.; Sun, Z.; Li, Z.; Fu, X.; Duan, F. Bionic Covert Underwater Communication Focusing on the Overlapping

of Whistles and Clicks Generated by Different Cetacean Individuals. Appl. Acoust. 2021, 183, 108279. [CrossRef]
2. Jiang, J.; Sun, Z.; Duan, F.; Fu, X.; Wang, X.; Li, C.; Liu, W.; Gan, L. Synthesis and Modification of Cetacean Tonal Sounds for

Underwater Bionic Covert Detection and Communication. IEEE Access 2020, 8, 119980–119994. [CrossRef]
3. Gregorietti, M.; Papale, E.; Ceraulo, M.; de Vita, C.; Pace, D.S.; Tranchida, G.; Mazzola, S.; Buscaino, G. Acoustic Presence of

Dolphins through Whistles Detection in Mediterranean Shallow Waters. J. Mar. Sci. Eng. 2021, 9, 78. [CrossRef]
4. Kipnis, D.; Diamant, R. Graph-Based Clustering of Dolphin Whistles. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29,

2216–2227. [CrossRef]

https://doi.org/10.1016/j.apacoust.2021.108279
https://doi.org/10.1109/ACCESS.2020.3004282
https://doi.org/10.3390/jmse9010078
https://doi.org/10.1109/TASLP.2021.3091813


J. Mar. Sci. Eng. 2023, 11, 1086 17 of 18

5. Li, P.; Liu, X.; Palmer, K.J.; Fleishman, E.; Gillespie, D.; Nosal, E.-M.; Shiu, Y.; Klinck, H.; Cholewiak, D.; Helble, T.; et al. Learning
Deep Models from Synthetic Data for Extracting Dolphin Whistle Contours. In Proceedings of the 2020 International Joint
Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–10.

6. Lin, C.-F.; Chung, Y.-C.; Zhu, J.-D.; Chang, S.-H.; Wen, C.-C.; Parinov, I.A.; Shevtsov, S.N. The Energy Based Characteristics of
Sperm Whale Clicks Using the Hilbert Huang Transform Analysis Method. J. Acoust. Soc. Am. 2017, 142, 504. [CrossRef]

7. Yan, S.; Zhou, X.; Hu, J.; Hanly, S.V. Low Probability of Detection Communication: Opportunities and Challenges. IEEE Wirel.
Commun. 2019, 26, 19–25. [CrossRef]

8. van der Merwe, J.R.; du Plessis, W.P.; Maasdorp, F.D.V.; Cilliers, J.E. Introduction of Low Probability of Recognition to Radar
System Classification. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016;
pp. 1–5.

9. Stove, A.G.; Hume, A.L.; Baker, C.J. Low Probability of Intercept Radar Strategies. IEE Proc. Radar Sonar Navig. 2004, 151, 249–260.
[CrossRef]

10. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies from Data. arXiv 2019,
arXiv:1805.09501.

11. Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical Automated Data Augmentation with a Reduced Search Space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA,
14–19 June 2020; pp. 702–703.

12. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

13. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. arXiv 2018, arXiv:1710.09412.
14. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable

Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019.

15. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

16. Li, Y.; Zhang, R.; Lu, J.; Shechtman, E. Few-Shot Image Generation with Elastic Weight Consolidation. arXiv 2020, arXiv:2012.02780.
17. Li, K.; Zhang, Y.; Li, K.; Fu, Y. Adversarial Feature Hallucination Networks for Few-Shot Learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13470–13479.
18. Subedi, B.; Sathishkumar, V.E.; Maheshwari, V.; Kumar, M.S.; Jayagopal, P.; Allayear, S.M. Feature Learning-Based Generative

Adversarial Network Data Augmentation for Class-Based Few-Shot Learning. Math. Probl. Eng. 2022, 2022, e9710667. [CrossRef]
19. Xiao, J.; Li, L.; Wang, C.; Zha, Z.-J.; Huang, Q. Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2022;
pp. 11204–11213.

