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Abstract: Outliers of ship trajectory from the Automatic Identification System (AIS) onboard a ship
will affect the accuracy of maritime situation awareness, especially for a regular ship trajectory mixed
with a spoofing ship, which has an unauthorized Maritime Mobile Service Identification code (MMSI)
owned by a regular ship. As has been referred to in the literature, the trajectory of these spoofing
ships would simply be removed, and more AIS data would be lost. The pre-processing of AIS data
should aim to retain more information, which is more helpful in maritime situation awareness for
the Maritime Safety Administration (MSA). Through trajectory feature mining, it has been found
that there are obvious differences between the trajectory of a regular ship and that of a regular ship
mixed with a spoofing ship, such as in terms of speed and distance between adjacent trajectory points.
However, there can be a long update time interval in the results of severe missing trajectories of a
ship, bringing challenges in terms of the identification of spoofing ships. In order to accurately divide
the regular ship trajectory and spoofing ship trajectory, combined with trajectory segmentation by
the update time interval threshold, the isolation forest was adopted in this work to train the labeled
trajectory point of a regular ship mixed with a spoofing ship. The experimental results show that the
average accuracy of the identification of spoofing ships using isolation forest is 88.4%, 91%, 93.1%,
and 93.3%, corresponding to different trajectory segmentation by update time intervals (5 h, 10 h, 15 h,
and 20 h). The research conducted in this study can almost eliminate the outliers of ship trajectory,
and it also provides help for maritime situation awareness for the MSA.

Keywords: automatic identification system; spoofing ship; missing points; jumping points; trajectory
segmentation; isolation forest

1. Introduction

On 1 June 2020, the special rectification of national maritime communication order for
radio equipment on board ship began, such as AIS, very-high-frequency communication
(VHF), and so on. The China MSA at all levels have concentrated on the monitoring of
maritime communication order and improving the ability of maritime communication
supervision and maritime service support in China. The special rectification focuses on
the rectification of outstanding problems, such as irregularly authorized ship MMSI, one
MMSI owned by several ships, several MMSI owned by one ship, the illegal occupation of
channels, and the violation of communication order.

Among the violations of maritime communication order mentioned above, the irreg-
ular use of AIS may have a significant impact on the quality of AIS data [1]. The quality
of AIS data is a subject of interest for many researchers [2–5], but published research on
pre-processing raw data to improve quality is limited. Shelmerdine took the development
of a vessel database as the key to managing AIS data and for quality control [6]. All fields
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were checked for obvious outliers. If it was not possible to correct an outlier, it was removed.
The common method to filter inaccurate single position points is the threshold of position,
speed, and course [7]. To solve the problem of sharing MMSI numbers, a method of elim-
ination was applied by Pallotta et al. [8]. Mazzarella et al. proposed a nearest-neighbor
approach to assign AIS messages to the right tracks, but there was no detailed experimental
method, performance, or results [9]. Wu et al. created a simple algorithm to calculate the
likelihood of an association between an AIS message and each candidate vessel [10]. It is
used for processing massive data on a global scale, but it cannot be applied in a small region
where AIS messages are sampled at a high rate. The reason is that the algorithm is unable
to handle an association in the case where there are at least three consecutive abnormal
trajectory points. A similar method with speed threshold was proposed by Greidanus
et al. [11]. Given that none of these techniques are universally applicable, it is necessary to
propose a method with general applicability.

Wei et al. observed an abnormal ‘jumping point’ in ship trajectory by calculating the
speed between adjacent ship trajectory points and setting the speed threshold according
to ship maneuvering characteristics, which meant that abnormal trajectory points were
identified [12]. Since the constant velocity threshold method does not consider the change in
the motion state of a moving ship at different times, it can only detect some abnormal points
whose velocity exceeds the specified threshold, and the robustness of this method is poor.
Han et al. proposed a novel trajectory outlier detection algorithm based on the adaptive
threshold, designing a local threshold window and mean filter window, and calculated the
local speed (acceleration) threshold and global speed (acceleration) threshold, and found
three classes of abnormal trajectory points, including isolated outliers, continuous outliers,
and obvious outliers [13]. Zhang et al. calculated the bow deflection rate between adjacent
trajectory points by counting the speed distribution of ship trajectory points, setting the
speed threshold of trajectory points according to the probability of the speed distribution
of adjacent trajectory points, setting the threshold of the bow deflection rate according to
the characteristics of ship cycle, and identified abnormal trajectory points [14]. Liu et al.
converted ship speed, heading, and position from AIS data into evidence reliability and
used evidence reasoning rule synthesis to detect three classes of trajectory points, referring
to the manual identification method of abnormal AIS data adopted by the MSA [15,16].
Chen et al. and Guo et al. cleaned ship AIS data in these three rules: abnormal ship position
(the longitude and latitude of ship are beyond the scope of study area), abnormal speed
(the difference between adjacent trajectory points exceeds speed threshold), and abnormal
rate of turning (the course difference between adjacent trajectory segments exceeds rate
of turning threshold) [17–20]. Data derived from AIS plays a key role in water traffic
data mining. However, there are various errors regarding time and space. To improve
availability, AIS data quality dimensions are presented by Zhao et al. to detect errors of
AIS tracks, including physical integrity, spatial logical integrity, and time accuracy [21–23].
After systematic summary and analysis, algorithms for error pre-processing are proposed.
In the aspect of abnormal AIS data identification, combined with the characteristics of
adjacent trajectory points in a period of time, an abnormal AIS data identification model
based on BP neural network was constructed by Wang et al. [24].

