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Abstract: The laboratory miniature vane shear test (MVST) has been widely used to measure the
undrained shear strength of marine sediments in offshore engineering. However, the transfer of
the soil sample in tube samplers from the seabed to the laboratory releases the in situ confining
stress acting on the soil and will decrease the soil strength. In this research, in order to investigate
the effects of confining stress on the undrained shear strength of marine sediments, the Coupled
Eulerian-Lagrangian (CEL) approach in ABAQUS is used to model the three-dimensional standard
and miniature vane shear tests to estimate the undrained shear strength of sensitive clay with different
sensitivities under various stress conditions. Based on the numerical simulation results, a linear
strength model that not only considers confining stress effects but also can eliminate the size effects
caused by vane blades of MVST is proposed. The proposed model can be used to estimate the
undrained shear strength of the sensitive clay under shallow seabed surfaces.

Keywords: miniature vane shear test; CEL; undrained shear strength; confining stress; size effect

1. Introduction

Estimating the geotechnical properties of marine sediments is crucial for marine
resource exploration [1–4]. The sensitive clay is a type of marine sediment and is typically
composed of very fine-grained particles, such as clay and silt. These properties lead to
sensitive clay having unique characteristics, including high sensitivity, high compressibility,
and low shear strength; therefore, the estimation of the mechanical properties of sensitive
clay is a challenging task in ocean engineering [5,6].

The vane shear test (VST) is a common method for measuring the undrained shear
strength of clay in geotechnical engineering applications, such as pile capacity and slope
stability [7–11]. With the expansion of offshore oil exploration in the past few decades, the
VST has been widely applied in offshore engineering to measure the strength of marine
sediments [12–17]. However, due to the lateral instability of the drill pipe, the VST cannot
accurately estimate the shear strength of the marine sediments on seabed surfaces that are
often encountered at shallow penetrations [18]. Especially for sensitive clay, the destruction
of the clay structure will directly lead to a large deviation in the measurement results.

To solve this problem, the laboratory miniature vane shear test (MVST) has been
proposed and used to measure the strength of the sensitive clay obtained from the shallow
seabed. The procedure of the MVST involves inserting a vane into the soil sample and
then rotating it at a constant rate. The shear strength of the soil can then be calculated
based on the measured torque and the dimensions of the vane [19]. Hernandez et al. [20]
used a fully automatic laboratory miniature vane shear device to measure the undrained
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shear strength of clay in different states. Zumsteg et al. [21] used the MVST to measure
the undrained shear strength of different mixtures of kaolinite conditioned by foam and
polymers. Arulrajah et al. [22] performed a broad range of geotechnical laboratory tests
including MVSTs to evaluate the mechanical properties of the wastewater biosolids. This
existing research shows that the MVST is an ideal tool to investigate the undrained shear
strength of various types of soils.

It should be noted that the transfer of the soil sample in tube samplers from the seabed
to the laboratory releases the in situ confining stress acting on the soils and will increase
the soil void ratio and decrease the soil strength. However, the effects of such confining
stress on the undrained shear strength are not considered by the existing MVST studies.

The use of the Coupled Eulerian–Lagrangian (CEL) approach has proven to be a
valuable tool in studying the MVST for the measurement of sensitive clay. This method
has been widely employed by researchers to investigate the MVST and the properties of
sensitive clay. Ansari et al. [23] used the CEL to simulate the complete process of the MVST.
Park et al. [24] developed a miniature vane shear test model to analyze the shear strength of
sensitive soil samples with different water contents. Dey et al. [25] used the CEL to explore
the properties of sensitive clay in submarine layers and proposed the numerical model
parameters for the sensitive clay. These studies collectively demonstrate the effectiveness
of the CEL method in analyzing MVSTs and simulating the properties of sensitive clay.

In this research, a three-dimensional numerical model established by the CEL ap-
proach in ABAQUS is used to conduct numerical vane shear tests. Based on the numerical
simulation results, we propose a prediction model that considers the confining stress effects
and can be used to estimate the undrained shear strength of sensitive clay located beneath
shallow seabed surfaces.