20. Sinha, A.; Song, J.; Meng, C.; Ermon, S. D2C: Diffusion-Decoding Models for Few-Shot Conditional Generation. In Proceedings of
the Advances in Neural Information Processing Systems, Virtual, 6–14 December 2021; Curran Associates, Inc.: Cambridge, MA,
USA, 2021; Volume 34, pp. 12533–12548.

21. Hazra, D.; Byun, Y.-C. SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation. Biology 2020,
9, 441. [CrossRef]

22. Zhang, L.; Huang, H.-N.; Yin, L.; Li, B.-Q.; Wu, D.; Liu, H.-R.; Li, X.-F.; Xie, Y.-L. Dolphin Vocal Sound Generation via Deep
WaveGAN. J. Electron. Sci. Technol. 2022, 20, 100171. [CrossRef]

23. Varghese, T.; Ophir, J. Enhancement of Echo-Signal Correlation in Elastography Using Temporal Stretching. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 1997, 44, 173–180. [CrossRef]

24. Forestier, G.; Petitjean, F.; Dau, H.A.; Webb, G.I.; Keogh, E. Generating Synthetic Time Series to Augment Sparse Datasets. In
Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017;
pp. 865–870.

25. Lu, J.; Yi, S. Autoencoding Conditional GAN for Portfolio Allocation Diversification. AEF 2022, 9, 55. [CrossRef]
26. Zhang, Q.; Lin, J.; Song, H.; Sheng, G. Fault Identification Based on PD Ultrasonic Signal Using RNN, DNN and CNN. In

Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–6.
27. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 16000–16009.

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates, Inc.: Cambridge, MA, USA, 2017; Volume 30.

29. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.

30. Mao, J.; Zhou, H.; Yin, X.; Xu, Y.C.B.N.R. Masked Autoencoders Are Effective Solution to Transformer Data-Hungry. arXiv 2023,
arXiv:2212.05677.

https://doi.org/10.1121/1.4996106
https://doi.org/10.1109/MWC.001.1900057
https://doi.org/10.1049/ip-rsn:20041056
https://doi.org/10.1145/3422622
https://doi.org/10.1155/2022/9710667
https://doi.org/10.3390/biology9120441
https://doi.org/10.1016/j.jnlest.2022.100171
https://doi.org/10.1109/58.585213
https://doi.org/10.11114/aef.v9i3.5610


J. Mar. Sci. Eng. 2023, 11, 1086 18 of 18

31. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. Proc. AAAI Conf. Artif. Intell. 2020, 34,
13001–13008. [CrossRef]

32. Sayigh, L.; Daher, M.A.; Allen, J.; Gordon, H.; Joyce, K.; Stuhlmann, C.; Tyack, P. The Watkins Marine Mammal Sound Database:
An Online, Freely Accessible Resource. Proc. Mtgs. Acoust. 2016, 27, 040013. [CrossRef]

33. Arora, S.; Hu, W.; Kothari, P.K. An Analysis of the T-SNE Algorithm for Data Visualization. In Proceedings of the Conference On
Learning Theory, PMLR, Stockholm, Sweden, 6–9 July 2018; pp. 1455–1462.

34. Pei, H.; Ren, K.; Yang, Y.; Liu, C.; Qin, T.; Li, D. Towards Generating Real-World Time Series Data. In Proceedings of the 2021
IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 7–10 December 2021.

35. Yoon, J.; Jarrett, D.; van der Schaar, M. Time-Series Generative Adversarial Networks. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Cambridge, MA, USA,
2019; Volume 32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1121/2.0000358

	Introduction 
	Theory and Method 
	Dolphin Whistle Signal Modeling and Synthesis 
	Peak Detection 
	Fitting 
	Synthesis 

	Data Augmentation Scheme 
	Proposed Method 

	Data and Implementation 
	Dataset 
	Implementation Detail 

	Experiments and Analysis 
	Evaluation Metrics 
	Evaluation Results 
	Raw Data 
	t-SNE 
	Discriminative Score 
	Space and Time Complexity 

	Ablation Experiment 

	Conclusions 
	References