Zhang et al. designed an MMSI spoofing detection algorithm based on the spatiotem-
poral data provided by AIS and radar. When a ship is monitored by AIS and radar before
and after MMSI spoofing, both monitoring processes continue for a period of time, meaning
the MMSI spoofing algorithm demonstrates a good performance [25]. Iphar et al. propose a
rule-based method for data integrity assessment, with rules built from the system technical
specifications and by domain experts, formalized by a logic-based framework, resulting in
the triggering of situation-specific alerts [26–28]. Jeong et al. provided an automatic ship-
ping route construction method using functional data analysis (FDA), and the proposed
approach includes two steps: outlier detection and shipping route construction [29]. Huang
et al. proposed a new method for detecting anomalous vessel dynamics using functional
data analysis. Empirical investigations of this approach demonstrate the effective detection
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of outlier flows in terms of ship traffic volume [30]. In summary, researchers regard outliers
in trajectory points as random error values and delete them in order to clean the trajectory.
However, these outliers may be the trajectory point of another ship, that is, the trajectory of
a spoofing ship sharing the same MMSI with other regular ship. Moreover, due to a large
number of missing trajectories, the speed between adjacent trajectory points cannot be used
as a basis for distinguishing the trajectory points of a spoofing ship and regular ship.

In this paper, we aim to propose a novel spoofing ship identification framework with
the support of trajectory segmentation. Our main contributions can be summarized as
follows: (1) We mined the trajectory feature of a regular ship and spoofing ship and obtained
the correlation between the time interval and distance and average sailing speed between
the adjacent trajectory points for a regular ship and spoofing ship. (2) We segmented ship
trajectory by considering the ratio of missing trajectory points and distribution of the time
interval between adjacent trajectory points, and obtained the trajectory segment with a
low missing points ratio. (3) Considering the low ratio of jumping trajectory points in the
data sample and the higher identification efficiency of isolation forest, we adopted isolation
forest to identify a spoofing ship and testified the proposed framework performance on
20 regular ship mixed with spoofing ship trajectories. We aim for this study to be able to
help the MSA identify spoofing ship trajectories and thus take early warning measurements
to enhance maritime traffic efficiency and safety. The remainder of this paper is organized
as follows. We introduce the data source used in our study in Section 2. After that,
the methodology details about trajectory feature mining of the AIS data are illustrated
in Section 3, and then isolation forest used for identifying spoofing ships is presented,
combined with trajectory segmentation. The experimental results are shown in Section 4.
Section 5 briefly discusses the study and illustrates future work.

2. Data

Shanghai Meili Shipbuilding Technology Co., Ltd. (Shanghai, China) provides large-
scale AIS data, which benefit many AIS-relevant studies due to their public accessibility
(https://www.hifleet.com/, accessed on 1 June 2023). The hifleet has online access to
over 50 AIS satellites and over 3000 AIS base stations, receiving 150 million AIS data per
day, as well as purchase Lloyd’s ship archives and access global electronic chart data and
ocean meteorological data. The original AIS dataset includes both kinematic and static
information for a ship, which contains the MMSI, latitude, longitude, speed over ground
(SOG), heading, course over ground (COG), timestamp, call sign, port of call, and so on.

When collecting records of the port of call for container ships, it was found that some
ships continuously call at ports that are far apart within a short time interval. It was found
that there were jumping points in the trajectories of these ships when selecting the real-time
trajectories of these container ships within the corresponding statistical time. Due to the
presence of jumping points in these trajectories, the trajectories of these container ships also
exhibit jumping characteristics, rather than showing continuity like those of regular ships.
Consequently, we collected the AIS data of container ships which have trajectory jumping
points and labeled them with different colors for different ships. We collected 20 container
ships and 52,538 AIS data samples from 1 January 2017 to 31 December 2017 (see Figure 1),
and the average time interval for sampling the AIS data was 1 h.

https://www.hifleet.com/
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Figure 1. Raw AIS data of regular container ships mixed with spoofing ships.

3. Methodology

We were affected by the limited coverage of AIS base stations, limited AIS communi-
cation capacity, and the illegal use of unauthorized ship-borne AIS, such as a ship leaving
the coverage area of AIS base stations, the quantity of ships exceeding AIS communication
capacity, the deliberate closure of ship-borne AIS, the use of the same MMSI for multiple
ships or the use of multiple MMSI for one ship, resulting in large quantities of missing or
jumping trajectories. To address this issue, we firstly implemented trajectory characteris-
tics mining and trajectory segmentation to obtain the distribution of speed and distance
between adjacent trajectory points and then identified spoofing ships using isolated forest.
The schematic overview for the proposed framework is shown in Figure 2. In order to
accurately describe the ship motion pattern, ship trajectory is defined as follows:

S = {{S1}, {S2}, . . . , {Si}, . . . , {Sm}} (1)

Si =
{

s1
i , s2

i , . . . , sk
i , . . . , sn

i

}
(2)

sk
i = (mk

i , tk, λk
i , φk

i , vk
i , ck

i ) (3)

In Equation (1), {Si} represents the trajectory of ship i. In Equation (2), sk
i represents

the trajectory point of ship i at time tk. In Equation (3), mk
i represents the MMSI of ship

i, tk represents the update time of AIS data, λk
i and φk

i represents the ship longitude and
latitude at time tk, vk

i represents ship speed at time tk, and ck
i represents ship course at time

tk.