2. CEL Modeling in ABAQUS

Numerical simulations of this research were based on the CEL approach in ABAQUS.
The CEL approach combines the advantages of both the Eulerian and Lagrangian methods
to simulate large deformation problems with a high computational efficiency. The large
deformation of soil during the vane shear test can cause the distortion of the mesh, which
may affect the accuracy of simulation results. To overcome this challenge, Eulerian analysis
is used to calculate the large deformation of the soil sample during the vane shear test,
while the Lagrangian analysis is employed to simulate the vane shear device. This approach
effectively avoids the mesh distortion and ensures the stability of the simulation calculation
results. The coupled Eulerian–Lagrangian interface treatment has been demonstrated as
well suited to solve geotechnical problems involving large deformations, such as the pile
penetration process [26] and static cone penetration tests [27].

2.1. Mesh Algorithm

The Lagrangian analysis employs a discretized numerical solution approach, which
entails linking the material properties within the Lagrangian components to the mesh of
the numerical model. As the solution process progresses, the material flow causes the mesh
to undergo deformation and movement. It is important to note that although the elements
undergo deformation, the mass remains constant. The governing equation for Lagrangian
analysis is shown as Equation (1) [28].

∂ρ
∂t = 0
∂(ρv)

∂t = ∇ · σ + ρb

}
(1)

where ρ is the density, t is the time, v is the velocity, σ is the stress, and b is the body force.
In the Eulerian analysis, the mesh is fixed and the material flows between the elements.

The volume of fluid approach is used to monitor interfaces among materials in the multi-
material mesh. When materials flow into the mesh, the Eulerian Volume Fraction (EVF) of
each material is calculated. The value of the EVF is 1 as the element is filled with materials,
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and 0 as no material exists. If the sum of all the material volume fractions in an element is
less than 1, the rest of the element is automatically packed with the “void” material, which
has neither strength nor mass.

In initial calculation, the Eulerian analysis uses the EVF to describe the initial state
and position of the material. In the process of numerical simulation, there can be various
substances in the Eulerian element, and the material mesh is transmitted to a fixed spatial
mesh as a state variable of the Eulerian element. The governing equation of Eulerian
analysis is given as Equation (2):

∂ρ
∂t +∇ · (ρv) = 0
∂(ρv)

∂t +∇ · (ρv⊗ v) = ∇ · σ + ρb

}
(2)

where ρ is the density, t is the time, v is the velocity, σ is the stress, and b is the body force.
The constitutive models with strain-softening generally suffer the pathological mesh

dependency of the numerical results during the development of the strain localization.
However, numerical simulations of this research were based on the CEL framework. In the
CEL analysis, the soil material can flow through the fixed Eulerian meshes, which means
even if the soil strain in the vane shear test is very large, there will be no mesh-distortion
issues [29].

2.2. The Eulerian Volume Fraction Methods

The Eulerian Volume Fraction (EVF) method is an analysis method that involves per-
forming a Boolean comparison operation between the Eulerian object and the Lagrangian
reference object, which intersects with the Eulerian object. The result is a scalar dispersion
field that corresponds to the proportion of materials in the Eulerian elements. The Boolean
comparison operation identifies the overlapping region between two independent objects
and determines the volume fraction of each element in the Eulerian objects based on its
percentage in the corresponding reference object. This dispersion field labels the region
occupied by the Eulerian material in the model.

There are two methods for obtaining the discrete fields in the CEL approach, calculat-
ing the volume fraction of the external and internal regions of the Lagrangian reference
object. The purpose of calculating the volume fraction of the external region is to create a
corresponding material distribution characteristic based on the Lagrangian reference object.
While the other method is to create material distribution characteristics in the Eulerian
region excluding the Lagrangian part.