3.1. Trajectory Feature Mining

According to the trajectory point distribution for missing and jumping ship trajec-
tory, ship trajectory points are divided into four categories: regular ship trajectory points
(Normal_Point, abbreviated as N_P), spoofing ship trajectory points (Spoofing_Point, ab-
breviated as S_P), and confusion points (No Labeled_Point, abbreviated as NL_P).

In order to accurately detect spoofing ship trajectory points, the distance between ad-
jacent trajectory points and average sailing speed are two important parameters. Generally
speaking, average sailing speed between adjacent trajectory points is consistent with the
ship maneuvering performance for regular ship. Taking the cargo ship as an example, the
speed of this ship would not exceed 50 knots. Therefore, two adjacent trajectory points
whose average sailing speed exceeds the speed threshold must not belong to the same ship;
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accordingly, the trajectory points of regular ships mixed with a spoofing ship can be effec-
tively identified. The average speed between adjacent trajectory points is closely related
to the update time interval of trajectory points, as well as the distance between adjacent
trajectory points. The distance between adjacent trajectory points could be calculated by
spherical distance (namely, Great Circle distance), as calculated in Equation (4), and speed
vavg

k, k+1
i between adjacent trajectory points was calculated, as in Equation (5):

dk,k+1
i = a cos

(
sin(φk+1

i ) ∗ sin(φk
i ) + cos(φk+1

i ) ∗ cos(φk
i ) ∗ cos(λk+1

i − λk
i )
)

(4)

vavg
k,k+1
i =

dk,k+1
i

t(k+1) − tk
=

dk,k+1
i
∆t

(5)

In Equation (5), ∆t represents the update time interval of the trajectory points. If the
update time interval of the trajectory point is not affected by the working performance of
the AIS base station and traffic density, and is only related to ship speed, the trajectory point
would update more frequently. At this time, the distance between adjacent trajectory points
and the speed of navigation have good discrimination between regular ship trajectory
and regular ship trajectory mixed with spoofing ship. The average sailing speed between
regular ship trajectories is within the speed threshold, as shown in Equation (6), while the
average sailing speed among a regular ship trajectory mixed with a spoofing ship is beyond
the speed threshold, as shown in Equation (7).

∆t < ∆t(th), dk,k+1
i < dth ∧ vavg

k,k+1
i < vavg(th(min)) (6)

∆t < ∆t(th), dk,k+1
i ≥ dth ∧ vavg

k,k+1
i ≥ vavg(th(max)) (7)
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In Equation (6), ∆t(th) represents the threshold of the update time interval between
adjacent trajectory points. vavg(th(min)) represents the threshold of minimum speed between
adjacent trajectory points, that is, the normal navigation speed between adjacent trajectory
points belonging to the same ship, abbreviated as vth(min). dth represents the threshold of
minimum distance between adjacent trajectory points, corresponding to vth(min).

In Equation (7), vavg(th(max)) represents the threshold of maximum speed between
adjacent trajectory points, which is much larger than the normal navigation speed between
the adjacent trajectory points of a regular ship, abbreviated as vth(max).

When the continuity of ship trajectories is good, that is, the time interval between
trajectory points is short, there is a clear distinction between the distance and average
sailing speed between regular ship trajectory points compared to the regular ships mixed
with spoofing ships. However, due to the ship trajectory being missing, the time interval
between ship trajectory points becomes longer, and the average sailing speed between
them will be confused, making it difficult to identify spoofing ships. Therefore, trajectory
segmentation is very necessary as it can convert a poorly continuous ship trajectory into
several well continuous trajectory segments, which helps to identify the trajectory points of
spoofing ships.

3.2. Trajectory Segmentation

For missing ship trajectory, re-emerged regular ship trajectory points may be identified
as the trajectory points of a spoofing ship because the distance exceeds the corresponding
threshold. At the same time, the re-emerged trajectory points of a spoofing ship may be
misjudged as regular ship trajectory points due to the speed between adjacent trajectory
points being within a corresponding speed threshold, as shown in Equation (8).

According to Section 3.1 of the paper, with the increase in the time interval between
adjacent trajectory points, the average sailing speed between regular ship trajectory points
remains unchanged, but the distance between trajectory points will gradually increase.
However, the distance between adjacent trajectory points for the regular ship mixed with
spoofing ship remains unchanged, but the average sailing speed between adjacent trajectory
points will gradually decrease. Therefore, through trajectory feature mining in Section 3.1, it
can be observed that when the time interval between adjacent trajectory points increases to
a certain value, the distance between regular ship trajectory points is close to that between
regular ship trajectory points mixed with spoofing ships, or the average sailing speed
between regular ship trajectory points mixed with spoofing ships is close to that between
regular ship trajectory points. Consequently, this time interval can be used as the threshold
for trajectory segmentation.

Moreover, the time interval threshold for trajectory segmentation varies due to the
distance between the trajectory points of the spoofing ship and the regular ship trajectory
points. For spoofing ship trajectory points that are close to regular ship trajectory points, or
overlapped with regular ship trajectory, when the time interval between adjacent trajectory
points is small, trajectory features for this class of a regular ship mixed with a spoofing
ship would be similar to regular ships. Therefore, it is necessary to set a small time interval
threshold for trajectory segmentation. For spoofing ship trajectory points that are far away
from regular ship trajectory points, these two ship trajectories will not overlap. Only when
the time interval between adjacent trajectory points is large will the regular ship trajectory
characteristics mixed with a spoofing ship be similar to regular ships. Therefore, a larger
time interval threshold can be set for trajectory segmentation.

In order to avoid error identification for missing ship trajectory points, ship trajectory
could be segmented according to the threshold of the update time interval, as shown in
Equations (9)–(12).

∆t ≥ ∆t(th), dk,k+1
i ≥ dth ∧ vavg

k,k+1
i < vavg(th(min)) (8)
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Si =
{

TR1
i , TR2

i , . . . , TRj
i , TRk

i , . . . , TRm
i

}
(9)

TRj
i =

{
sj+1

i , sj+2
i , . . . , sk

i )
∣∣∣tk+1 − tk > ∆tth

}
(10)

TRk
i =

{
sk+1

i , sk+2
i , . . . , sk+m

i

∣∣∣tk+(m+1) − tk+m > ∆tth

}
(11)

f lag(sk+1
i ) =

{
NN_P, ∆t1 ≥ ∆t(th) ∧ f lag(sk

i ) = N_P
NN_P, ∆t2 ≥ ∆t(th) ∧ f lag(sk

i ) = S_P
(12)

In Equations (9)–(11), TRj
i and TRk

i represent the trajectory segmented by the corre-
sponding time interval threshold. In Equation (12), sk

i represents the trajectory point of
ship i at time tk, and sk+1

i represents the trajectory point of ship i at time t(k+1). f lag(sk
i )

represents the class of trajectory point sk
i , and f lag(sk+1

i ) represents the class of trajectory
point sk+1

i . ∆t1 represents the time difference between the current trajectory point and
latest time trajectory point in N_P. ∆t2 represents the time difference between the current
trajectory point and latest time trajectory point in S_P. NN_P represents a new class of
points derived from the missing ship trajectory, namely the trajectory points of a new
regular ship.

3.3. Identification of Spoofing Ship via Isolation Forest

The trajectory segment characteristics between a regular ship and a regular ship mixed
with a spoofing ship have an obvious difference, and the proportion of the abnormal
trajectory segment is small. In Figure 1, there are only 10 percent of spoofing ship trajectory
points included in the overall AIS data sample. Therefore, the isolation forest is applicable
for spoofing ship identification for the AIS data sample of the paper. Ship trajectory is
divided into a set of trajectory segments composed of adjacent trajectory points. In Equation
(13), TRj

i is a set of trajectory segments composed of the adjacent trajectory points of ship i,
defined as follows:

TRj
i =

{
trj+1,j+2

i , trj+2,j+3
i , . . . , trk−1,k

i

∣∣∣0 ≤ j ≤ k, 1 ≤ k ≤ n
}

(13)

trk−1,k
i = (dk−1,k

i , vavg
k−1,k
i ) (14)

In Equation (13), n is the number of trajectory points of ship i.
A sample with the number of m is selected from the mother sample. A dimension of

the sample is randomly selected, and a segmentation value is also selected. The first isolated
tree is constructed according to the binary tree method. Samples less than the segmentation
value are divided into the left cross tree, and samples greater than the segmentation value
are divided into the right cross tree. Then, the first isolated tree would be constructed
until the number of segmentations reaches h. The average path length of isolated trees is
calculated as in Equation (15):

c(m) = 2 ∗ (ln(m− 1) + 0.5772156649)− 2(m− 1)
m

(15)

In Equation (15), m represents the number of sub-sampling points.
When the path length of sample tr in j isolated tree is set as htr

j , the expected path
length of sample tr in all isolated trees is calculated as in Equation (16):

E(htr
j ) =

p
∑

j=1
htr

j

p
(16)
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In Equation (16), p represents the number of isolated trees, and h represents the
restricted height of isolated trees.

The abnormal score s(tr) of sample tr is the basis for judging whether the sample is an
outlier. The calculation method is as follows:

s(tr) = 2
−E(htr

j )

c(m) (17)

The threshold of the abnormal score of sample tr is set to str(th), and the discriminant
method of the outliers is as follows:

label(tr) =
{

1, s(tr) > s(tr)th
0, s(tr) ≤ s(tr)th

(18)

In Equation (18), label(tr) is the category labeling of ship trajectory segment tr, and
1 means that the ship trajectory segment belongs to an outlier, that is, that the trajectory
segment is composed of two types of ship trajectory points (that is the regular ship trajectory
mixed with that of the spoofing ship). 0 indicates that the ship trajectory segment is
normal, that is, the trajectory segment is composed of only the regular ship trajectory point.
Combined with trajectory segmentation, the outliers of ship trajectory points are identified
as follows:

f lag(sk+1
i ) =


S_P, label(tr) = 1∧ f lag(sk

i ) = N_P
N_P, label(tr) = 0∧ f lag(sk

i ) = N_P
N_P, label(tr) = 1∧ f lag(sk

i ) = S_P
S_P, label(tr) = 0∧ f lag(sk

i ) = S_P

(19)

In Equation (19), if the trajectory segment is labeled as 0, indicating that distance and
speed for the trajectory segment tend to be normal, then the trajectory points at the adjacent
time have the same category and belong to one ship. Conversely, it shows that the distance
and speed for the trajectory segment tend to be abnormal, meaning the trajectory points at
adjacent times belong to two different ships.