2.3. Eulerian–Lagrangian Coupling Interface Treatment

In Lagrangian analysis, the physical quantities including the coordinates, velocity,
force, and mass are defined at the nodes of the elements, while the stress, strain, and density
are defined at the center of the elements. In Eulerian analysis, these variables are all located
at the center of the elements. The Eulerian formulation allows for the transportation of free
surfaces and material interfaces on the fixed mesh, but a numerical calculation is required
to track the free surface and control numerical dissipation. The coupling algorithm does
not require a common node or common surface for the calculation between the Lagrangian
and Eulerian mesh. Instead, the coupling surface is used for the interaction between the
Lagrangian analysis and the Eulerian analysis. The coupling surface of the Lagrangian
element is fixed on the mesh and receives pressure loads from the Eulerian materials from
the coupling surface. The coupling surface of the Eulerian element changes in the fixed
Eulerian mesh, and the finite volume method is used at each time step to obtain the position
of the coupling boundary [30]. The coupling boundary bears the geometric constraints
imposed by the Lagrangian element on the coupling surface. The transfer of the motion
and pressure information between the Lagrangian mesh and the Eulerian mesh on the
coupling surface satisfies the coordination conditions of the interface, which improves the
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accuracy of the coupling calculation between the Eulerian and Lagrangian objects. The
coupling effect is shown in Figure 1.
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Figure 1. The Eulerian–Lagrangian coupling interface treatment.

3. CEL Modeling of Vane Shear Test

The numerical simulations of this research were based on the CEL approach in
ABAQUS. The CEL approach combines the advantages of both the Eulerian and Lagrangian
methods to simulate large deformation problems with a high computational efficiency.

3.1. The Mesh and Geometry of the Model

The numerical model comprises two parts, the soil and the vane shear device, as
shown in Figure 2. The soil is represented as the Eulerian material with eight-node linear
bricks with EC3D8R elements. The vane shear device is modeled as the Lagrangian body
using S4 elements, which are fully integrated finite–membrane–strain shell elements.
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Figure 2. The numerical model of the vane shear test: (a) the VST model; (b) the vane shear device.

The VST model consists of four rectangular vanes and a soil domain as shown in
Figure 2a. The soil domain is 150 mm × 100 mm × 100 mm. An additional 20 mm of
empty space is added above the soil section to allow for the soil movement. We defined
the soil domain size according to the ASTM standard [19] for the vane shear test to ensure
the numerical results are not affected by the boundary effect. The height, diameter, and
thickness of the vane shear device are 24, 12, and 1 mm, respectively, as shown in Figure 2b.
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3.2. The Strain-Softening Behavior of Sensitivity Clay

Sensitive clay is widely distributed in the ocean. One of the most significant character-
istics of sensitive clay is its strain-softening phenomenon. This phenomenon refers to when
the sensitive clay reaches a critical state at which its ability to resist further deformation
decreases sharply, leading to a rapid increase in the strain and a significant reduction in
shear strength.

In this research, Scandinavian sensitive clay [31] was used in the numerical model. The
linear strain-softening model of the sensitive clay is shown in Figure 3. su represents the
undrained shear strength of the soil at the strain of γ, where sup is the peak undrained shear
strength before softening, and suR is the residual undrained shear strength. The pre-peak
behavior is elastic until su reaches sup and the strain γ reaches the elastic strain γe; this
linear elastic section is specified by Young’s modulus. Afterward, su continues to decline
with the increase in strain before flattening out at the plastic strain of γ

p
uR. Table 1 shows

the physical and mechanical parameters of the Scandinavian sensitive clay employed in
this research. The unit weight, peak shear strength, residual shear strength, and plastic
strain are obtained from the experimental data tested by Gylland et al. [31], and Young’s
modulus and Poisson’s ratio are obtained from the numerical simulation data conducted
by Kundu et al. [32].
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Table 1. Input parameters for the numerical simulations.

Parameters Values

Young’s modulus, E (kPa) 300.0
Poisson’s ratio, v 0.5

Unit weight, g (kN/m3) 19.0
Peak shear strength, sup (kPa) 30.0

Residual shear strength, suR (kPa) 6.0
Plastic strain, γ

p
uR 0.6

3.3. The Boundary Conditions

Figure 4 presents the boundary conditions of the soil domain and the vane shear
device. Velocities of the elements on the soil domain’s bottom were kept zero in all degrees
of freedom (i.e., vx = vy = vz = 0) and the vertical side surfaces were fixed in a horizontal
displacement and free in a vertical displacement (i.e., vx = vy = 0), as shown in Figure 4a.
At the center of the vane shear device, a reference point was selected and a rotation speed
of 20◦/s was applied [19], as shown in Figure 4b.
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4. The Numerical Results of the Vane Shear Tests
4.1. Torque of the Vane Shear Test