4. Experiments

According to the trajectory characteristics of regular ships mixed with spoofing ships,
these characteristics can be divided into the following four categories: 1© the regular
ship trajectory is continuous, while the spoofing ship trajectory points are concentrated;
both ship trajectories are not overlapped (class I spoofing ship); 2© both trajectories are
continuous and not overlapped (class II spoofing ship); 3© the regular ship trajectory is
continuous, while the spoofing ship trajectory is concentrated, and both ship trajectories
are overlapped (class III spoofing ship); and, finally, 4© both trajectories are continuous and
overlapped (class IV spoofing ship), as shown in Figure 3. In Figure 3, there appears to
be a phenomenon of trajectory point jumping due to the trajectory points of a spoofing
ship (labeled with orange dots) mixed in a regular ship trajectory (labeled with blue dots).
In Figure 3a,c, there are only some scattered points of the spoofing ship, and they are
concentrated in certain areas and taken as some isolated outliers. In Figure 3b,d, there
are continuous trajectory points of the spoofing ship, which is obviously the trajectory of
another ship that occupies the same MMSI as a regular ship, namely a spoofing ship.

When navigating at sea, the distance between adjacent trajectory points is almost
linearly related to the update time interval of trajectory points, as shown in Figure 4a, while
the speed between the adjacent trajectory points remains almost unchanged, as shown in
Figure 4b. If there are two classes of ships with the same MMSI at sea, that means that
the trajectory of a regular ship has been mixed with a spoofing ship. The variation in
the trend of average sailing speed and distance between adjacent trajectory points is no
longer consistent with Figure 4a,b, as shown in Figure 4c,d. The distance between adjacent
trajectory points is large and almost does not change with time, while the speed between
trajectory points decreases exponentially with time.
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Figure 4. Distribution of distance and speed between adjacent trajectory points: (a) distance distribu-
tion of regular ship; (b) speed distribution of regular ship; (c) distance distribution of regular ship
mixed with spoofing ships; (d) speed distribution of regular ship mixed with spoofing ships.



J. Mar. Sci. Eng. 2023, 11, 1516 10 of 22

4.1. Distribution of Speed and Distance between Adjacent Trajectory Points

In order to set a reasonable threshold of average sailing speed between adjacent
trajectory points, it is vital to understand the distribution of the average sailing speed.
Through trajectory feature mining, it was found that the average sailing speed among
regular ship trajectory points is normally distributed, and the expected value in Figure 5a
is 12.5 knots. Average sailing speed between different trajectory points conforms to normal
distribution, and expected value in Figure 5b is 2750 knots. Figure 5c shows the probability
distribution diagram of average sailing speed among trajectory points, while Figure 5d
shows the variation in the trend of the cumulative probability of average sailing speed
between trajectory points. Among them, 82.59% of the average sailing speed between
trajectory points is less than 16 knots, which can be used as the average sailing speed
threshold for identifying spoofing ship trajectory points.
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Figure 5. Speed distribution of trajectory segment: (a) speed of trajectory segment for regular ship;
(b) speed of trajectory segment for regular ship mixed with spoofing ship; and (c,d) probability
distribution of speed among trajectory segments for regular ship mixed with spoofing ship.

Through trajectory feature mining, it was found that the distance between regular
ship trajectory points is normally distributed, with the expected value in Figure 6a being
20 nautical miles. The distance between trajectory points mixed with spoofing ships is
normally distributed, and the expected value in Figure 6b is 800 nautical miles. Figure 6c
shows the probability distribution of the distance between adjacent trajectory points, while
Figure 6d shows the variation in the trend of the cumulative probability of the distance
between adjacent trajectory points. Among them, 82.42% of the distance between adjacent
trajectory points is less than 80 nautical miles, which can be used as the threshold of the
distance between adjacent trajectory points for identifying spoofing ship trajectory points.
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Figure 6. Distance distribution of trajectory segment: (a) trajectory segment distance among reg-
ular ship; (b) trajectory segment distance among regular ship mixed with spoofing ship; and
(c,d) probability distribution of trajectory segment distance among regular ship mixed with spoofing ship.

With regard to time interval between adjacent trajectory points, it is found that time
interval of regular trajectory points is normally distributed through statistical learning, and
the expected value is 1.5 h. However, the time interval between some adjacent trajectory
points is relatively large, but the ratio of these trajectory segments is relatively small. As the
time interval between trajectory points increases, the proportion of the trajectory segment
gradually decreases. The distribution pattern of the time intervals between adjacent
trajectory points is shown in Table 1.

Table 1. Trajectory segment number distribution for various time intervals.

Time Interval
(Hours)

Corresponding
Number of

Trajectory Segment

The Number of
Overall Trajectory

Segment

Trajectory Segment
Ratio

(Percent)

≤1 25,009 52,537 47.6
(1, 2) 24,025 52,537 45.73
(2, 3) 1686 52,537 3.2
(3, 4) 598 52,537 1.15
(4, 5) 337 52,537 0.64
(5, 10) 603 52,537 1.15

(10, 15) 142 52,537 0.27
(15, 20) 53 52,537 0.1

>20 84 52,537 0.16

Figure 7 shows the distribution pattern of the distance and average sailing speed
between adjacent trajectory points. The blue dots represent the scatter plots of distance
and average sailing speed between regular ship trajectory points, while the orange dots
represent the ship trajectory mixed with spoofing ship trajectory points. In Figure 7a, when
the time interval between adjacent trajectory points is within 5 h, the continuity of the ship’s
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trajectory is good, and the blue and orange points have a good distinguishing ability. When
the time interval between ship trajectory points exceeds 5 h, the blue and orange points will
overlap, making it difficult to identify the trajectory points of the spoofing ship, as shown
in Figure 7b. Moreover, the longer the time interval between adjacent ship trajectory points,
the less easily the regular ship trajectory and the ship trajectory mixed with spoofing ships
are identified, as shown in Figure 7c,d.
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Figure 7. The distance and average sailing speed distribution of trajectory segment corresponding to
various time interval between adjacent trajectory points: (a) time interval within 5 h; (b) time interval
beyond 5 h and within 10 h; (c) time interval beyond 10 h and within 15 h; and (d) time interval
beyond 15 h and within 20 h.

4.2. Identification of Spoofing Ships Based on Trajectory Segmentation and Isolation Forest

For the trajectory of classes I, II, III, and IV of the spoofing ship, the accuracy of
identifying outliers of the ship trajectory shows the following trend with the number of sub-
sampling points and height of the isolated tree. Figure 8 reflects a correlation between the
accuracy of identifying outliers and the number of sub-sampling points. For the trajectory
of classes I, II, III, and IV of spoofing ships, the accuracy of identifying outliers of trajectory
points gradually decreases, and the error rate within the identification of regular ship
trajectory points gradually decreases, with an increase in the number of sub-sampling
points. The number of sub-sampling points is one of the important parameters of the
isolation forest, which would affect the true positive rate (outliers correctly identified)
and false positive rate (trajectory points of regular ship wrongly identified). Generally
speaking, the higher the true positive rate is, and the lower the false positive rate is, the
more reasonable the number of sub-sampling points is. In Figure 8, when the number of
sub-sampling points is about 100, the true positive rate is higher than 0.95, and the false
positive rate is lower than 0.05, so the number of sub-sampling points is set as 128.
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Figure 8. The correlation between True Positive Rate, False Positive Rate, and the number of sub-sampling
points for spoofing ship trajectory identification: (a) class I; (b) class II; (c) class III; (d) class IV.

Figure 9 reflects a correlation between the accuracy of identifying outliers and the
height of isolated trees. For the trajectory of classes I, II, III, and IV spoofing ships, the accu-
racy of identifying outliers of trajectory points gradually increases, and the identification
error rate of regular ship trajectory points also gradually increases, with an increase in the
height of isolated trees. The height of isolated trees is one of the important parameters
of isolated forest. The higher the isolated tree height is, the more effectively true positive
samples are identified (outliers correctly identified). However, as isolated tree height in-
creases, some false positive samples may also be mistaken for positive samples (regular
ship trajectory point wrongly identified). Generally speaking, the higher the true positive
rate is, and the lower false positive rate is, the more reasonable the height of the isolated
trees is. In Figure 8, when the height of isolated trees is about eight, the true positive rate is
higher than 0.95, and the false positive rate is lower than 0.05, so the height of isolated tree
is set as eight.

In Figures 10–13, the N_P and S_P of the ship trajectory are labeled with blue and
orange dots, and the NL_P of the ship trajectory are labeled with red dots. For outliers of
trajectory points that cannot be identified by statistical learning, the number of unidentified
trajectory points shows the following trend after adopting the isolated forest algorithm
for recognition. The number of unidentified trajectory points for class I spoofing ships
gradually decreases with an increase in the trajectory segmentation time; the specific
values are listed as 32, 19, 12, and 9, respectively, as shown in Figure 10. The number
of unidentified trajectory points for class II spoofing ships gradually decreases with an
increase in the trajectory segmentation time, with specific values of 5, 3, 1, and 1, as shown
in Figure 11. The number of unrecognized trajectory points for class III spoofing ships
gradually decreased with an increase in the trajectory segmentation time; the specific values
are listed as 20, 11, 8, and 4, as shown in Figure 12. The number of unrecognized trajectory
points has always been 0 for class IV spoofing ships, as shown in Figure 13.
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Figure 9. The correlation between true positive rate, false positive rate, and tree height for spoofing
ship trajectory identification: (a) class I; (b) class II; (c) class III; and (d) class IV.

J. Mar. Sci. Eng. 2023, 11, 1516 15 of 22 
 

 

 

 
(a)                                    (b) 

 
(c)                                  (d) 

Figure 10. Identification of outliers for class I spoofing ships via isolation forest: (a) trajectory seg-
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Figure 10. Identification of outliers for class I spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.
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Figure 12. Identification of outliers for class III spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.
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Figure 13. Identification of outliers for class IV spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.