Figure 5 presents the change of torque values and plastic strain with the increase in
the rotation of the vane. It is shown that at the rotation of 5◦ (Point A), the soil behavior
is elastic with no plastic shear strain. Then, as the torque reaches the peak value at the
rotation angle of 10◦ (Point B), the failure occurs from the tips of the blades. During the
strain-softening behavior after the torque peak, the plastic strain concentration occurs
surrounding the tips and forms a squared-ring shape at the rotation of 15◦ (Point C), and
then the plastic shear strain increases and expands further along the circle (Point D). When
the rotation angle exceeds 90◦ (Point E), the failure spreads circumferentially, forming a full
failure plane with a rounded square shape; such a phenomenon was also captured from
the experiment tests by Gylland et al. [31].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

  

(a) (b) 

Figure 4. Boundary conditions: (a) the soil domain; (b) the vane shear device. 

4. The Numerical Results of the Vane Shear Tests 

4.1. Torque of the Vane Shear Test 

Figure 5 presents the change of torque values and plastic strain with the increase in 

the rotation of the vane. It is shown that at the rotation of 5° (Point A), the soil behavior is 

elastic with no plastic shear strain. Then, as the torque reaches the peak value at the rota-

tion angle of 10° (Point B), the failure occurs from the tips of the blades. During the strain-

softening behavior after the torque peak, the plastic strain concentration occurs surround-

ing the tips and forms a squared-ring shape at the rotation of 15° (Point C), and then the 

plastic shear strain increases and expands further along the circle (Point D). When the 

rotation angle exceeds 90° (Point E), the failure spreads circumferentially, forming a full 

failure plane with a rounded square shape; such a phenomenon was also captured from 

the experiment tests by Gylland et al. [31]. 

 

Figure 5. Changes in the torque values and plastic strain with various rotation conditions. 

To test the reliability of the numerical model in Figure 5, we compared the torque 

generated from the numerical model with the torque obtained from the experimental data 

tested by Gylland et al. [31], as shown in Figure 6. Comparisons results show that the 

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

T
o

rq
u

e 
(N

.m
)

Rotation (°)

A

B

E

C

D

7.0×10-1

3.5×10-1

3.3×10-1

3.0×10-1

2.8×10-1

2.6×10-1

2.4×10-1

1.9×10-1

1.7×10-1

1.4×10-1

1.2×10-1

9.8×10-2

7.5×10-2

0.0

Figure 5. Changes in the torque values and plastic strain with various rotation conditions.

To test the reliability of the numerical model in Figure 5, we compared the torque
generated from the numerical model with the torque obtained from the experimental data
tested by Gylland et al. [31], as shown in Figure 6. Comparisons results show that the
values of torque obtained from the numerical model agree well with the results obtained
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from the experimental tests. The peak torque obtained from the numerical model is 10.21
N·m, which is close to the experimental test with 10.42 N·m.
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Figure 7 shows the shear stress of the soil during the VST. As the vane rotates, the
shear stress gradually increases until the soil reaches its maximum shear strength at the
rotation of 10◦, as shown in Figure 7c. After that, the shear stress acting on the soil decreases
to residual strength, as shown in Figure 7f.
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4.2. The Undrained Shear Strength of the Clay

The undrained shear strength of the clay can be estimated from the measured torque
value obtained from the vane shear tests, as shown in Equation (3) [19].

su =
6T

7πD3 (3)

where Su is the undrained shear strength of the soil sample, T is the measured torque, and
D is the diameter of the vane.
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The torque obtained directly from the vane shear test was converted into the undrained
shear strength, yielding the mobilized undrained shear strength of the sensitive clay during
the vane shear test. The calculated peak undrained shear strength is 32.37 kPa, and the
residual strength is 7.25 kPa.

4.3. The Shear Band of the Clay

The propagation of the shear zone in sensitive clay is one of the critical factors for
modeling various types of failure, such as the progressive failure of embankments and
submarine landslides [33].

The shear zone can be divided into three regions: the residual shear zone, the softening
zone, and the non-plastic zone according to the values of equivalent plastic shear strain
(PEEQVAVG) of each element in the numerical model [26]. PEEQVAVG can be calculated
from the plastic strain γp of each element, as shown in Equation (4).

PEEQVAVG =
γp
√

3
(4)

When the undrained shear strength su reaches the peak during the vane shear test, the
value of the PEEQVAVG is assumed to be equal to 0. When the value of su is up to su95,
which is defined as the undrained shear strength reduced by 95% of (sup-suR), the value
of the PEEQVAVG = 0.35. When the PEEQVAVG falls within the range of 0–0.35, the soil
has reached peak shear strength but has not yet reached residual strength, with a strength
reduction of less than 95%, which indicates that the soil is in the softening stage.

In the numerical model, when the region has a PEEQVAVG ≥ 0.35, the region accu-
mulates a large amount of plastic strain and is defined as the “residual shear zone “; when
the region is 0 < PEEQVAVG < 0.35, the region is defined as the “softening zone “; the rest
region is defined as the “non-plastic zone”. The values of the PEEQVAVG of numerical
models under various rotation conditions during the vane shear tests are used to calculate
the types of shear zone, and the results are presented in Table 2 and plotted in Figure 8.

Table 2. Three types of shear zone under various rotation conditions.

Rotation (◦) Residual Shear Zone (%) Softening Zone (%) Non-Plastic Zone (%)

5 0.0 0.0 100.0
10 0.0 12.3 87.7
15 0.0 66.1 33.9
25 10.5 75.1 14.3
90 84.6 15.3 0.0
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It is found that when the vane rotates to 10◦, 12.3% of the soil in the shear zone
transforms from the non-plastic state to the softening state. When the rotation angle
increases to 15◦, the proportion of softening zone reaches up to 66.1%. When the blades
rotate to 25◦, 10.5% of the soil in softening zone becomes completely damaged and turns
into a residual stage. When the vane rotation reaches 90◦, the proportion of the softening
zone reduces to 15.3% and the residual shear zone increased to 84.6%.

5. Comparison Results of the Miniature and Standard Vane Shear Tests

It should be noted that the miniature vane size (H = 24 mm and D = 12 mm) presented
in Figure 1 is 5.5 times smaller than that of the standard vane dimension (H = 130 mm
and D = 65 mm). The larger vanes generate higher levels of torque on the soil, which
could lead to an increase in soil disturbance and potential inaccuracies in measurement
results. Therefore, in this research, we investigated the relations of undrained shear strength
estimated from the miniature and standard vane shear tests, as shown in Figure 9.
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Figure 9. Comparison of the undrained shear strength obtained from the standard and miniature
vane shear tests.

It can be seen that the strength measured by the MVST is higher than that measured
by the standard vane shear test. The peak and residual undrained shear strength measured
by the MVST are 32.38 kPa and 7.25 kPa, respectively, which are increased by 7.04% and
6.62% compared with 30.25 kPa and 6.80 kPa measured by the standard vane shear test.

The sensitivity St, which is defined as the ratio of the undisturbed and remolded
strengths of sensitive clay, is an important index for characterizing the mechanical behavior
of sensitive clay [34]. We carried out numerical simulations of the vane shear test for
sensitive clay with various sensitivities. Figure 10 presents the comparison results of the
undrained shear strength of the soils with an St from 1 to 7. It presents that, regardless of
the sensitivity of the clay, the undrained shear strength measured by the miniature vane
shear tests is slightly above the value measured by the standard vane shear tests.

Figure 11 shows that the peak and residual undrained shear strength of the sensitive
clay obtained from the miniature vane shear tests are about 1.07 times that of the standard
vane shear tests. sum and sus are the undrained shear strength measured by the MVST and
standard VST, respectively.
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Figure 10. Comparison results of the undrained shear strength of soil samples with various St:
(a) St = 1; (b) St =3; (c) St =5; (d) St =7.
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6. Miniature Vane Shear Test under Confining Stress Conditions

The process of transferring soil samples from tube samplers on the seabed to the
laboratory can release the in situ confining stress acting on the soil, which can increase the
soil void ratio and decrease the soil strength. Therefore, it is necessary to investigate the



J. Mar. Sci. Eng. 2023, 11, 1094 11 of 14

influence of the confining stress on the undrained shear strength measured with the MVST.
The static earth pressure σ0 can be used to represent the confining stress acting on the soil
under various depths and can be calculated from Equation (5).