As can be seen in Figure 14, the isolation forest was adopted to continue identifying
the outliers of trajectory points that could not be identified through statistical learning.
The time interval for trajectory segmentation increased from 5 h to 20 h, and the accuracy
of identifying outliers for class I spoofing ships improved first and then decreased, with
specific values of 95.7%, 98.3%, 94.5%, and 90.4%, gradually improved specific values of
76.4%, 86.9%, 94.4%, and 94.4% for class II spoofing ships, and gradually improved specific
values of 88.2%, 91.9%, 93.4%, and 98.1% for class III spoofing ships. However, the accuracy
of identifying outliers for class IV spoofing ships remains high and unchanged, mainly due
to the short time interval among trajectory points, with constant values of 100%.
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In Figure 14, among the four classes of regular ship trajectories mixed with spoofing
ships, the identification accuracy of class IV and class I is relatively high, reaching 100%
and 95.7%, respectively, while the identification accuracy of class II and class III is relatively
low, at only 76.4% and 88.2%. The segmentation threshold for these four types of ship
trajectories is all 5 h, and the reason for the inconsistent identification accuracy is that the
ratio of missing trajectories varies. Taking the sampling time of one hour as an example, the
complete trajectory points of a ship in one day should be 24. Therefore, the ratio of missing
points and jumping points for four classes of ships can be calculated based on the statistical
time. The correlation between the ratio of jumping and missing points and identification
accuracy for four classes of spoofing ships are shown in Table 2.

Table 2. Correlation between the ratio of jumping and missing points and identification accuracy for
four classes of spoofing ships.

Class of
Spoofing

Ship

Statistical
Time

(Months)

The Number
of Jumping
Trajectory

Points

The Number
of Actual
Trajectory

Points

Jumping
Points Ratio

(Percent)

The Number
of Complete

Trajectory
Points

Missing
Points Ratio

(Percent)

Identification
Accuracy

(Trajectory
Segmented

by 5 h)

I 4 18 2197 0.82 2880 23.7 95.7
II 2 528 1085 48.66 1440 24.6 76.4
III 3 58 1629 3.56 2160 24.5 88.2
IV 1 218 690 31.59 720 4.1 100

In Table 2, the ratio of missing trajectories points for class IV spoofing ships is only
4.1%, while the ratio for the other three classes of spoofing ships is close to 25%. Therefore,
the accuracy of identifying the trajectories of class IV spoofing ships is much higher than
that of the other three classes of spoofing ships. For the other three classes of spoofing
ships, class I spoofing ships have the smallest ratio of jumping points, class III spoofing
ships have a slightly larger ratio of jumping points, and class II spoofing ships have the
largest ratio of jumping points. The accuracy of identifying these three classes of spoofing
ships is also consistent with the changes in the ratio of jumping points.

In Figure 14, the identification accuracy of the first three classes of spoofing ships did
not reach 100%, and the accuracy did not improve with the increase in the time interval
threshold, such as class I and II spoofing ships. The applicability of the three parameters
and their related thresholds in this paper varies for each class of spoofing ship. For class
I and IV spoofing ships, the small time interval threshold brought the best identification
effect due to the low ratio of missing trajectory points. For class II and III spoofing ships,
the identification effect is the best when the time interval threshold between trajectory
points is large due to the high ratio of missing trajectory points. In addition, in order to
avoid mistakenly identifying the trajectory point of a spoofing ship as a regular ship, the
distance threshold between trajectory points and the average sailing speed threshold are
set to be small, which results in some regular ship trajectory points not being recognized
and labeled as confusion points. In Table 3, as the distance threshold and average sailing
speed threshold change, there are variations in the trend of the identification accuracy of
the four classes of spoofing ships.
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Table 3. Correlation between various values of threshold and identification accuracy (True Positive
Rate, False Positive Rate) for four classes of spoofing ships’ trajectory segmented by 5 h.

Minimum
Speed

Threshold
(Knots)

Maximum
Speed

Threshold
(Knots)

Minimum
Distance

Threshold
(Nautical Miles)

TPR and FPR
for Class I
(Percent)

TPR and FPR
for Class II
(Percent)

TPR and FPR
for Class III

(Percent)

TPR and FPR
for Class IV

(Percent)

20 100 100 91.98, 8.02 76.49, 23.51 88.03, 12.54 100, 0
30 100 150 92, 8.57 76.47, 34.45 88.59, 11.93 100, 0
50 100 250 92.28, 8.16 76.49, 49 89.01, 11.46 39.28, 60.72
80 100 400 91.13, 9.2 76.48, 58.28 89.35, 11.09 81.08, 72.97

For the spoofing ship of class I and III, the ship trajectory can be accurately displayed
without scatter jumping points, as shown in Figure 15a,c. For the spoofing ship of class II
and IV, the trajectories of two ships can be accurately displayed, as shown in Figure 15b,d.
The blue lines indicate the trajectories of regular ships, and the orange lines indicate the
trajectories of spoofing ships. Through the identification of the spoofing ship, the outliers
of the trajectory of a container ship in Figure 1 have been almost removed and classified
via trajectory segmentation and isolated forest, and the trajectory of a regular ship and
spoofing ship are exhibited, respectively, in Figure 16a,b, which can reflect a ship’s motion
pattern accurately.
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Figure 16. Trajectory of container ships exhibited in Figure 1 without confusion points between reg-
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Figure 15. Trajectory of four classes of regular ship trajectory without outlier: (a) trajectory of class
I exhibited with regular ship (marked by blue line) and spoofing ship (marked by orange line)
separately; (b) trajectory of class II; (c) trajectory of class III; and (d) trajectory of class IV.