σ0 = K0γz (5)

where K0 is the coefficient of static earth pressure, γ is the unit weight of the soil sample,
and z is the depth.

For sensitive clay, the values of K0 always fall within the range of 0.5–1.5, with 0.5
often serving for K0 in the case of Norwegian sensitive clays [35]. In this research, confining
stresses are applied to the soil sample during the numerical MVST to represent the in
situ confining stress state of soils under shallow seabed surfaces. Figure 12 presents the
undrained shear strength of soil samples under different confining stress conditions. The
values of confining stress are 2 kPa, 3 kPa, and 5 kPa, representing the soil samples taken
from the seabed under the depths of 24 cm, 36 cm, and 60 cm, respectively. It is shown that
the undrained shear strength increases with the increase in confining stress. The values of
peak strength are 32.37 kPa, 32.93 kPa, 33.79 kPa, and 34.66 kPa, and the residual strengths
were 7.25 kPa, 7.44 kPa, 7.58 kPa, and 7.78 kPa when the soil samples were under the
confining stress state of 0, 2 kPa, 3 kPa, and 5 kPa, respectively.
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Figure 12. The undrained shear strength of the soil samples under various confining stress conditions.

Figure 13 presents the normalized undrained peak shear strength and residual strength.
s’u and su0 are the undrained shear strength of soils obtained from soil samples under
certain confining stress and no confining stress states, respectively.
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It is found that both the undrained peak and residual strength of the soil sample
exhibit a linear increase with an increase in confining stress. A linear curve fitting method
can be used to quantify the effects of confining stress on the undrained shear strength of
sensitive clay, as shown in Equation (6).

s′u = (0.015σ3 + 1)su0 (6)

where s’u is the undrained shear strength of the soil under certain confining stress, σ3 is
the confining stress, and su0 is the undrained shear strength of the soil sample under no
confining stress.

As the results presented in Figure 10 show, the peak and residual undrained shear
strengths of the soil samples obtained from the MVST are about 1.07 times that of the
standard vane shear test. Therefore, a correction factor µ = 1.07 is suggested to adjust
Equation (6) to eliminate the size effect caused by blades, and the modified equation is
shown in Equation (7).

s′u = (0.014σ3 + 0.93)su0 (7)

Equation (7) can not only reflect the effect of confining stress on the undrained shear
strength of the soil samples obtained from the MVST but also can eliminate the size effect
caused by the vane blades of MVSTs. Therefore, it can be used to estimate the undrained
shear strength of the sensitive clay under shallow seabed surfaces.

7. Conclusions

In this research, three-dimensional vane shear test (VST) models were constructed
using the Coupled Eulerian–Lagrangian (CEL) approach in ABAQUS to investigate the
vane blade size effects and confining stress effects on the undrained shear strength of
sensitive clay. The main conclusions are as follows:

1. The numerical simulations show that the failure of the soil sample initiates from the
tips of the blades and propagates circumferentially. With the increase in rotation angle,
the plastic shear strain extends surrounding the tips and forms a squared-ring shape.
At the rotation of 90◦, a complete failure plane of a rounded square shape is formed,
which is consistent with the experiment results.

2. The undrained shear strength of the soil samples obtained from the miniature vane
shear test (MVST) is 1.07 times that of the standard VST. Therefore, a correction factor
µ = 1.07 is suggested to adjust the undrained shear strength values estimated from
the MVST for engineering applications.

3. Both undrained peak and residual shear strength of the soil samples exhibit a linear
increase with the increase in confining stress. Therefore, a linear prediction model
that can reflect the confining stress effects on the undrained shear strength of the
soil samples obtained from the MVST was proposed. It can be used to estimate the
undrained shear strength of the sensitive clay under shallow seabed surfaces.

The finding of this research is based on the numerical simulation, which is open for
further improvements as the miniature vane shear test apparatus considering confinement
conditions is available.
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