J. Mar. Sci. Eng. 2023, 11, 1516 19 of 22

J. Mar. Sci. Eng. 2023, 11, 1516 19 of 22 
 

 

 
(c)                                  (d) 

Figure 15. Trajectory of four classes of regular ship trajectory without outlier: (a) trajectory of class 

I exhibited with regular ship (marked by blue line) and spoofing ship (marked by orange line) sep-

arately; (b) trajectory of class II; (c) trajectory of class III; and (d) trajectory of class IV. 

 
(a) 

 
(b) 

Figure 16. Trajectory of container ships exhibited in Figure 1 without confusion points between reg-

ular ship and spoofing ship: (a) regular ship trajectory; (b) spoofing ship trajectory. 
Figure 16. Trajectory of container ships exhibited in Figure 1 without confusion points between
regular ship and spoofing ship: (a) regular ship trajectory; (b) spoofing ship trajectory.

The framework was implemented on Windows 10 OS with 8 GB RAM and 2.8 GHz
CPU. We employed Matlab (2016 version) to perform trajectory segmentation and the
spoofing ship identification procedure on the ship trajectory data. With regard to the
runtime test, the paper dealt with 52,538 trajectory points owned by 20 container ships via
isolation forest, and runtime was 15.77 s.

5. Discussion

Each ship sailing at sea has a unique MMSI, which can be used to extract the complete
trajectory of any ship from AIS data. However, some ships have obtained unauthorized
MMSI through illegal approaches, which are duplicated with MMSI owned by existing
ships. This leads to a trajectory being extracted from one MMSI that actually belong to
multiple ships, which poses serious challenges to ship motion pattern identification based
on AIS data.
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The paper adopts trajectory feature mining to clarify the distribution patterns of
distance and average sailing speed between adjacent trajectory points (see Figures 5 and 6
for details). To address the impact of the missing trajectories of ships, updating the time
interval threshold is set to segment ship trajectories. For a segmented ship trajectory,
outliers can be identified via isolation trees established based on distance and speed among
trajectory segments. By observing the trend of changes in the true positive and false
positive rates of trajectory point identification, two important parameters of isolation forest
are determined, namely the sampling number and isolated tree height. After adopting
isolation forest, the identification accuracy of spoofing ships was improved, as shown in
Figure 14. The number of unidentified trajectory points for class I, II, and III spoofing ships
has gradually decreased with an increase in the trajectory segmentation time, as shown
in Figures 10–12. However, the identification accuracy of class IV spoofing ships was not
improved, and the reason may be that class IV spoofing ships have good continuity, as
shown in Figure 13.

Due to the identification of spoofing ships by isolation forest, the number of trajectories
in Figure 16 is almost half more than that in Figure 1. The trajectory of these spoofing
ships would just be removed if using the approaches described in the literature, and more
information of the AIS data would be lost. The pre-processing of AIS data should aim to
retain more information, which is more helpful to the situational awareness of ship motion
for the MSA based on AIS data. For the trajectory of a spoofing ship away from a regular
ship, it can be identified according to the serial number of the AIS base station included
in the AIS data. A part of the ship trajectory in this paper meets such characteristics and
would be identified more efficiently by the serial number of the AIS base station. However,
many AIS data do not contain information such as the serial number of the AIS base station,
so the spoofing ship identification method supplied by this paper is still necessary.

However, some trajectory points are still falsely identified as a regular ship rather
than a spoofing ship. The main reason for this is that trajectory points correlation shows
a poor performance among some trajectory segments. Future research should focus on
the clustering of trajectory points among various trajectory segments, so as to identify the
NN_P listed in Equation (12). In addition, this study only set a constant threshold and
established isolated trees via trajectory feature mining from the history trajectory of typical
cargo ships so as to identify outliers of ship trajectories. Future research should focus on
setting an adaptive threshold for speed and distance between adjacent trajectory points
based on differences in the maneuvering performance for various types of ships and the
speed difference of ships in different navigation stages.

6. Conclusions

A long time interval between adjacent trajectory points results in severe missing trajec-
tories of a ship, and the identification of spoofing ships are not ideal. In order to eliminate
the impact of missing trajectory points on the accuracy of identifying spoofing ships, the
trajectory is segmented by the time interval threshold. After trajectory segmentation, the
trajectory points of each trajectory segment maintain good continuity, that is, the time
interval between adjacent trajectory points for each trajectory segment is relatively short.
Combined with trajectory segmentation, the isolation forest is efficient at distinguishing
between regular ship trajectory points and spoofing ship trajectory points. Consequently,
outliers of ship trajectories were almost removed or classified correctly in this work, and
the labeled ship trajectory points can reflect a ship’s motion pattern accurately.

Author Contributions: Conceptualization, H.Z.; methodology, C.Y.; software, Q.M.; validation, H.Z.
and Q.H.; formal analysis, H.Z.; investigation, H.Z.; resources, C.Y. and P.W.; data curation, H.Z.;
writing—original draft preparation, H.Z.; writing—review and editing, Q.H.; visualization, C.Y.;
supervision, Q.H.; project administration, Q.H.; funding acquisition, Q.H. and K.L. All authors have
read and agreed to the published version of the manuscript.



J. Mar. Sci. Eng. 2023, 11, 1516 21 of 22

Funding: This research was funded by the Project of Ministry of Transport, grant number 2020MS6162.
Project of Zhoushan science and Technology Bureau, grant number 2021C21010; National innovation
and entrepreneurship training program for Zhejiang Ocean University, grant number 202210340043.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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